Published on in Vol 5, No 2 (2019): Apr-Jun

Preprints (earlier versions) of this paper are available at, first published .
Google Trends in Infodemiology and Infoveillance: Methodology Framework

Google Trends in Infodemiology and Infoveillance: Methodology Framework

Google Trends in Infodemiology and Infoveillance: Methodology Framework

Authors of this article:

Amaryllis Mavragani 1 Author Orcid Image ;   Gabriela Ochoa 1 Author Orcid Image


  1. Ding D, del Pozo Cruz B, Green M, Bauman A. Is the COVID-19 lockdown nudging people to be more active: a big data analysis. British Journal of Sports Medicine 2020;54(20):1183 View
  2. Zepecki A, Guendelman S, DeNero J, Prata N. Using Application Programming Interfaces to Access Google Data for Health Research: Protocol for a Methodological Framework. JMIR Research Protocols 2020;9(7):e16543 View
  3. Muzumdar S, Petriceks A, Hales H, Feng H. Evaluation of public interest in hair removal techniques using Google trends data. Journal of Dermatological Treatment 2020:1 View
  4. Wang Y, Zhang H, Zheng Q, Tang K, Sun Q. Public interest in Raynaud's phenomenon: A Google Trends analysis. Dermatologic Therapy 2020;33(6) View
  5. Ganasegeran K, Ch’ng A, Aziz Z, Looi I. Population’s health information-seeking behaviors and geographic variations of stroke in Malaysia: an ecological correlation and time series study. Scientific Reports 2020;10(1) View
  6. Syamsuddin M, Fakhruddin M, Sahetapy-Engel J, Soewono E. Causality Analysis of Google Trends and Dengue Incidence in Bandung, Indonesia With Linkage of Digital Data Modeling: Longitudinal Observational Study. Journal of Medical Internet Research 2020;22(7):e17633 View
  7. Mavragani A, Gkillas K, Tsagarakis K. Predictability analysis of the Pound’s Brexit exchange rates based on Google Trends data. Journal of Big Data 2020;7(1) View
  8. Wu G, Cao F, Shen H, Hu L, Hu Y, Sam N. Global public interest in systemic lupus erythematosus: an investigation based on internet search data. Lupus 2019;28(12):1435 View
  9. Mavragani A. Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206 View
  10. Havelka E, Mallen C, Shepherd T. Using Google Trends to assess the impact of global public health days on online health information seeking behaviour in Central and South America. Journal of Global Health 2020;10(1) View
  11. Kawchuk G, Hartvigsen J, Innes S, Simpson J, Gushaty B. The use of internet analytics by a Canadian provincial chiropractic regulator to monitor, evaluate and remediate misleading claims regarding specific health conditions, pregnancy, and COVID-19. Chiropractic & Manual Therapies 2020;28(1) View
  12. Chew A, Ong R, Lei H, Rajendram M, K V G, Verma S, Fung D, Leong J, Gunasekeran D. Digital Health Solutions for Mental Health Disorders During COVID-19. Frontiers in Psychiatry 2020;11 View
  13. Iglesia E, Stone C, Flaherty M, Commins S. Regional and temporal awareness of alpha-gal allergy: An infodemiological analysis using Google Trends. The Journal of Allergy and Clinical Immunology: In Practice 2020;8(5):1725 View
  14. Mavragani A. Tracking COVID-19 in Europe: Infodemiology Approach. JMIR Public Health and Surveillance 2020;6(2):e18941 View
  15. Strzelecki A, Azevedo A, Albuquerque A. Correlation between the Spread of COVID-19 and the Interest in Personal Protective Measures in Poland and Portugal. Healthcare 2020;8(3):203 View
  16. Caputi T, Ayers J, Dredze M, Suplina N, Burd-Sharps S. Collateral Crises of Gun Preparation and the COVID-19 Pandemic: Infodemiology Study. JMIR Public Health and Surveillance 2020;6(2):e19369 View
