Published on in Vol 6, No 2 (2020): Apr-Jun

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/18941, first published .
Tracking COVID-19 in Europe: Infodemiology Approach

Tracking COVID-19 in Europe: Infodemiology Approach

Tracking COVID-19 in Europe: Infodemiology Approach

Authors of this article:

Amaryllis Mavragani1 Author Orcid Image

Journals

  1. Nawabi J, Morotti A, Wildgruber M, Boulouis G, Kraehling H, Schlunk F, Can E, Kniep H, Thomalla G, Psychogios M, Hamm B, Fiehler J, Hanning U, Sporns P. Clinical and Imaging Characteristics in Patients with SARS-CoV-2 Infection and Acute Intracranial Hemorrhage. Journal of Clinical Medicine 2020;9(8):2543 View
  2. Paguio J, Yao J, Dee E. Silver lining of COVID-19: Heightened global interest in pneumococcal and influenza vaccines, an infodemiology study. Vaccine 2020;38(34):5430 View
  3. De Santis E, Martino A, Rizzi A. An Infoveillance System for Detecting and Tracking Relevant Topics From Italian Tweets During the COVID-19 Event. IEEE Access 2020;8:132527 View
  4. Yuan X, Xu J, Hussain S, Wang H, Gao N, Zhang L. Trends and Prediction in Daily New Cases and Deaths of COVID-19 in the United States: An Internet Search-Interest Based Model. Exploratory Research and Hypothesis in Medicine 2020;000(000):1 View
  5. Alencar D, Passos J, Carvalho A, Ibiapina A, Carvalho D, Vasconcellos-Silva P. Busca de informações sobre o novo coronavírus no Brasil: uma análise da tendência considerando as buscas online. Acta Paulista de Enfermagem 2020;33 View
  6. Halvachizadeh S, Teuben M, Berk T, Neuhaus V, Pape H, Pfeifer R. The impact of SARS-CoV-2 (COVID-19) pandemic on trauma bay management and guideline adherence in a European level-one-trauma centre. International Orthopaedics 2020;44(9):1621 View
  7. Szmuda T, Ali S, Hetzger T, Rosvall P, Słoniewski P. Are online searches for the novel coronavirus (COVID-19) related to media or epidemiology? A cross-sectional study. International Journal of Infectious Diseases 2020;97:386 View
  8. Petrino R, Cibinel G. COVID-19 outbreak and Emergency Department response in Piedmont region. Italian Journal of Emergency Medicine 2020;9(2) View
  9. Sousa-Pinto B, Anto A, Czarlewski W, Anto J, Fonseca J, Bousquet J. Assessment of the Impact of Media Coverage on COVID-19–Related Google Trends Data: Infodemiology Study. Journal of Medical Internet Research 2020;22(8):e19611 View
  10. Kardas P, Aguilar-Palacio I, Almada M, Cahir C, Costa E, Giardini A, Malo S, Massot Mesquida M, Menditto E, Midão L, Parra-Calderón C, Pepiol Salom E, Vrijens B. The Need to Develop Standard Measures of Patient Adherence for Big Data: Viewpoint. Journal of Medical Internet Research 2020;22(8):e18150 View
  11. Kluger N, Scrivener J. The use of Google Trends for acral symptoms during COVID‐19 outbreak in France. Journal of the European Academy of Dermatology and Venereology 2020;34(8) View
  12. Arshad Ali S, Bin Arif T, Maab H, Baloch M, Manazir S, Jawed F, Ochani R. Global Interest in Telehealth During COVID-19 Pandemic: An Analysis of Google Trends™. Cureus 2020 View
  13. Komenda M, Bulhart V, Karolyi M, Jarkovský J, Mužík J, Májek O, Šnajdrová L, Růžičková P, Rážová J, Prymula R, Macková B, Březovský P, Marounek J, Černý V, Dušek L. Complex Reporting of the COVID-19 Epidemic in the Czech Republic: Use of an Interactive Web-Based App in Practice. Journal of Medical Internet Research 2020;22(5):e19367 View
  14. Kamiński M, Szymańska C, Nowak J. Whose Tweets on COVID-19 Gain the Most Attention: Celebrities, Political, or Scientific Authorities?. Cyberpsychology, Behavior, and Social Networking 2021;24(2):123 View
