
Original Paper

Accurate Influenza Monitoring and Forecasting Using Novel
Internet Data Streams: A Case Study in the Boston Metropolis

Fred Sun Lu1, AB; Suqin Hou2, MS; Kristin Baltrusaitis3, MS; Manan Shah4; Jure Leskovec4,5, PhD; Rok Sosic4, PhD;

Jared Hawkins1,6, MMSc, PhD; John Brownstein1,6, PhD; Giuseppe Conidi7, MPH; Julia Gunn7, RN, MPH; Josh

Gray8, MBA; Anna Zink8, BA; Mauricio Santillana1,6, MS, PhD
1Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
2Harvard Chan School of Public Health, Harvard University, Boston, MA, United States
3Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
4Computer Science Department, Stanford University, Stanford, CA, United States
5Chan Zuckerberg Biohub, San Francisco, CA, United States
6Department of Pediatrics, Harvard Medical School, Boston, MA, United States
7Boston Public Health Commission, Boston, MA, United States
8athenaResearch, athenahealth, Watertown, MA, United States

Corresponding Author:
Mauricio Santillana, MS, PhD
Computational Health Informatics Program
Boston Children’s Hospital
1 Autumn St
Boston, MA, 02215
United States
Phone: 1 617 919 1795
Email: msantill@fas.harvard.edu

Abstract

Background: Influenza outbreaks pose major challenges to public health around the world, leading to thousands of deaths a
year in the United States alone. Accurate systems that track influenza activity at the city level are necessary to provide actionable
information that can be used for clinical, hospital, and community outbreak preparation.

Objective: Although Internet-based real-time data sources such as Google searches and tweets have been successfully used to
produce influenza activity estimates ahead of traditional health care–based systems at national and state levels, influenza tracking
and forecasting at finer spatial resolutions, such as the city level, remain an open question. Our study aimed to present a precise,
near real-time methodology capable of producing influenza estimates ahead of those collected and published by the Boston Public
Health Commission (BPHC) for the Boston metropolitan area. This approach has great potential to be extended to other cities
with access to similar data sources.

Methods: We first tested the ability of Google searches, Twitter posts, electronic health records, and a crowd-sourced influenza
reporting system to detect influenza activity in the Boston metropolis separately. We then adapted a multivariate dynamic regression
method named ARGO (autoregression with general online information), designed for tracking influenza at the national level, and
showed that it effectively uses the above data sources to monitor and forecast influenza at the city level 1 week ahead of the
current date. Finally, we presented an ensemble-based approach capable of combining information from models based on multiple
data sources to more robustly nowcast as well as forecast influenza activity in the Boston metropolitan area. The performances
of our models were evaluated in an out-of-sample fashion over 4 influenza seasons within 2012-2016, as well as a holdout
validation period from 2016 to 2017.

Results: Our ensemble-based methods incorporating information from diverse models based on multiple data sources, including
ARGO, produced the most robust and accurate results. The observed Pearson correlations between our out-of-sample flu activity
estimates and those historically reported by the BPHC were 0.98 in nowcasting influenza and 0.94 in forecasting influenza 1
week ahead of the current date.
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Conclusions: We show that information from Internet-based data sources, when combined using an informed, robust methodology,
can be effectively used as early indicators of influenza activity at fine geographic resolutions.

(JMIR Public Health Surveill 2018;4(1):e4) doi: 10.2196/publichealth.8950
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Introduction

Traditional Influenza Surveillance
Seasonal influenza is a major public health concern across the
United States. Each year, over 200,000 hospitalizations from
complications related to influenza infection occur nationwide,
resulting in 3000 to 50,000 deaths [1]. Worldwide, up to 500,000
deaths occur annually due to influenza [2]. Vaccination is the
primary prevention method [3], but other prevention and
mitigation strategies are also important for reducing transmission
and morbidity, including infection control procedures, early
treatment, allocation of emergency department (ED) resources,
and media alerts. Accurate and timely surveillance of influenza
incidence is important for situation awareness and response
management.

Governmental public health agencies traditionally collect
information on laboratory confirmed influenza cases and reports
of visits to clinics or EDs showing symptoms of influenza-like
illness (ILI). ILI is symptomatically defined by the Centers for
Disease Control and Prevention (CDC) as a fever greater than
100 F and cough or sore throat [4]. The CDC publishes weekly
reports for national and multistate regional incidence, whereas
state and city data are sometimes published by local agencies
such as the Boston Public Health Commission (BPHC). These
systems provide consistent historical information to track ILI
levels in the US population [5,6]. However, they often involve
a 1- to 2-week lag, reflecting the time needed for information
to flow from laboratories and clinical databases to a centralized
information system, and tend to undergo subsequent revisions.
The time lag delays knowledge of current influenza activity,
thus limiting the ability for timely response management.
Additionally, this time lag makes it harder to predict future
activity.