  17. Effenberger M, Kronbichler A, Shin J, Mayer G, Tilg H, Perco P. Association of the COVID-19 pandemic with Internet Search Volumes: A Google TrendsTM Analysis. International Journal of Infectious Diseases 2020;95:192 View
  18. Hartnett K, Kite-Powell A, Patel M, Haag B, Sheppard M, Dias T, King B, Melstrom P, Ritchey M, Stein Z, Idaikkadar N, Vivolo-Kantor A, Rose D, Briss P, Layden J, Rodgers L, Adjemian J. Syndromic Surveillance for E-Cigarette, or Vaping, Product Use–Associated Lung Injury. New England Journal of Medicine 2020;382(8):766 View
  19. Arshad Ali S, Bin Arif T, Maab H, Baloch M, Manazir S, Jawed F, Ochani R. Global Interest in Telehealth During COVID-19 Pandemic: An Analysis of Google Trends™. Cureus 2020 View
  20. Choi Y, Kim Y, Chung J, Kim K, Kim H, Park R, Park D. Effect of Age on the Initiation of Biologic Agent Therapy in Patients With Inflammatory Bowel Disease: Korean Common Data Model Cohort Study. JMIR Medical Informatics 2020;8(4):e15124 View
  21. Rovetta A, Bhagavathula A. COVID-19-Related Web Search Behaviors and Infodemic Attitudes in Italy: Infodemiological Study. JMIR Public Health and Surveillance 2020;6(2):e19374 View
  22. Gesualdo F, Marino F, Mantero J, Spadoni A, Sambucini L, Quaglia G, Rizzo C, Sahinovic I, Zuber P, Tozzi A. The use of web analytics combined with other data streams for tailoring online vaccine safety information at global level: The Vaccine Safety Net’s web analytics project. Vaccine 2020;38(41):6418 View
  23. Sousa-Pinto B, Anto A, Czarlewski W, Anto J, Fonseca J, Bousquet J. Assessment of the Impact of Media Coverage on COVID-19–Related Google Trends Data: Infodemiology Study. Journal of Medical Internet Research 2020;22(8):e19611 View
  24. TURANALP M. Google Arama Motorunda Yapılan Dinî İçerikli Aramalar Üzerine Betimsel Bir Araştırma. Dinbilimleri Akademik Araştırma Dergisi 2020 View
  25. Husnayain A, Shim E, Fuad A, Su E. Understanding the Community Risk Perceptions of the COVID-19 Outbreak in South Korea: Infodemiology Study. Journal of Medical Internet Research 2020;22(9):e19788 View
  26. Raubenheimer J, Riordan B, Merrill J, Winter T, Ward R, Scarf D, Buckley N. Hey Google! will New Zealand vote to legalise cannabis? Using Google Trends data to predict the outcome of the 2020 New Zealand cannabis referendum. International Journal of Drug Policy 2021;90:103083 View
  27. Xu Q, Shen Z, Shah N, Cuomo R, Cai M, Brown M, Li J, Mackey T. Characterizing Weibo Social Media Posts From Wuhan, China During the Early Stages of the COVID-19 Pandemic: Qualitative Content Analysis. JMIR Public Health and Surveillance 2020;6(4):e24125 View
  28. Zieger M, Springer S. Thylacine and Tasmanian devil: between hope and reality – a lesson to be learnt from Google Trends search data. Australian Journal of Zoology 2019;67(4):221 View
  29. Kardeş S, Erdem A, Gürdal H. Public interest in musculoskeletal symptoms and disorders during the COVID-19 pandemic. Zeitschrift für Rheumatologie 2021 View
  30. Schnoell J, Besser G, Jank B, Bartosik T, Parzefall T, Riss D, Mueller C, Liu D. The association between COVID-19 cases and deaths and web-based public inquiries. Infectious Diseases 2021;53(3):176 View
  31. Anastasiou M, Pantavou K, Yiallourou A, Bonovas S, Nikolopoulos G. Trends of Online Search of COVID-19 Related Terms in Cyprus. Epidemiologia 2021;2(1):36 View
  32. Mirza E, Mirza G, Belviranli S, Oltulu R, Okka M. Ocular-symptoms-related Google Search Trends during the COVID-19 Pandemic in Europe. International Ophthalmology 2021 View