  15. Li X, Sridhar S, Chan J. The Coronavirus Disease 2019 pandemic: how does it spread and how do we stop it?. Current Opinion in HIV and AIDS 2020;15(6):328 View
  16. Lopreite M, Panzarasa P, Puliga M, Riccaboni M. Early warnings of COVID-19 outbreaks across Europe from social media. Scientific Reports 2021;11(1) View
  17. Peng Y, Li C, Rong Y, Chen X, Chen H. Retrospective analysis of the accuracy of predicting the alert level of COVID-19 in 202 countries using Google Trends and machine learning. Journal of Global Health 2020;10(2) View
  18. Singh S, Sharma P, Balhara Y. The impact of nationwide alcohol ban during the COVID‐19 lockdown on alcohol use‐related internet searches and behaviour in India: An infodemiology study. Drug and Alcohol Review 2021;40(2):196 View
  19. Chua G, Xiong X, Choi E, Han M, Chang S, Jin B, Lee E, Kim B, Kim M, Doo K, Seo J, Kim Y, Kim Y, Park J, Suh S, Lee H, Cho E, Kim D, Kim J, Kim H, Park S, Lee J, Jo D, Cho S, Choi J, Jo K, Choe Y, Kim K, Chi S, Tang S, Qin H, Zhou L, Chen P, Wong J, Chan K, Yau F, Lam S, Chow C, Wong T, Chan V, Poon G, Chow C, Wong W, Lau Y, Chan G, Chui C, Li X, Ho M, Wong I, Tam P, To K, Kim J, Ip P, Kwan M. COVID-19 in children across three Asian cosmopolitan regions. Emerging Microbes & Infections 2020;9(1):2588 View
  20. Greene S, McGough S, Culp G, Graf L, Lipsitch M, Menzies N, Kahn R. Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic. JMIR Public Health and Surveillance 2021;7(1):e25538 View
  21. Rokhmah D, Ali K, Putri S, Khoiron K. Increase in public interest concerning alternative medicine during the COVID-19 pandemic in Indonesia: a Google Trends study. F1000Research 2020;9:1201 View
  22. Zhang B, Zaman A, Silenzio V, Kautz H, Hoque E. The Relationships of Deteriorating Depression and Anxiety With Longitudinal Behavioral Changes in Google and YouTube Use During COVID-19: Observational Study. JMIR Mental Health 2020;7(11):e24012 View
  23. Schnoell J, Besser G, Jank B, Bartosik T, Parzefall T, Riss D, Mueller C, Liu D. The association between COVID-19 cases and deaths and web-based public inquiries. Infectious Diseases 2021;53(3):176 View
  24. Mavragani A, Gkillas K. COVID-19 predictability in the United States using Google Trends time series. Scientific Reports 2020;10(1) View
  25. Asgari Mehrabadi M, Dutt N, Rahmani A. The Causality Inference of Public Interest in Restaurants and Bars on Daily COVID-19 Cases in the United States: Google Trends Analysis. JMIR Public Health and Surveillance 2021;7(4):e22880 View
  26. Al-Laith A, Alenezi M. Monitoring People’s Emotions and Symptoms from Arabic Tweets during the COVID-19 Pandemic. Information 2021;12(2):86 View
  27. Rokhmah D, Ali K, Putri S, Khoiron K. Increase in public interest concerning alternative medicine during the COVID-19 pandemic in Indonesia: a Google Trends study. F1000Research 2021;9:1201 View
  28. Pecoraro F, Luzi D, Clemente F, Ashkenazi I. The efficiency in the ordinary hospital bed management: A comparative analysis in four European countries before the COVID-19 outbreak. PLOS ONE 2021;16(3):e0248867 View
  29. Pulido-Polo M, Hernández-Santaolalla V, Lozano-González A. Uso institucional de Twitter para combatir la infodemia causada por la crisis sanitaria de la Covid-19. El profesional de la información 2021 View
  30. Rutovic S, Fumagalli A, Lutsenko I, Corea F. Public Interest in Neurological Diseases on Wikipedia during Coronavirus Disease (COVID-19) Pandemic. Neurology International 2021;13(1):59 View