Real-Time Surveillance Models
To address this issue, research teams have demonstrated the
ability to monitor national and regional (collections of 5 states
within the United States defined by the Department of Health
and Human Services) influenza incidence in near real-time by
combining various disparate sources of information. Historical
flu activity shows both seasonal and short-term predictability,
and models that use such autoregressive information can capture
and estimate the salient features of epidemic outbreaks [7].
Rapidly updating data streams have also been found to show
strong value in influenza monitoring at the national and regional
levels. As early as 2006, analysis of Internet search activity has
shown the potential to predict official influenza syndromic data
[8]. In 2008, Google Flu Trends (GFT) launched one of the first
projects to utilize Internet searches as predictors of influenza

activity, eventually providing predictions from 2003 to 2015
using search volumes around the globe [9]. Although flaws have
been identified in Google’s original methods and results [10],
methodological improvements have shown that Internet searches
are a viable way to monitor influenza [7,11-13].

Cloud-based electronic health records (EHRs) are another data
source that can be obtained in near real-time [14]. Participating
health care providers can report influenza cases as they occur,
giving early approximations of the true infection rate. In
Santillana et al [15], an ensemble approach combining these
data sources outperformed any other methods in national flu
predictions. In addition, traditional susceptible-infected-
recovered (SIR) epidemiological models coupled with data
assimilation techniques have shown strong potential in
predicting influenza activity in multiple spatial resolutions
[16,17]. Finally, participatory disease surveillance efforts where
a collection of participants report whether they experienced ILI
symptoms on a weekly basis, such as Flu Near You (FNY) in
the United States, Influenzanet in Europe, and Flutracking in
Australia, show promise in monitoring influenza activity in
populations not frequently surveilled by health care–based
surveillance systems [18-21].

Finer Spatial Resolutions
Although significant progress in tracking and predicting
influenza activity using novel data sources has been made at
larger geographical scales, detection at finer spatial resolutions,
such as the city level, is less well understood [7,12,14-15,22-26].
Models aiming at tracking the number of influenza-positive
case rates at the city level have been developed with moderate
success, including a network mechanistic model for the
neighborhoods and boroughs of New York City based on the
traditional SIR methodology [27]. Models combining Twitter
and Google Trends data have also been tested in the same city
[28], as well as in a Baltimore hospital [29].

In this paper, we demonstrate the feasibility of combining
various Internet-based data sources using machine learning
techniques to monitor and forecast influenza activity in the
Boston metropolitan area, by extending proven methods from
the national- and regional-level influenza surveillance literature
to the city-level resolution. We then develop ensemble
meta-predictors on these methods and show that they produce
the most robust results at this geographical scale. Our methods
were used to produce out-of-sample influenza estimates from
2012 to 2016 as well as out-of-sample validation on previously
unseen official influenza activity data from the 2016-2017
seasons. Our contribution shows that the lessons learned from
tracking influenza at broader geographical scales, such as the
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national and regional levels in the United States, can be adapted
with success at finer spatial resolutions.

Methods

Data Collection
We used syndromic data collected by the BPHC as our reference
for influenza activity in the metropolis. Other data sources
included Google searches, Twitter posts, FNY mobile app
reports, and EHRs, as described below. Data were collected
from the weeks starting September 6, 2009, to May 15, 2016,
and separately from the weeks starting May 22, 2016, to May
7, 2017, for the holdout set.

Epidemiological Data
The Greater Boston area is defined using zip codes within
Suffolk, Norfolk, Middlesex, Essex, and Plymouth counties.
These zip codes are associated with over 90% of Boston ED
visits. Limited data for ED visits from all 9 Boston acute care
hospitals are sent electronically every 24 hours to the BPHC,
which operates a syndromic surveillance system. Data sent
include visit date, chief complaint, zip code of residence, age,
gender, and ethnicity.

Our prediction target for Greater Boston was %ILI (percentage
of ILI), which is calculated as the number of ED visits for ILI
divided by the total number of ED visits each week. These data
are updated between Tuesday and Friday with the %ILI of the
previous week along with retrospective revisions of previous
weeks. We used this dataset as the ground truth against which
we benchmarked our predictive models. Inspection of the past
5 years of ILI activity in the Boston area, compared with US
national ILI activity, shows that the peak weeks and length of
outbreaks are not synchronous, and the scales (%ILI) are not
necessarily comparable (Multimedia Appendix 1).

The exogenous near real-time data sources mentioned below
were used as inputs to our predictive models.

Google Trends Data
Weekly search volumes within the Boston Designated Market
Area (which has a similar size and coverage to Greater Boston)
of 133 flu-related queries were obtained from the Google Trends
application programming interface (API). These include query
terms taken from the national influenza surveillance literature
[7] as well as Boston-specific terms (all terms displayed in
Multimedia Appendix 2). Each query is reported as a time series,
where each weekly value represents a sample frequency out of
total Google searches made during the week, scaled by an
undisclosed constant. Data from the previous week are available
by the following Monday. The data are left-censored, meaning
that the API replaces search frequencies under some unspecified
threshold with 0. To filter out the sparse data, search terms
whose frequencies were over 25.1% (88/350) composed of 0s
were removed, leaving 50 predictors.