  33. Dzaye O, Berning P, Adelhoefer S, Duebgen M, Blankstein R, Mahesh M, Nasir K, Blumenthal R, Mortensen M, Blaha M. Temporal Trends and Interest in Coronary Artery Calcium Scoring Over Time: An Infodemiology Study. Mayo Clinic Proceedings: Innovations, Quality & Outcomes 2021;5(2):456 View
  34. Adelhoefer S, Henry T, Blankstein R, Graham G, Blaha M, Dzaye O. Declining interest in clinical imaging during the COVID-19 pandemic: An analysis of Google Trends data. Clinical Imaging 2021;73:20 View
  35. Turk P, Tran T, Rose G, McWilliams A. A predictive internet-based model for COVID-19 hospitalization census. Scientific Reports 2021;11(1) View
  36. Kardeş S, Kuzu A, Pakhchanian H, Raiker R, Karagülle M. Population-level interest in anti-rheumatic drugs in the COVID-19 era: insights from Google Trends. Clinical Rheumatology 2020 View
  37. Szilagyi I, Ullrich T, Lang-Illievich K, Klivinyi C, Schittek G, Simonis H, Bornemann-Cimenti H. Google Trends for Pain Search Terms in the World’s Most Populated Regions Before and After the First Recorded COVID-19 Case: Infodemiological Study. Journal of Medical Internet Research 2021;23(4):e27214 View
  38. Huynh Dagher S, Lamé G, Hubiche T, Ezzedine K, Duong T. The Influence of Media Coverage and Governmental Policies on Google Queries Related to COVID-19 Cutaneous Symptoms: Infodemiology Study. JMIR Public Health and Surveillance 2021;7(2):e25651 View
  39. Rokhmah D, Ali K, Putri S, Khoiron K. Increase in public interest concerning alternative medicine during the COVID-19 pandemic in Indonesia: a Google Trends study. F1000Research 2021;9:1201 View
  40. Pat V, Kosisky S, Keswani A. Paging Dr Google. Annals of Allergy, Asthma & Immunology 2021;126(2):203 View
  41. Asgari Mehrabadi M, Dutt N, Rahmani A. The Causality Inference of Public Interest in Restaurants and Bars on Daily COVID-19 Cases in the United States: Google Trends Analysis. JMIR Public Health and Surveillance 2021;7(4):e22880 View
  42. Çimke S, Yıldırım Gürkan D. Determination of interest in vitamin use during COVID-19 pandemic using Google Trends data: Infodemiology study. Nutrition 2021;85:111138 View
  43. Kardeş S. Public interest in spa therapy during the COVID-19 pandemic: analysis of Google Trends data among Turkey. International Journal of Biometeorology 2021 View
  44. Curtis D, Washburn T, Lee H, Smith K, Kim J, Martz C, Kramer M, Chae D. Highly public anti-Black violence is associated with poor mental health days for Black Americans. Proceedings of the National Academy of Sciences 2021;118(17):e2019624118 View
  45. Wong M, Gunasekeran D, Nusinovici S, Sabanayagam C, Yeo K, Cheng C, Tham Y. Telehealth Demand Trends During the COVID-19 Pandemic in the Top 50 Most Affected Countries: Infodemiological Evaluation. JMIR Public Health and Surveillance 2021;7(2):e24445 View
  46. Jimenez A, Estevez-Reboredo R, Santed M, Ramos V. COVID-19 Symptom-Related Google Searches and Local COVID-19 Incidence in Spain: Correlational Study. Journal of Medical Internet Research 2020;22(12):e23518 View
  47. Liu W, Wei Z, Cheng X, Pang R, Zhang H, Li G. Public Interest in Cosmetic Surgical and Minimally Invasive Plastic Procedures During the COVID-19 Pandemic: Infodemiology Study of Twitter Data. Journal of Medical Internet Research 2021;23(3):e23970 View
  48. Mayo-Yáñez M, Calvo‑Henríquez C, Chiesa-Estomba C, Lechien J, González-Torres L. Google Trends application for the study of information search behaviour on oropharyngeal cancer in Spain. European Archives of Oto-Rhino-Laryngology 2020 View
  49. Dzaye O, Adelhoefer S, Boakye E, Blaha M. Cardiovascular-related health behaviors and lifestyle during the COVID-19 pandemic: An infodemiology study. American Journal of Preventive Cardiology 2021;5:100148 View