  31. Worrall A, Kelly C, O'Neill A, O'Doherty M, Kelleher E, Cushen A, McNally C, McConkey S, Glavey S, Lavin M, de Barra E. Online Search Trends Influencing Anticoagulation in Patients With COVID-19: Observational Study. JMIR Formative Research 2021;5(8):e21817 View
  32. To K, Sridhar S, Chiu K, Hung D, Li X, Hung I, Tam A, Chung T, Chan J, Zhang A, Cheng V, Yuen K. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerging Microbes & Infections 2021;10(1):507 View
  33. Lu T, Reis B. Internet search patterns reveal clinical course of COVID-19 disease progression and pandemic spread across 32 countries. npj Digital Medicine 2021;4(1) View
  34. Gkillas K, Konstantatos C, Siriopoulos C. Uncertainty Due to Infectious Diseases and Stock–Bond Correlation. Econometrics 2021;9(2):17 View
  35. Cuomo R, Purushothaman V, Li J, Cai M, Mackey T. A longitudinal and geospatial analysis of COVID-19 tweets during the early outbreak period in the United States. BMC Public Health 2021;21(1) View
  36. Steiger E, Mussgnug T, Kroll L, Lim S. Causal graph analysis of COVID-19 observational data in German districts reveals effects of determining factors on reported case numbers. PLOS ONE 2021;16(5):e0237277 View
  37. Rotter D, Doebler P, Schmitz F. Interests, Motives, and Psychological Burdens in Times of Crisis and Lockdown: Google Trends Analysis to Inform Policy Makers. Journal of Medical Internet Research 2021;23(6):e26385 View
  38. Mavragani A, Gkillas K. Exploring the role of non-pharmaceutical interventions (NPIs) in flattening the Greek COVID-19 epidemic curve. Scientific Reports 2021;11(1) View
  39. Peng Y, Li C, Rong Y, Pang C, Chen X, Chen H. Real-time Prediction of the Daily Incidence of COVID-19 in 215 Countries and Territories Using Machine Learning: Model Development and Validation. Journal of Medical Internet Research 2021;23(6):e24285 View
  40. Stein R, Corcoran K, Colyer C, Mackay A, Guthrie S. Closed but Not Protected: Excess Deaths Among the Amish and Mennonites During the COVID-19 Pandemic. Journal of Religion and Health 2021;60(5):3230 View
  41. Daw M, El-Bouzedi A, Ahmed M. The Epidemiological and Spatiotemporal Characteristics of the 2019 Novel Coronavirus Disease (COVID-19) in Libya. Frontiers in Public Health 2021;9 View
  42. CANBAY Y, İSMETOĞLU A, CANBAY P. COVİD-19 HASTALIĞININ TEŞHİSİNDE DERİN ÖĞRENME VE VERİ MAHREMİYETİ. Mühendislik Bilimleri ve Tasarım Dergisi 2021;9(2):701 View
  43. SeyyedHosseini S, BasirianJahromi R. COVID-19 pandemic in the Middle East countries: coronavirus-seeking behavior versus coronavirus-related publications. Scientometrics 2021;126(9):7503 View
  44. Arillotta D, Guirguis A, Corkery J, Scherbaum N, Schifano F. COVID-19 Pandemic Impact on Substance Misuse: A Social Media Listening, Mixed Method Analysis. Brain Sciences 2021;11(7):907 View
  45. Riem M, De Carli P, Guo J, Bakermans-Kranenburg M, van IJzendoorn M, Lodder P. Internet Searches for Terms Related to Child Maltreatment During COVID-19: Infodemiology Approach. JMIR Pediatrics and Parenting 2021;4(3):e27974 View
  46. Riswantini D, Nugraheni E, Arisal A, Khotimah P, Munandar D, Suwarningsih W. Big Data Research in Fighting COVID-19: Contributions and Techniques. Big Data and Cognitive Computing 2021;5(3):30 View
  47. Sato K, Mano T, Iwata A, Toda T. Need of care in interpreting Google Trends-based COVID-19 infodemiological study results: potential risk of false-positivity. BMC Medical Research Methodology 2021;21(1) View
