Published on in Vol 8, No 12 (2022): December

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/35750, first published .
An Assessment of the Predictive Performance of Current Machine Learning–Based Breast Cancer Risk Prediction Models: Systematic Review

An Assessment of the Predictive Performance of Current Machine Learning–Based Breast Cancer Risk Prediction Models: Systematic Review

An Assessment of the Predictive Performance of Current Machine Learning–Based Breast Cancer Risk Prediction Models: Systematic Review

Journals

  1. Jiang J, Chao W, Culp S, Krishna S. Artificial Intelligence in the Diagnosis and Treatment of Pancreatic Cystic Lesions and Adenocarcinoma. Cancers 2023;15(9):2410 View
  2. Mertens E, Barrenechea-Pulache A, Sagastume D, Vasquez M, Vandevijvere S, Peñalvo J. Understanding the contribution of lifestyle in breast cancer risk prediction: a systematic review of models applicable to Europe. BMC Cancer 2023;23(1) View
  3. Lowry K, Zuiderveld C. Artificial Intelligence for Breast Cancer Risk Assessment. Radiologic Clinics of North America 2024;62(4):619 View
  4. Bu Z, Jiang N, Li K, Lu Z, Zhang N, Yan S, Chen Z, Hao Y, Zhang Y, Xu R, Chi H, Chen Z, Liu J, Wang D, Xu F, Liu Z. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia. Medicine 2024;103(30):e38747 View
  5. Ramezani Z, Charati J, Alizadeh-Navaei R, Eslamijouybari M. Accelerated hazard prediction based on age time-scale for women diagnosed with breast cancer using a deep learning method. BMC Medical Informatics and Decision Making 2024;24(1) View
  6. Tang W, Mo S, Xie Y, Wei T, Chen G, Teng Y, Jia K. Predicting Overall Survival in Patients with Male Breast Cancer: Nomogram Development and External Validation Study. JMIR Cancer 2025;11:e54625 View
  7. Huang X, Ren S, Mao X, Chen S, Chen E, He Y, Jiang Y. Association Between Risk Factors and Major Cancers: Explainable Machine Learning Approach. JMIR Cancer 2025;11:e62833 View
  8. Rafiepoor H, Ghorbankhanloo A, Zendehdel K, Madar Z, Hajivalizadeh S, Hasani Z, Sarmadi A, Amanpour‐Gharaei B, Barati M, Saadat M, Sadegh‐Zadeh S, Amanpour S. Comparison of Machine Learning Models for Classification of Breast Cancer Risk Based on Clinical Data. Cancer Reports 2025;8(4) View
  9. Westerlinck P. Comparative Analysis of Predictive Models for Individual Cancer Risk: Approaches and Applications. Onco 2025;5(2):29 View
  10. Liu L, Zhou P, Hou L, Kao C, Zhang Z, Wang D, Yu L, Wang F, Wang Y, Yu Z. Development and performance of female breast cancer incidence risk prediction models: a systematic review and meta-analysis. Annals of Medicine 2025;57(1) View
  11. Garba A, Hamza H. Interpretable Machine Learning Approach for Breast Cancer Classification. Human-Centric Intelligent Systems 2025;5(3):308 View
  12. Wang Z, He X, Ou H, Li X, Wei C, Zhou R, Su Z, Mi J, Lu W, Wang F. An interpretable machine learning model for preoperative prediction of renal mass malignancy. Clinical and Translational Oncology 2025 View
  13. Xue J, Li Y, Qu T, Qin Y, Wang H, Rong X, Tian J, Wang T, Zhang J, Li Z, Ping Y. The clinical validity of radiomics-based prediction of molecular subtypes in breast cancer from digital mammary tomosynthesis. Frontiers in Oncology 2025;15 View
  14. Yao X, Ma A, Wang G, Ding Z, Zhu S, li D, Zhang H, Ding M, Shi S. Optimization of ultrasonic extraction and kinetic modeling of jieduquyuziyin prescription polysaccharides via explainable machine learning. Ultrasonics Sonochemistry 2025;122:107635 View
  15. Ho P, Loo C, Lim R, Goh M, Abubakar M, Ahearn T, Andrulis I, Antonenkova N, Aronson K, Augustinsson A, Behrens S, Bodelon C, Bogdanova N, Bolla M, Brantley K, Brenner H, Byers H, Camp N, Castelao J, Cessna M, Chang-Claude J, Chanock S, Chenevix-Trench G, Choi J, Colonna S, Czene K, Daly M, Derouane F, Dörk T, Eliassen A, Engel C, Eriksson M, Evans D, Fletcher O, Fritschi L, Gago-Dominguez M, Genkinger J, Geurts-Giele W, Glendon G, Hall P, Hamann U, Ho C, Ho W, Hooning M, Hoppe R, Howell A, Humphreys K, Ito H, Iwasaki M, Jakubowska A, Jernström H, John E, Johnson N, Kang D, Kim S, Kitahara C, Ko Y, Kraft P, Kwong A, Lambrechts D, Larsson S, Li S, Lindblom A, Linet M, Lissowska J, Lophatananon A, MacInnis R, Mannermaa A, Manoukian S, Margolin S, Matsuo K, Michailidou K, Milne R, Mohd Taib N, Muir K, Murphy R, Newman W, O'Brien K, Obi N, Olopade O, Panayiotidis M, Park S, Park-Simon T, Patel A, Peterlongo P, Plaseska-Karanfilska D, Pylkäs K, Rashid M, Rennert G, Rodriguez J, Saloustros E, Sandler D, Sawyer E, Scott C, Shahi S, Shu X, Shulman K, Simard J, Southey M, Stone J, Taylor J, Teo S, Teras L, Terry M, Torres D, Vachon C, Houdt M, Verhoeven J, Weinberg C, Wolk A, Yamaji T, Yip C, Zheng W, Hartman M, Li J. Threshold-Based Overlap of Breast Cancer High-Risk Classification Using Family History, Polygenic Risk Scores, and Traditional Risk Models in 180,398 Women. Cancers 2025;17(21):3561 View

Books/Policy Documents

  1. Yadav R, Rawat R, Jha S, Rahul M, Yadav V. Innovative Computing and Communications. View
  2. Almalki M, Nawaf L, Carroll F. Cybersecurity and Human Capabilities Through Symbiotic Artificial Intelligence. View