Published on in Vol 6, No 2 (2020): Apr-Jun
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/17574, first published
.

Journals
- Marks C, Carrasco-Escobar G, Carrasco-Hernández R, Johnson D, Ciccarone D, Strathdee S, Smith D, Bórquez A. Methodological approaches for the prediction of opioid use-related epidemics in the United States: a narrative review and cross-disciplinary call to action. Translational Research 2021;234:88 View
- Tacheva Z, Ivanov A. Exploring the Association Between the “Big Five” Personality Traits and Fatal Opioid Overdose: County-Level Empirical Analysis. JMIR Mental Health 2021;8(3):e24939 View
- Khoury D, Preiss A, Geiger P, Anwar M, Conway K. Increases in Naloxone Administrations by Emergency Medical Services Providers During the COVID-19 Pandemic: Retrospective Time Series Study. JMIR Public Health and Surveillance 2021;7(5):e29298 View
- Bushman M, Godishala S, Hyzer R, Jerisha J, Jolliff A, Kaji E, Kerr B, Mathur A, Tsao O. Adolescent Health on Social Media and the Mentorship of Youth Investigators: Five Content Analysis Studies Conducted by Youth Investigators. JMIR Mental Health 2021;8(9):e29318 View
- Gadhia S, Richards G, Marriott T, Rose J. Artificial intelligence and opioid use: a narrative review. BMJ Innovations 2023;9(2):78 View
- Lane J, Habib D, Curtis B. Linguistic Methodologies to Surveil the Leading Causes of Mortality: Scoping Review of Twitter for Public Health Data. Journal of Medical Internet Research 2023;25:e39484 View
- Patton T, Abramovitz D, Johnson D, Leas E, Nobles A, Caputi T, Ayers J, Strathdee S, Bórquez A. Characterizing Help-Seeking Searches for Substance Use Treatment From Google Trends and Assessing Their Use for Infoveillance: Longitudinal Descriptive and Validation Statistical Analysis. Journal of Medical Internet Research 2022;24(12):e41527 View
- Carabot F, Fraile-Martínez O, Donat-Vargas C, Santoma J, Garcia-Montero C, Pinto da Costa M, Molina-Ruiz R, Ortega M, Alvarez-Mon M, Alvarez-Mon M. Understanding Public Perceptions and Discussions on Opioids Through Twitter: Cross-Sectional Infodemiology Study. Journal of Medical Internet Research 2023;25:e50013 View
- Giorgi S, Yaden D, Eichstaedt J, Ungar L, Schwartz H, Kwarteng A, Curtis B. Predicting U.S. county opioid poisoning mortality from multi-modal social media and psychological self-report data. Scientific Reports 2023;13(1) View
- Tang L, Korona-Bailey J, Zaras D, Roberts A, Mukhopadhyay S, Espy S, Walsh C. Using Natural Language Processing to Predict Fatal Drug Overdose From Autopsy Narrative Text: Algorithm Development and Validation Study. JMIR Public Health and Surveillance 2023;9:e45246 View
- Carabot F, Donat-Vargas C, Santoma-Vilaclara J, Ortega M, García-Montero C, Fraile-Martínez O, Zaragoza C, Monserrat J, Alvarez-Mon M, Alvarez-Mon M. Exploring Perceptions About Paracetamol, Tramadol, and Codeine on Twitter Using Machine Learning: Quantitative and Qualitative Observational Study. Journal of Medical Internet Research 2023;25:e45660 View