  48. Tozzi A, Gesualdo F, Urbani E, Sbenaglia A, Ascione R, Procopio N, Croci I, Rizzo C. Digital Surveillance Through an Online Decision Support Tool for COVID-19 Over One Year of the Pandemic in Italy: Observational Study. Journal of Medical Internet Research 2021;23(8):e29556 View
  49. Liu S, Li J, Liu J. Leveraging Transfer Learning to Analyze Opinions, Attitudes, and Behavioral Intentions Toward COVID-19 Vaccines: Social Media Content and Temporal Analysis. Journal of Medical Internet Research 2021;23(8):e30251 View
  50. Caniato M, Bettarello F, Gasparella A. Indoor and outdoor noise changes due to the COVID-19 lockdown and their effects on individuals’ expectations and preferences. Scientific Reports 2021;11(1) View
  51. Kinoshita T, Matsumoto T, Taura N, Usui T, Matsuya N, Nishiguchi M, Horita H, Nakao K. Public Interest and Accessibility of Telehealth in Japan: Retrospective Analysis Using Google Trends and National Surveillance. JMIR Formative Research 2022;6(9):e36525 View
  52. Vuković S, Topalović M, Lazović D, Lončar D. Impact of the COVID-19 pandemic on the performance and costs of hospital health care in Serbia. Ekonomika preduzeca 2022;70(1-2):87 View
  53. Satpathy P, Kumar S, Prasad P. Suitability of Google Trends™ for Digital Surveillance During Ongoing COVID-19 Epidemic: A Case Study from India. Disaster Medicine and Public Health Preparedness 2023;17 View
  54. Ma S, Yang S. COVID-19 forecasts using Internet search information in the United States. Scientific Reports 2022;12(1) View
  55. Effenberger M, Kronbichler A, Bettac E, Grabherr F, Grander C, Adolph T, Mayer G, Zoller H, Perco P, Tilg H. Using Infodemiology Metrics to Assess Public Interest in Liver Transplantation: Google Trends Analysis. Journal of Medical Internet Research 2021;23(8):e21656 View
  56. Pulido-Polo M, Jiménez-Marín G, Pérez Curiel C, Vázquez-González J. Twitter como herramienta de comunicación institucional: la Casa Real Británica y la Casa Real Española en el contexto postpandémico. Revista de Comunicación 2022;21(2):225 View
  57. Aragón-Ayala C, Copa-Uscamayta J, Herrera L, Zela-Coila F, Quispe-Juli C. Interest in COVID-19 in Latin America and the Caribbean: an infodemiological study using Google Trends. Cadernos de Saúde Pública 2021;37(10) View
  58. Vernuccio L, Sarà D, Inzerillo F, Catanese G, Catania A, Vesco M, Cacioppo F, Dominguez L, Veronese N, Barbagallo M. Effect of COVID-19 quarantine on cognitive, functional and neuropsychiatric symptoms in patients with mild cognitive impairment and dementia. Aging Clinical and Experimental Research 2022;34(5):1187 View
  59. Park S, Wang R. Assessing the Capability of Government Information Intervention and Socioeconomic Factors of Information Sharing during the COVID-19 Pandemic: A Cross-Country Study Using Big Data Analytics. Behavioral Sciences 2022;12(6):190 View
  60. Bağcı N, Peker I. Interest in dentistry in early months of the COVID‐19 global pandemic: A Google Trends approach. Health Information & Libraries Journal 2022;39(3):284 View
  61. Lorenzoni V, Andreozzi G, Bazzani A, Casigliani V, Pirri S, Tavoschi L, Turchetti G. How Italy Tweeted about COVID-19: Detecting Reactions to the Pandemic from Social Media. International Journal of Environmental Research and Public Health 2022;19(13):7785 View
  62. Alharbi A, Abdur Rahman M. Review of Recent Technologies for Tackling COVID-19. SN Computer Science 2021;2(6) View
  63. An L, Russell D, Mihalcea R, Bacon E, Huffman S, Resnicow K. Online Search Behavior Related to COVID-19 Vaccines: Infodemiology Study. JMIR Infodemiology 2021;1(1):e32127 View
  64. Saegner T, Austys D. Forecasting and Surveillance of COVID-19 Spread Using Google Trends: Literature Review. International Journal of Environmental Research and Public Health 2022;19(19):12394 View