Electronic Health Record Data
Weekly aggregated EHR data were provided by athenahealth.
Although athenahealth data aggregated at the city level for
Boston were not available for this study, we used state-level

data as an indicator of influenza flu activity in Boston. We
believe this is a suitable proxy because most of the population
of Massachusetts lives in Greater Boston, which suggests that
Greater Boston’s %ILI is a large subset of and likely highly
correlated with the state’s %ILI. Three time series at the
Massachusetts’ level were used as our input variables: “influenza
visit counts,” “ILI visit counts,” and “unspecified viral or ILI
visit counts.” A fourth time series, “total patient visit counts,”
was used to convert the case counts into rates. Reports from the
previous week are available on the following Monday. Detailed
information on EHR data from athenahealth is provided in
Santillana et al [14].

To convert the 3 influenza-related case counts into frequencies,
they were each divided with a 2-year moving average of the
weekly total patient visits to construct smoothed rate variables.
The justification for this approach is provided in Multimedia
Appendix 2.

Flu Near You Data
FNY is an Internet-based participatory disease surveillance
system that allows volunteers in the United States and Canada
to report their health information during the previous week and
in real-time, using a brief survey. The system collects and
publishes symptom data on its website on a weekly basis and
offers an interface to compare its data with data from the CDC
sentinel influenza network [18]. Data for the previous week are
available the following Monday. FNY participants located in
the Greater Boston area were identified using the zip code
provided at registration. Raw FNY %ILI for Boston was
calculated by dividing the number of participants reporting ILI
in a given week by the total number of FNY participant reports
in that same week.

Twitter Data
We used the GNIP Historical Powertrack service to collect all
tweets from April 15, 2015, to March 24, 2017, that were
geocoded (using the GNIP location field) within a 25-mile radius
from Boston (defined as 42.358056, −71.063611), the maximum
radius supported by GNIP. The definition of Greater Boston
used in this study is approximately the same radius. A subset
of tweets was extracted from the Twitter dataset according to
criteria specified by a generated list of key influenza-related
terms and phrases. Initialized with a set of common hashtags
related to disease (including #sick and #flu), the list was
expanded based on linguistic term associations identified in
disease-related tweets to include terms such as #stomachache
and #nyquil.

Models
We adapted a variety of models from the influenza surveillance
literature to answer the following 2 questions: (1) What are the
data sources that best track influenza activity as reported by the
BPHC? and (2) What are the methodologies that best estimate
the influenza activity by combining the data sources identified
in (1)?

The models fall into 2 categories: single source variable analyses
to investigate the value of a specific dataset in tracking %ILI
and multisource analyses to inspect the value of combining
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disparate information sources for tracking %ILI. Motivated by
the analyses presented in Yang et al for national influenza
tracking [30], most of our models combine 52-week
autoregressive components with terms from real-time
Internet-based data in a multivariate linear regression with L1
regularization (LASSO). The initial regression model was
trained using the first 2 years of data (104 weeks), and
subsequent models were retrained each week using the 2-year
sliding window (ie, most recent 104 weeks of data). Following
the convention in [30], these models are indicated as ARGO
(autoregression with general online information).

Because exogenous data for each week are available by the
following Monday, whereas the official BPHC %ILI is published
by the following Friday, we have 2 useful estimation targets:
(1) a nowcast of %ILI for the week that just ended (concurrent
with the exogenous data) and (2) a forecast of %ILI over the
coming week (1 week ahead of the exogenous data). Predictions
on the forecast horizon were produced by retraining the models
from the nowcast horizon with the %ILI targets shifted 1 week
forward.

Models on Single Data Sources

Endogenous Model

AR52

An autoregressive baseline model was constructed to evaluate
the benefit of using only past values of the BPHC %ILI time
series to estimate the current %ILI. To predict the %ILI in a
given week, the %ILI of the previous 52 weeks was used as the
independent variables in a LASSO regression.

Exogenous Models

ARGO(FNY)

The raw FNY rate at time t was combined with 52 autoregressive
terms in a LASSO regression.

ARGO(Google)

We constructed the model presented in [7], using the Google
Trends search frequencies and 52 autoregressive terms in a
LASSO regression.

ARGO(athena)

As in [14], athenahealth rates from the 3 most recently available
weeks were combined for each week’s prediction, resulting in
a stack of 9 variables. These weeks are denoted as “ t-1,” “ t-2,”
and “ t-3” in our analysis. The model combines the 9 variables
at time t with 52 autoregressive terms in a LASSO regression.

Twitter

The modeling approach involved developing a multistage
pipeline framework described in detail in [31]. Initially, a list
of flu-related tweets was extracted as described in the Data
section. We subsequently clustered each relevant tweet within
its hashtag corpus according to the calculated term
frequency–inverse document frequency vectors [32], and we
classified a random subset of tweets within each cluster into 3
categories—self reporting, non-self-reporting, and
spam—according to a second set of engineered linguistic
attributes. Clusters with large proportions of non-self-reporting

and spam tweets were subsequently eliminated, with the
remaining tweets and associated timestamps forming a daily
frequency distribution corresponding to %ILI over time. The
results were finally aggregated at the weekly level and scaled
to the BPHC %ILI. Because Twitter data were available for a
period of less than 2 years, we did not include Twitter in our
ARGO models.

