Natural Language Processing for Improved Characterization of COVID-19 Symptoms: Observational Study of 350,000 Patients in a Large Integrated Health Care System
Natural Language Processing for Improved Characterization of COVID-19 Symptoms: Observational Study of 350,000 Patients in a Large Integrated Health Care System
Deborah E Malden
1, 2
*
, MSc, DPhil
;
Sara Y Tartof
2, 3
*
, MPH, PhD
;
Bradley K Ackerson
4
, MD
;
Vennis Hong
2
, MPH
;
Jacek Skarbinski
5, 6
, MD
;
Vincent Yau
7
, MA, PhD
;
Lei Qian
2
, MS, PhD
;
Heidi Fischer
2
, MS, PhD
;
Sally F Shaw
2
, MPH, DrPH
;
Susan Caparosa
2
, MA
;
Fagen Xie
2
, PhD
1
Epidemic Intelligence Service
,
Centers for Disease Control and Prevention
,
Atlanta
,
GA
,
US
2
Department of Research & Evaluation
,
Kaiser Permanente Southern California
,
Pasadena
,
CA
,
US
3
Kaiser Permanente Bernard J. Tyson School of Medicine
,
Pasadena
,
CA
,
US
4
Southern California Permanente Medical Group
,
Harbor City
,
CA
,
US
5
The Permanente Medical Group
,
Kaiser Permanente Northern California
,
Oakland
,
CA
,
US
6
Division of Research
,
Kaiser Permanente Northern California
,
Oakland
,
CA
,
US
7
Genentech, a Member of the Roche Group
,
San Francisco
,
CA
,
US
*these authors contributed equally
Corresponding Author:
-
Deborah E Malden, MSc, DPhil
-
Department of Research & Evaluation
-
Kaiser Permanente Southern California
-
100 S. Los Robles, 2nd Floor
-
Pasadena, CA
-
US
-
Phone:
1 310 456 4324
-
Email: debbie.e.malden@kp.org