  65. Akbar S, McNally S. Recording and evaluating affect and coping during COVID-19 in healthcare workers and outcomes (REACCH-Out): mental health implications for our junior doctor cohort. BMJ Open Quality 2022;11(2):e001643 View
  66. Nardi G, Grassi R, Grassi F, Di Giorgio R, Guerra F, Ottolenghi L, Acito G, Basari N, Bisegna S, Chiavistelli L, Cimarossa R, Colavito A, Figlia L, Gabrielli C, Sabatini S, Jedliński M, Mazur M. How Did the COVID-19 Pandemic Effect Dental Patients? An Italian Observational Survey Study. Healthcare 2021;9(12):1748 View
  67. Olukanmi S, Nelwamondo F, Nwulu N. Utilizing Google Search Data With Deep Learning, Machine Learning and Time Series Modeling to Forecast Influenza-Like Illnesses in South Africa. IEEE Access 2021;9:126822 View
  68. Flaks-Manov N, Bai J, Zhang C, Malpani A, Ray S, Taylor C. Assessing Associations Between COVID-19 Symptomology and Adverse Outcomes After Piloting Crowdsourced Data Collection: Cross-sectional Survey Study. JMIR Formative Research 2022;6(12):e37507 View
  69. Farhadi Z, Salemi M, Jahani M. Analysis of policy responses to COVID-19: a case study in Babol University of Medical Sciences (BUMS), Iran. Cost Effectiveness and Resource Allocation 2022;20(1) View
  70. Nebolsina E. The impact of the Covid-19 pandemic on the business interruption insurance demand in the United States. Heliyon 2021;7(11):e08357 View
  71. Coro G, Bove P. A High-resolution Global-scale Model for COVID-19 Infection Rate. ACM Transactions on Spatial Algorithms and Systems 2022;8(3):1 View
  72. Trevino J, Malik S, Schmidt M. Integrating Google Trends Search Engine Query Data Into Adult Emergency Department Volume Forecasting: Infodemiology Study. JMIR Infodemiology 2022;2(1):e32386 View
  73. Ma S, Sun Y, Yang S. Using Internet Search Data to Forecast COVID-19 Trends: A Systematic Review. Analytics 2022;1(2):210 View
  74. Martins-Filho P, de Souza Araújo A, Quintans-Júnior L. Global online public interest in monkeypox compared with COVID-19: Google trends in 2022. Journal of Travel Medicine 2022;29(8) View
  75. Botz J, Wang D, Lambert N, Wagner N, Génin M, Thommes E, Madan S, Coudeville L, Fröhlich H. Modeling approaches for early warning and monitoring of pandemic situations as well as decision support. Frontiers in Public Health 2022;10 View
  76. Yabe T, Tsubouchi K, Sekimoto Y, Ukkusuri S. Early warning of COVID-19 hotspots using human mobility and web search query data. Computers, Environment and Urban Systems 2022;92:101747 View
  77. Pulido Polo M, Sánchez González M, Mesa Göbel J, Vázquez-González J. La Moncloa en Twitter: un análisis cuantitativo en la era post COVID. Revista Latina de Comunicación Social 2023;(81) View
  78. Mendez‐Pinto I, Antuña‐Casal M, Mosteiro‐Diaz M. Psychological disorders among Spanish Nursing students three months afterCOVID‐19 lockdown: A cross‐sectional study. International Journal of Mental Health Nursing 2023;32(2):479 View
  79. Zayed B, Talaia A, Gaaboobah M, Amer S, Mansour F. Google Trends as a predictive tool in the era of COVID-19: a scoping review. Postgraduate Medical Journal 2023;99(1175):962 View
  80. Chatterjee S, Ghosh K, Banerjee A, Banerjee S. Forecasting COVID-19 Outbreak Through Fusion of Internet Search, Social Media, and Air Quality Data: A Retrospective Study in Indian Context. IEEE Transactions on Computational Social Systems 2023;10(3):1017 View