ARGO(athena+Google+FNY)

The athenahealth rates, Google Trends search frequencies, and
raw FNY rate were combined with 52 autoregressive terms in
a modified LASSO regression with grouped regularization as
in [30]. The model includes additional processing and
hyper-parameter settings, details of which are presented in
Multimedia Appendix 3.

Ensemble

Finally, we developed a meta-predictor on a layer of 7 input
models, including most of those previously defined. The flu
estimates of these input models were combined based on the
historical performances of the models. In the nowcast horizon,
a performance-adjusted median on the outputs of the individual
models was selected as the ensemble meta-predictor. In the
forecast horizon, a performance-adjusted LASSO regression
was selected as the ensemble meta-predictor.

A detailed description and comparison of all models, including
ensembles, are presented in Multimedia Appendix 4.

All experiments were conducted in Python 2.7 (Python Software
Foundation) using scikit-learn version 0.18.1 [33].

Models Combining Multiple Datasets

Comparative Analyses
Model performance was evaluated using 5 metrics: root mean
square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), Pearson correlation
coefficient (CORR), and correlation of increment (COI). For
an estimation ŷ of the official %ILI y, the definitions are as
follows:

RMSE = [ ( 1 / n ) ∑t=1…n ( ŷt – yt ) 2 ] 1/2

MAE = ( 1 / n ) ∑t=1…n | ŷt – yt |

MAPE = ( 1 / n ) ∑t=1…n | ŷt – yt | / yt

COI = CORR ( ŷt – ŷt-1 , yt – yt-1 )

For guidance, a method is more accurate when the prediction
errors (RMSE, MAE, and MAPE) are smaller and closer to 0.
The LASSO objective minimizes RMSE, so this metric will be
our primary way to assess model accuracy. A method tracks the
movement of the flu activity better when the correlation values
(CORR and COI) are closer to 1.

Metrics were computed between each model’s predictions and
the official BPHC %ILI over the entire test period (September
2, 2012, to May 15, 2016), as well as for each influenza season
(week 40 to week 20 of the next year) including the holdout set.

The following 2 additional benchmarks were constructed to
establish a baseline for comparison between all models:
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1. A naive model that uses the %ILI from the previous week
as the prediction for the current week

2. GFT influenza activity estimates from September 5, 2010,
to August 9, 2015, accessed on December 2016, from [9].

Because Google reported values as intensities between 0 and 1
without a clear scaling constant, the data were linearly rescaled
to fit BPHC %ILI using the same initial training set as the above
models (September 5, 2010, to August 26, 2012).

Results

Out-of-sample weekly estimates of Greater Boston ILI activity
from all models were produced retrospectively for the period
starting from September 2, 2012, to May 15, 2016. After the
2016-2017 flu season, previously unseen BPHC %ILI data from
May 22, 2016, to May 7, 2017, were used to validate model
performances.

Single Data Source Evaluation
Table 1 shows the metrics calculated by comparing retrospective
estimates from all models built with a single exogenous dataset
against BPHC %ILI, over 5 flu seasons. ARGO(athena) is the
best performing model in this category, both overall and across
the majority of flu seasons. For example, ARGO(athena) yields
a 5% (0.011/0.206) lower RMSE than the nearest competitor
ARGO(Google), 36% (0.108/0.303) lower error than AR52,
and 27% (0.071/0.266) lower error than the naive approach. As
shown in Figure 1, ARGO(athena) tends to capture peaks of
ILI activity more accurately than the other models.

Because each ARGO model in Table 1 combines an exogenous
dataset with AR52, comparing each model with AR52 indicates
how much predictive value the dataset adds to the historical ILI
time series. Both athenahealth and Google Trends datasets show
a marked improvement over a simple AR52 model, indicating
that they contain valuable information for influenza monitoring.
Both models also demonstrate reduced error (RMSE, MAE,
and MAPE) compared with the GFT benchmark in seasons
where GFT was available. ARGO(FNY) performs about the
same as AR52 overall, indicating that FNY may not necessarily
track the BPHC %ILI. It is important to highlight that although
the Twitter %ILI estimates perform worse than all other models,
this approach was not dynamically trained with AR52
information, due to the short period when these values were
produced. Twitter %ILI estimates nevertheless show a similar
pattern of peaks and dips compared with the BPHC %ILI (Figure
1).

Multiple Data Sources Evaluation
In Table 2, the performance of the best single-dataset model,
ARGO(athena), is compared with the performance of the
multi-dataset models for the nowcast horizon. Over the entire
period and for all flu seasons besides 2015-16,
ARGO(athena+Google+FNY) shows a decrease in error and
increase in correlation compared with ARGO(athena). In
particular, it achieves a 15% (0.03/0.195) decrease in RMSE
and a 20% (0.109/0.547) increase in COI compared with
ARGO(athena), significantly improving on the performance of
the single-dataset approach. A similar pattern is present in the
one week ahead forecast horizon, with significantly better

performance over the entire period except for the 2014-15 and
2015-16 seasons (Table 3). With a 25% (0.08/0.325) decrease
in RMSE and a 23% (0.101/0.432) increase in COI compared
with ARGO(athena), the multi-dataset model again provides a
distinct improvement.

