Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 29.05.19 in Vol 5, No 2 (2019): Apr-Jun

This paper is in the following e-collection/theme issue:

Works citing "Google Trends in Infodemiology and Infoveillance: Methodology Framework"

According to Crossref, the following articles are citing this article (DOI 10.2196/13439):

(note that this is only a small subset of citations)

  1. Ding D, del Pozo Cruz B, Green MA, Bauman AE. Is the COVID-19 lockdown nudging people to be more active: a big data analysis. British Journal of Sports Medicine 2020;:bjsports-2020-102575
    CrossRef
  2. Iglesia EG, Stone CA, Flaherty MG, Commins SP. Regional and temporal awareness of alpha-gal allergy: An infodemiological analysis using Google Trends. The Journal of Allergy and Clinical Immunology: In Practice 2020;8(5):1725
    CrossRef
  3. Rovetta A, Bhagavathula AS. COVID-19-Related Web Search Behaviors and Infodemic Attitudes in Italy: Infodemiological Study. JMIR Public Health and Surveillance 2020;6(2):e19374
    CrossRef
  4. Choi YI, Kim YJ, Chung J, Kim KO, Kim H, Park RW, Park DK. Effect of Age on the Initiation of Biologic Agent Therapy in Patients With Inflammatory Bowel Disease: Korean Common Data Model Cohort Study. JMIR Medical Informatics 2020;8(4):e15124
    CrossRef
  5. Hartnett KP, Kite-Powell A, Patel MT, Haag BL, Sheppard MJ, Dias TP, King BA, Melstrom PC, Ritchey MD, Stein Z, Idaikkadar N, Vivolo-Kantor AM, Rose DA, Briss PA, Layden JE, Rodgers L, Adjemian J. Syndromic Surveillance for E-Cigarette, or Vaping, Product Use–Associated Lung Injury. New England Journal of Medicine 2020;382(8):766
    CrossRef
  6. Effenberger M, Kronbichler A, Shin JI, Mayer G, Tilg H, Perco P. Association of the COVID-19 pandemic with Internet Search Volumes: A Google TrendsTM Analysis. International Journal of Infectious Diseases 2020;95:192
    CrossRef
  7. Caputi TL, Ayers JW, Dredze M, Suplina N, Burd-Sharps S. Collateral Crises of Gun Preparation and the COVID-19 Pandemic: Infodemiology Study. JMIR Public Health and Surveillance 2020;6(2):e19369
    CrossRef
  8. Strzelecki A, Azevedo A, Albuquerque A. Correlation between the Spread of COVID-19 and the Interest in Personal Protective Measures in Poland and Portugal. Healthcare 2020;8(3):203
    CrossRef
  9. Mavragani A. Tracking COVID-19 in Europe: Infodemiology Approach. JMIR Public Health and Surveillance 2020;6(2):e18941
    CrossRef
  10. Kawchuk G, Hartvigsen J, Innes S, Simpson JK, Gushaty B. The use of internet analytics by a Canadian provincial chiropractic regulator to monitor, evaluate and remediate misleading claims regarding specific health conditions, pregnancy, and COVID-19. Chiropractic & Manual Therapies 2020;28(1)
    CrossRef
  11. Zepecki A, Guendelman S, DeNero J, Prata N. Using Application Programming Interfaces to Access Google Data for Health Research: Protocol for a Methodological Framework. JMIR Research Protocols 2020;9(7):e16543
    CrossRef
  12. Havelka EM, Mallen CD, Shepherd TA. Using Google Trends to assess the impact of global public health days on online health information seeking behaviour in Central and South America. Journal of Global Health 2020;10(1)
    CrossRef
  13. Mavragani A. Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206
    CrossRef
  14. Syamsuddin M, Fakhruddin M, Sahetapy-Engel JTM, Soewono E. Causality Analysis of Google Trends and Dengue Incidence in Bandung, Indonesia With Linkage of Digital Data Modeling: Longitudinal Observational Study. Journal of Medical Internet Research 2020;22(7):e17633
    CrossRef
  15. Ganasegeran K, Ch’ng ASH, Aziz ZA, Looi I. Population’s health information-seeking behaviors and geographic variations of stroke in Malaysia: an ecological correlation and time series study. Scientific Reports 2020;10(1)
    CrossRef
  16. Wang Y, Zhang H, Zheng Q, Tang K, Sun Q. Public interest in Raynaud's phenomenon: A Google Trends analysis. Dermatologic Therapy 2020;
    CrossRef
  17. Muzumdar S, Petriceks AC, Hales HA, Feng H. Evaluation of public interest in hair removal techniques using Google trends data. Journal of Dermatological Treatment 2020;:1
    CrossRef
  18. Gesualdo F, Marino F, Mantero J, Spadoni A, Sambucini L, Quaglia G, Rizzo C, Sahinovic I, Zuber PL, Tozzi AE. The use of web analytics combined with other data streams for tailoring online vaccine safety information at global level: The Vaccine Safety Net’s web analytics project. Vaccine 2020;
    CrossRef
  19. Wu GC, Cao F, Shen HH, Hu LQ, Hu Y, Sam NB. Global public interest in systemic lupus erythematosus: an investigation based on internet search data. Lupus 2019;28(12):1435
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/13439)

:
  1. Ganasegeran K, Abdulrahman SA. Human Behaviour Analysis Using Intelligent Systems. 2020. Chapter 7:141
    CrossRef