Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Monday, March 11, 2019 at 4:00 PM to 4:30 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 09.01.18 in Vol 4, No 1 (2018): Jan-Mar

This paper is in the following e-collection/theme issue:

Works citing "Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis"

According to Crossref, the following articles are citing this article (DOI 10.2196/publichealth.8950):

(note that this is only a small subset of citations)

  1. Clemente L, Lu F, Santillana M. Improved Real-Time Influenza Surveillance: Using Internet Search Data in Eight Latin American Countries. JMIR Public Health and Surveillance 2019;5(2):e12214
    CrossRef
  2. Soliman M, Lyubchich V, Gel YR. Complementing the power of deep learning with statistical model fusion: Probabilistic forecasting of influenza in Dallas County, Texas, USA. Epidemics 2019;28:100345
    CrossRef
  3. Lu FS, Hattab MW, Clemente CL, Biggerstaff M, Santillana M. Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches. Nature Communications 2019;10(1)
    CrossRef
  4. Talaei-Khoei A, Wilson JM, Kazemi S. Period of Measurement in Time-Series Predictions of Disease Counts from 2007 to 2017 in Northern Nevada: Analytics Experiment. JMIR Public Health and Surveillance 2019;5(1):e11357
    CrossRef
  5. Su K, Xu L, Li G, Ruan X, Li X, Deng P, Li X, Li Q, Chen X, Xiong Y, Lu S, Qi L, Shen C, Tang W, Rong R, Hong B, Ning Y, Long D, Xu J, Shi X, Yang Z, Zhang Q, Zhuang Z, Zhang L, Xiao J, Li Y. Forecasting influenza activity using self-adaptive AI model and multi-source data in Chongqing, China. EBioMedicine 2019;47:284
    CrossRef
  6. Mavragani A, Ochoa G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health and Surveillance 2019;5(2):e13439
    CrossRef
  7. Tana JC, Kettunen J, Eirola E, Paakkonen H. Diurnal Variations of Depression-Related Health Information Seeking: Case Study in Finland Using Google Trends Data. JMIR Mental Health 2018;5(2):e43
    CrossRef
  8. Mavragani A, Ochoa G. Infoveillance of infectious diseases in USA: STDs, tuberculosis, and hepatitis. Journal of Big Data 2018;5(1)
    CrossRef
  9. Mavragani A, Ochoa G, Tsagarakis KP. Assessing the Methods, Tools, and Statistical Approaches in Google Trends Research: Systematic Review. Journal of Medical Internet Research 2018;20(11):e270
    CrossRef
  10. Kolff CA, Scott VP, Stockwell MS. The use of technology to promote vaccination: A social ecological model based framework. Human Vaccines & Immunotherapeutics 2018;14(7):1636
    CrossRef
  11. Roth JA, Battegay M, Juchler F, Vogt JE, Widmer AF. Introduction to Machine Learning in Digital Healthcare Epidemiology. Infection Control & Hospital Epidemiology 2018;39(12):1457
    CrossRef