The comparison between ARGO(athena+Google+FNY) and
ARGO(athena) shows that models combining multiple data
sources generally perform better than the best dataset alone,
consistent with previous findings on influenza prediction at the
US national level [15,30]. However, the superiority of
ARGO(athena+Google+FNY) is not consistent over all seasons.
As shown in Multimedia Appendix 4, when compared with the
full array of models we tested, ARGO(athena+Google+FNY)
underperforms in not only the seasons previously mentioned
where it loses to ARGO(athena) but also in the 2013-14
influenza season. In other words, even though
ARGO(athena+Google+FNY) is overall stronger than the other
models discussed, its results in any given season could be
significantly worse than the best-performing model of that
season. Similarly, the other models (non-ensembles) exhibit
variations in performance over time, with none consistently
performing at the top.

Ensemble Modeling Approach Evaluation
To develop a more robust and consistent set of influenza
estimates, we trained an ensemble meta-predictor that takes
predictions from all the above models and combines them into
a single prediction. As shown in Tables 2 and 3, our ensembles
achieve the best overall performance in every metric, in both
nowcast and forecast horizons. In the nowcast, the ensemble is
consistently the strongest model, with the lowest RMSE and
highest correlation in 4 out of 5 seasons. In the forecast, the
meta -p red ic to r  i s  l e s s  dominan t  over
ARGO(athena+Google+FNY), but still has the advantage of
consistency: even when it is not the strongest model over a
season, it is never far from the best performance. This is
illustrated in Multimedia Appendix 4, where the ensembles
achieve top 2 performances over all influenza seasons more
consistently than any other model in the input layer. Figure 2
confirms this consistency by showing that the ensemble curve
accurately predicts the magnitude of peaks in each influenza
season, with less prediction error than the other models.

We found that different ensemble methods performed better at
each time horizon. The results of 4 different meta-predictors
are shown in Multimedia Appendix 4. The performance-adjusted
median showed the best performance for the nowcast, and
LASSO showed the best performance for the forecast.

In multiple seasons including 2016-17, the predicted nowcast
peak occurs slightly later than the observed %ILI peak (Figure
1), which likely occurs because of the autoregressive
contribution in the input variables for each model. This delay
becomes more significant when predicting the 1-week forecast,
as shown in the bottom panel of Figure 2. As noted in Yang et
al [7], a trade-off occurs between robustness and responsiveness
when using ARGO, where robustness refers to avoiding large
errors in any given week and responsiveness refers to predicting
the gold standard without delay. The top panel of Figure 2 shows
that the presence of this lag in the nowcast is mitigated when
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using our ensemble approach, improving responsiveness while preserving robustness.
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Table 1. Comparison of single data source models for nowcasting Boston Public Health Commission’s percentage of influenza-like illness over the
assessment period (September 2, 2012, to May 7, 2017). Each flu season starts on week 40 and ends on week 20 of the next year.

HoldoutFlu seasonsWhole periodModela

2016-172015-162014-152013-142012-132012-16

Root mean square error

0.2290.2170.3050.1990.5770.303AR52

0.1820.1330.1920.2290.3060.195ARGO(athena)b

0.1880.1610.2470.1940.3120.206ARGO(Google)

0.2800.1720.3430.2040.5520.299ARGO(FNY)c

0.3510.4270.162———Twitter

——0.2840.2710.352—GFTd

0.2190.2020.2800.2080.4810.266Naive

Mean absolute error

0.1760.1760.2180.1460.3450.180AR52

0.1540.1020.1360.1890.2050.137ARGO(athena)

0.1530.1310.2130.1550.2060.150ARGO(Google)

0.2130.1400.2210.1530.3620.182ARGO(FNY)

0.2510.3380.136———Twitter

——0.2270.2250.294—GFT

0.1680.1580.2130.1650.2900.167Naive

Mean absolute percentage error

0.1300.1880.1850.1370.1880.184AR52

0.1290.1100.1240.1930.1280.163ARGO(athena)

0.1250.1460.2090.1520.1340.179ARGO(Google)

0.1570.1430.1860.1390.2100.192ARGO(FNY)

0.1890.3080.212———Twitter

——0.2280.2210.308—GFT

0.1300.1620.1880.1520.1690.172Naive

Pearson correlation coefficient

0.8980.8060.8340.8460.8820.898AR52

0.9490.9430.9500.8430.9640.959ARGO(athena)

0.9300.8960.9100.8560.9680.956ARGO(Google)

0.8790.8860.8240.8450.9090.901ARGO(FNY)

0.7590.4160.888———Twitter

——0.9210.7850.974—GFT

0.9060.8480.8680.8460.9120.922Naive

Correlation of increment

0.222−0.0480.115−0.1050.3590.222AR52

0.5150.4860.4830.2200.6570.547ARGO(athena)

0.4170.2670.2840.3990.7300.546ARGO(Google)

0.2530.122−0.025−0.0560.3870.252ARGO(FNY)

0.095−0.291−0.481———Twitter

——0.5750.2810.892—GFT

JMIR Public Health Surveill 2018 | vol. 4 | iss. 1 | e4 | p. 7http://publichealth.jmir.org/2018/1/e4/
(page number not for citation purposes)

Lu et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


HoldoutFlu seasonsWhole periodModela

2016-172015-162014-152013-142012-132012-16

0.193−0.0700.280-0.1000.4800.291Naive

aThe best performance within each season and metric is italicized. Results for each model are shown where available.
bARGO: autoregression with general online information.
cFNY: Flu Near You.
dGFT: Google Flu Trends.