  50. Mangono T, Smittenaar P, Caplan Y, Huang V, Sutermaster S, Kemp H, Sgaier S. Information-Seeking Patterns During the COVID-19 Pandemic Across the United States: Longitudinal Analysis of Google Trends Data. Journal of Medical Internet Research 2021;23(5):e22933 View
  51. Rokhmah D, Ali K, Putri S, Khoiron K. Increase in public interest concerning alternative medicine during the COVID-19 pandemic in Indonesia: a Google Trends study. F1000Research 2020;9:1201 View
  52. Saposnik F, Huber J. Trends in Web Searches About the Causes and Treatments of Autism Over the Past 15 Years: Exploratory Infodemiology Study. JMIR Pediatrics and Parenting 2020;3(2):e20913 View
  53. Sulyok M, Ferenci T, Walker M. Google Trends Data and COVID‐19 in Europe: Correlations and model enhancement are European wide. Transboundary and Emerging Diseases 2020 View
  54. Burnett D, Eapen V, Lin P. Time Trends of the Public’s Attention Toward Suicide During the COVID-19 Pandemic: Retrospective, Longitudinal Time-Series Study. JMIR Public Health and Surveillance 2020;6(4):e24694 View
  55. Mavragani A, Gkillas K. COVID-19 predictability in the United States using Google Trends time series. Scientific Reports 2020;10(1) View
  56. Momynaliev K, Khoperskay L, Pshenichnaya N, Abuova G, Akimkin V. Infodemiological study of coronavirus epidemic using Google Trends in Central Asian Republics of Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan. Medical alphabet 2021;(34):47 View
  57. Pulido-Polo M, Hernández-Santaolalla V, Lozano-González A. Uso institucional de Twitter para combatir la infodemia causada por la crisis sanitaria de la Covid-19. El profesional de la información 2021 View
  58. Kardeş S, Kuzu A, Raiker R, Pakhchanian H, Karagülle M. Public interest in rheumatic diseases and rheumatologist in the United States during the COVID-19 pandemic: evidence from Google Trends. Rheumatology International 2021;41(2):329 View
  59. Zhang H, Wang Y, Zheng Q, Tang K, Fang R, Wang Y, Sun Q. Research Interest and Public Interest in Melanoma: A Bibliometric and Google Trends Analysis. Frontiers in Oncology 2021;11 View
  60. Alsancak Y, Gul M. A Google Trends Analysis: Change in internet searches related to cardiovascular disease during COVID-19 outbreak. Cor et Vasa 2020;62(6):583 View
  61. Singh S, Sharma P, Balhara Y. The impact of nationwide alcohol ban during the COVID ‐19 lockdown on alcohol use‐related internet searches and behaviour in India: An infodemiology study. Drug and Alcohol Review 2021;40(2):196 View
  62. Zimmerman F, Anderson N. Association of the Timing of School Closings and Behavioral Changes With the Evolution of the Coronavirus Disease 2019 Pandemic in the US. JAMA Pediatrics 2021;175(5):501 View
  63. Sousa-Pinto B, Heffler E, Antó A, Czarlewski W, Bedbrook A, Gemicioglu B, Canonica G, Antó J, Fonseca J, Bousquet J. Anomalous asthma and chronic obstructive pulmonary disease Google Trends patterns during the COVID-19 pandemic. Clinical and Translational Allergy 2020;10(1) View
  64. Bellaire C, Rutland J, Sayegh F, Pesce R, Tijerina J, Taub P. Going Viral: A Systematic Review of Google Trends in Plastic Surgery and a Recommended Framework for Its Use. Aesthetic Surgery Journal 2021 View
  65. Ortega J, Bernabé-Moreno J. Modelling the Degree of Emotional Concern: COVID-19 Response in Social Media. Applied Sciences 2021;11(9):3872 View

Books/Policy Documents

  1. Ganasegeran K, Abdulrahman S. Human Behaviour Analysis Using Intelligent Systems. View