  81. Su J, Wu H, Tsui K, Fu X, Lei Z. Aviation resilience during the COVID-19 pandemic: A case study of the European aviation market. Transportation Research Part A: Policy and Practice 2023;177:103835 View
  82. Morokhovets H, Lysanets Y, Kaidashev I. INFODEMIOLOGY: USING GOOGLE TRENDS AS A RESEARCH TOOL DURING THE COVID-19 PANDEMIC. The Medical and Ecological Problems 2023;27(3-4):3 View
  83. Leo B, Lin C, Markandan K, Saw L, Mohd Nadzir M, Govindaraju K, Shariffuddin I, Sankara R, Tiong Y, Pakalapati H, Khalid M. An overview of SARS-CoV-2 transmission and engineering strategies to mitigate risk. Journal of Building Engineering 2023;73:106737 View
  84. Morokhovets H, Kaidashev I. A MATHEMATICAL MODEL FOR PROGNOSIS OF THE COVID-19 INCIDENCE IN UKRAINE USING GOOGLE TRENDS RESOURCES IN REAL-TIME AND FOR THE FUTURE PERIOD. The Medical and Ecological Problems 2022;26(3-4):3 View
  85. Thakur N, Cui S, Patel K, Azizi N, Knieling V, Han C, Poon A, Shah R. Marburg Virus Outbreak and a New Conspiracy Theory: Findings from a Comprehensive Analysis and Forecasting of Web Behavior. Computation 2023;11(11):234 View
  86. Clark E, Neumann S, Hopkins S, Kostopoulos A, Hagerman L, Dobbins M. Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review. JMIR Public Health and Surveillance 2024;10:e49185 View
  87. Zatla I, Boublenza L, Boublenza A. Tracing the Origin and Early Progression of COVID-19 in Europe: An Epidemiological Descriptive Study. Infection Epidemiology and Microbiology 2023;9(3):249 View
  88. Figueroa-Quiñones J, Valle-Salvatierra W, Teresa C. Facebook addiction and sleep problems in peruvian university students after the COVID-19 pandemic. Heliyon 2024;10(2):e24383 View
  89. Lyu S, Adegboye O, Adhinugraha K, Emeto T, Taniar D. Analysing the impact of comorbid conditions and media coverage on online symptom search data: a novel AI-based approach for COVID-19 tracking. Infectious Diseases 2024;56(5):348 View
  90. Wang Y, Shi W, Sun Y, Yeh C. A Novel Framework to Forecast COVID-19 Incidence Based on Google Trends Search Data. IEEE Transactions on Computational Social Systems 2024;11(1):1352 View
  91. Molenaar A, Lukose D, Brennan L, Jenkins E, McCaffrey T. Using Natural Language Processing to Explore Social Media Opinions on Food Security: Sentiment Analysis and Topic Modeling Study. Journal of Medical Internet Research 2024;26:e47826 View
  92. Zhang L, Li M, Zhi C, Zhu M, Ma H. Identification of Early Warning Signals of Infectious Diseases in Hospitals by Integrating Clinical Treatment and Disease Prevention. Current Medical Science 2024;44(2):273 View
  93. Flores-Alvarado S, Olivares M, Vergara N, García C, Canals M, Cuadrado C. Nowcasting methods to improve the performance of respiratory sentinel surveillance: lessons from the COVID-19 pandemic. Scientific Reports 2024;14(1) View
  94. Afyouni I, Hashim I, Aghbari Z, Elsaka T, Almahmoud M, Abualigah L. Insights from the COVID-19 Pandemic: A Survey of Data Mining and Beyond. Applied Spatial Analysis and Policy 2024;17(3):1359 View
  95. Consolandi E. Lombardie, la région italienne la plus touchée par la Covid-19. Revue francophone sur la santé et les territoires 2021 View

Books/Policy Documents

  1. Bayram Değer V. Teamwork in Healthcare. View
  2. Panreck I. Politik zwischen Macht und Ohnmacht. View
  3. Adnan M, Hinkelmann K, Laurenzi E. HCI International 2022 – Late Breaking Posters. View
  4. Choplin P, Alemu W, Divi N, Erondu N, Mala P, Kimball A. Modernizing Global Health Security to Prevent, Detect, and Respond. View
  5. Chumachenko D, Chumachenko T, Meniailov I, Muradyan O, Zholtkevych G. Information Technology for Education, Science, and Technics. View