Figure 1. Retrospective nowcasts from single data source models are shown, compared with Boston Public Health Commission’s official percentage
of influenza-like illness (BPHC official %ILI) (black), over the entire study period (September 2, 2012, to May 7, 2017). The gold section indicates the
holdout period from May 22, 2016, to May 7, 2017. The bottom panel shows the corresponding errors of each model compared with the official %ILI
(ARGO: autoregression with general online information; FNY: Flu Near You).
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Table 2. Comparison of models using multiple data sources for nowcasting Boston Public Health Commission’s percentage of influenza-like illness
over the study period (September 2, 2012, to May 7, 2017). ARGO(athena) and the naive model are included as benchmarks for comparison.

HoldoutFlu seasonsWhole periodModela

2016-172015-162014-152013-142012-132012-16

Root mean square error

0.1820.1330.1920.2290.3060.195ARGO(athena)b

0.1560.1680.1890.1920.1990.165ARGO(athena+Google+FNY)c

0.1500.1390.1760.1700.1930.151Ensemble

0.2190.2020.2800.2080.4810.266Naive

Mean absolute error

0.1540.1020.1360.1890.2050.137ARGO(athena)

0.1310.1280.1540.1440.1460.124ARGO(athena+Google+FNY)

0.1180.1060.1350.1310.1400.112Ensemble

0.1680.1580.2130.1650.2900.167Naive

Mean absolute percentage error

0.1290.1100.1240.1930.1280.163ARGO(athena)

0.1040.1420.1530.1360.1120.154ARGO(athena+Google+FNY)

0.0930.1180.1320.1230.1000.140Ensemble

0.1300.1620.1880.1520.1690.172Naive

Pearson correlation coefficient

0.9490.9430.9500.8430.9640.959ARGO(athena)

0.9570.9160.9640.8610.9850.972ARGO(athena+Google+FNY)

0.9580.9280.9640.8900.9860.976Ensemble

0.9060.8480.8680.8460.9120.922Naive

Correlation of increment

0.5150.4860.4830.2200.6570.547ARGO(athena)

0.6200.3120.6600.4190.8070.656ARGO(athena+Google+FNY)

0.5650.3570.6330.4470.8270.689Ensemble

0.193−0.0700.280−0.1000.4800.291Naive

aThe best performance within each season and metric is italicized.
bARGO: autoregression with general online information.
cFNY: Flu Near You.
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Table 3. Comparison of models using multiple data sources for forecasting Boston Public Health Commission’s percentage of influenza-like illness,
over the study period (September 2, 2012, to May 7, 2017). ARGO(athena) and the naive model are included as benchmarks for comparison.

HoldoutFlu seasonsWhole periodModela

2016-172015-162014-152013-142012-132012-16

Root mean square error

0.2610.1880.2600.2490.6470.325ARGO(athena)b

0.2400.1900.3140.2210.3670.245ARGO(athena+Google+FNY)c

0.2510.1550.2510.2370.3480.222Ensemble

0.3400.2710.4470.2760.8270.428Naive

Mean absolute error

0.2210.1560.1840.2000.4320.203ARGO(athena)

0.1890.1510.2250.1610.2470.169ARGO(athena+Google+FNY)

0.1980.1230.2020.1710.2450.157Ensemble

0.2510.2010.3290.2030.5280.252Naive

Mean absolute percentage error

0.1750.1630.1680.1860.2540.217ARGO(athena)

0.1490.1470.2140.1420.1670.192ARGO(athena+Google+FNY)

0.1440.1300.1980.1550.1600.180Ensemble

0.2040.1950.2720.1690.3080.238Naive

Pearson correlation coefficient

0.8910.8980.9330.7850.8420.887ARGO(athena)

0.9100.9030.9220.8260.9490.938ARGO(athena+Google+FNY)

0.9130.9060.9160.8470.9560.944Ensemble

0.7750.7280.6630.7440.7390.799Naive

Correlation of increment

0.4720.3120.6240.2590.4520.432ARGO(athena)

0.4770.2850.5080.4510.6210.533ARGO(athena+Google+FNY)

0.5100.2860.5150.4410.6820.573Ensemble

−0.0650.043−0.1810.1740.2120.102naive

aThe best performance within each season and metric is italicized.
bARGO: autoregression with general online information.
cFNY: Flu Near You.
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Figure 2. Estimations with multiple data source models over the entire study period (September 2, 2012, to May 7, 2017), with corresponding errors
for each model compared with Boston Public Health Commission percentage of influenza-like illness (BPHC official %ILI). The gold section indicates
the holdout period from May 22, 2016, to May 7, 2017. Predictions are shown separately for the nowcast horizon (top) and the forecast horizon (bottom)
(ARGO: autoregression with general online information; FNY: Flu Near You).

Relevance of Different Data Sources
To understand the predictive power of each data source when
used together as input, we displayed the weekly coefficient
values associated with each (normalized) input variable in the
ARGO(athena+Google+FNY) model, over time, in heatmaps
(Figures 3 and 4). It can be seen that the state-level athenahealth
variables have the strongest signal in both nowcast and forecast
horizons, suggesting that information from EHRs is a strong

predictor of metropolitan level influenza. Although most of the
long-term autoregressive terms show little to no signal, the most
recent ILI value is predictive for the nowcast horizon. Finally,
the selection of Google Trends variables and FNY by LASSO
appears to be fairly scattered, with a few terms such as “chest
cold,” “flu contagious,” and “sinus” appearing more
consistently. Interestingly, FNY reports show a stronger signal
in the forecast time horizon, suggesting that perhaps early
self-reporting of symptoms correlates with later ED visits.
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Figure 3. Heatmap of input variable coefficients for ARGO(athena+Google+FNY) from September 2, 2012, to May 15, 2016, for the nowcast horizon
(ARGO: autoregression with general online information).
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Figure 4. Heatmap of input variable coefficients for ARGO(athena+Google+FNY) from September 2, 2012, to May 15, 2016, for the 1-week forecast
horizon (ARGO: autoregression with general online information).
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Table 4. Efficiency improvement of ensemble method with 95% confidence intervals over the period of September 2, 2012, to May 15, 2016, using
the stationary block bootstrap with mean length 52 weeks.

95% CIMeanaModel

Nowcast

2.11-6.834.03AR52

1.14-3.011.91athena

1.46-2.782.16Google

1.25-1.771.51athena+Google

1.31-2.181.67ARGO(athena)b

1.57-2.301.87ARGO(Google)

1.10-1.291.20ARGO(athena+Google+FNY)c

Forecast

1.98-7.164.55AR52

1.54-3.142.37athena

1.98-3.632.78Google

1.20-3.242.21athena+Google

1.20-3.082.14ARGO(athena)

2.12-10.276.09ARGO(Google)

1.03-1.351.21ARGO(athena+Google+FNY)

aMean values of the error for each methodology are displayed as multiples of the error associated to the best ensemble approach (for which the efficiency
is assigned to be 1).
bARGO: autoregression with general online information.
cFNY: Flu Near You.

Statistical Significance Test
Using the stationary block bootstrap for time series [34], we
calculated the mean square error reduction of the ensemble
method compared with all other models. The efficiency metrics
and corresponding 95% confidence intervals are provided in
Table 4. In the nowcast time horizon, our ensemble method
shows a four-fold error reduction when compared with an
autoregressive model, and a 17% (0.2/1.2) error reduction over
the best multi-dataset model ARGO(athena+Google+FNY).
The confidence intervals confirm the statistical significance of
these results. Our ensemble method shows similar improvements
in the forecast horizon as well.

Discussion

Indicators of Influenza Activity
Robust estimates of influenza activity in a population are
desirable to monitor and prepare for unusual events. However,
different sectors of the population in a local area behave
differently, and thus, the incidence and dynamics of the spread
of flu cannot be captured by a single system. Multiple influenza
surveillance systems may provide valuable complementary
information representing activity in multiple interacting
populations within an area. For example, syndromic surveillance
systems, such as the one set up by BPHC, provide the number
of people seeking emergency care with ILI symptoms. We used
BPHC %ILI as our reference for syndromic ILI in this paper,

because it has been well established and consistently reporting
for several years. Previous analysis of the coordination between
the BPHC ILI syndrome coding and official lab results has
shown a correlation of 0.84, P<0.001, with Boston viral isolate
data [35]. On the other hand, crowd-sourced systems such as
FNY, where only 35% of self-reported sick users visit a doctor
[19], may help us understand influenza activity in populations
that may not seek medical treatment or at times when weather
activity, such as snowstorms, limits access to health care
systems. The network of outpatient providers served by
athenahealth characterizes yet another sector of the population.
As such, there is no gold standard of influenza activity, and
surveillance systems should be compared to identify if upward
or downward trends are observed across them.

Analysis of Our Findings
Our study shows that novel influenza surveillance approaches
that leverage information from Internet search engines, Twitter
posts, self-reporting crowd-sourced influenza reports, and EHRs
can monitor and forecast influenza activity as reported by a
well-established metropolitan surveillance system, in near
real-time. In terms of tracking the BPHC %ILI, our findings
show that Google search frequency data and EHR information
have strong predictive power. This confirms that these 2 data
sources are valuable indicators of ILI activity, not only at the
national and regional scales but also at spatial resolutions as
small as the metropolitan level. Machine learning models based
on these data sources outperform autoregressive models based
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solely on past values of the BPHC %ILI time series, achieving
lower error and higher correlations. Combining the above
information and other data sources, such as FNY, using methods
that dynamically learn from the past, results in strong
performances in both monitoring and forecasting influenza
activity.

Compared with previous studies at the national level, combining
all data sources in a single model, specifically
ARGO(athena+Google+FNY), does not show the same degree
of precision or consistency at the metropolitan level. We believe
that the finer spatial resolution of Boston compared with national
and regional levels may be a limiting factor for the quality of
some of the exogenous datasets used in this study, namely,
Google Trends, Twitter, and FNY. As noted in previous studies,
as we zoom in on finer spatial resolutions, we found that (1)
Google search frequencies are more susceptible to noise from
people who may search for flu-related terms but are not infected
by the flu [30,36], (2) the accuracy of Twitter-based disease
surveillance decreases as it becomes difficult to capture enough
related Twitter posts to extrapolate an %ILI curve [37,38], and
(3) FNY may have too few participants to infer meaningful
population-wide flu incidence estimates, as Boston receives
only around 300 reports per week. This can result in variables
having inconsistent predictive strength over time and different
seasons. Because ARGO selects variables for a week’s
regression based on predictive strength over the past 104 weeks,
it may give worse estimations when, for example, a variable
that performed strongly over the training set starts to perform
poorly in the current season.

Ensemble approaches show promise for achieving robust results
in situations where the performance of a single method over
time is not robust. By allowing contributions from a group of
different models, individual fluctuations of accuracy tend to be
smoothed out. In an ideal situation where each model is valid
but biased differently, the median is a robust way to lend equal
weight to all models. In our case, where there are clear
differences in overall predictive strength between models, we
needed to apply a performance-based adjustment. Our proposed
ensemble for the nowcast dynamically rewards the most accurate
model and penalizes the least accurate model in an out-of-sample
fashion each week. In the forecast horizon, however, the median
approach was unsuccessful, suggesting that there are systematic
biases (eg, all of the models overpredict in some weeks) that
the median fails to correct for. However, a regression-based
methodology, which was the best method for the forecast
horizon, allows systematic error to be modeled and incorporated
into the model, at the cost of being more susceptible to the
original issue of overfitting on inconsistencies over the training
set. (In this case, rather than a data source being inconsistent
over time, it is the model produced on that data source that is
inconsistent.) These trade-offs may explain why different
methods were successful at each estimation horizon.

Models utilizing Google Trends information performed
especially well compared with the naive method in the 2012-13
season but poorly in the subsequent season. The 2012-13 season
notably featured a large outbreak of influenza, which led the
naive and AR52 methods to perform especially poorly as their
predictions tend to be lagged. In such a situation, Google Trends

data can improve the model by adding responsiveness. This
situation is reflected in the nowcast heatmap (Figure 3), where
the signal from AR1 disappears at the beginning of 2013, as the
big influenza peak was occurring. At around the same time,
athenahealth signal increased and remained consistent until
2016, suggesting that athenahealth increased its strength as a
predictor of BHCP %ILI. This is supported by Table 1, where
ARGO(athena) shows a steady decrease in RMSE from the
2012-2013 season until the 2015-2016 season. The overall
improvement suggests that as athenahealth becomes further
established, its predictive accuracy may continue to rise.

Using Influenza-Like Illness Incidence as the Target
Variable
We chose to estimate %ILI visit rates as our target rather than
attempt to infer diagnosed influenza incidence. On one hand,
confirmed influenza case counts are useful for specifying
transmission dynamic models and virology analysis. On the
other hand, %ILI incidence serves a practical and actionable
role by directly predicting the quantity of ILI visits that health
care facilities may need to be prepared for. Preparedness is an
increasingly significant task for public health and requires an
epidemiology framework beyond outbreak detection, because
influenza activity is not uniform across geographic areas and
downward trends are equally important as upward trends for
decision making. ILI nowcasting and forecasting at the local
level can improve the timeliness, efficiency, and effectiveness
of response and control measures. Examples include planning
(long-term care management, changes in sick note
requirements), recommendations regarding engineering controls
(masking, cohorting), and enhanced information needs
(antivirals, bed counts).

Limitations
As with any predictive method, the quality of past performance
does not guarantee the quality of future performance.
Additionally, the future performance of real-time flu estimates
produced with our methodology depends directly on the timely
availability and quality of the external data sources used as
input. Our findings in the Boston metropolitan area are
dependent on Google search volumes, Twitter posts, EHR
information, crowd-sourced infection reports, and
epidemiological data from the BPHC. Our team’s previous
experience nowcasting and forecasting flu activity at the national
and regional levels during the past 3 flu seasons has shown us
that data availability and acquisition challenges may lead to
delays in our flu predictions and may affect the performance of
our methods.

Conclusions
Because transmission happens on a local scale, city-level
detection and monitoring can provide useful measures of
influenza incidence and risk. Consistent detection on a smaller
scale is subject to challenges, such as limitations in data
availability; erratic incidence patterns influenced by local factors
such as geography, weather, and population movement; and
lower signal-to-noise ratio for data sources such as Internet
search patterns and crowd-sourced influenza reporting systems.
Nevertheless, we show that information from Internet-based
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data sources, when combined using an informed, robust
methodology, can be effectively used as early indicators of flu
activity at fine geographic resolution. Successful real-time

implementation of an ensemble-based approach to produce
robust estimates in the Boston metropolitan area could inform
future influenza modeling efforts in other cities.
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