Published on in Vol 5, No 2 (2019): Apr-Jun

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/12383, first published .
Preliminary Flu Outbreak Prediction Using Twitter Posts Classification and Linear Regression With Historical Centers for Disease Control and Prevention Reports: Prediction Framework Study

Preliminary Flu Outbreak Prediction Using Twitter Posts Classification and Linear Regression With Historical Centers for Disease Control and Prevention Reports: Prediction Framework Study

Preliminary Flu Outbreak Prediction Using Twitter Posts Classification and Linear Regression With Historical Centers for Disease Control and Prevention Reports: Prediction Framework Study

Authors of this article:

Ali Alessa1, 2 Author Orcid Image ;   Miad Faezipour1, 3 Author Orcid Image

Journals

  1. López Seguí F, Ander Egg Aguilar R, de Maeztu G, García-Altés A, García Cuyàs F, Walsh S, Sagarra Castro M, Vidal-Alaball J. Teleconsultations between Patients and Healthcare Professionals in Primary Care in Catalonia: The Evaluation of Text Classification Algorithms Using Supervised Machine Learning. International Journal of Environmental Research and Public Health 2020;17(3):1093 View
  2. Fagherazzi G, Goetzinger C, Rashid M, Aguayo G, Huiart L. Digital Health Strategies to Fight COVID-19 Worldwide: Challenges, Recommendations, and a Call for Papers. Journal of Medical Internet Research 2020;22(6):e19284 View
  3. Asghari M, Sierra-Sosa D, Elmaghraby A. A topic modeling framework for spatio-temporal information management. Information Processing & Management 2020;57(6):102340 View
  4. Amin S, Uddin M, Hassan S, Khan A, Nasser N, Alharbi A, Alyami H. Recurrent Neural Networks With TF-IDF Embedding Technique for Detection and Classification in Tweets of Dengue Disease. IEEE Access 2020;8:131522 View
  5. Budhwani H, Sun R. Creating COVID-19 Stigma by Referencing the Novel Coronavirus as the “Chinese virus” on Twitter: Quantitative Analysis of Social Media Data. Journal of Medical Internet Research 2020;22(5):e19301 View
  6. Amin S, Uddin M, Zeb M, Alarood A, Mahmoud M, Alkinani M. Detecting Dengue/Flu Infections Based on Tweets Using LSTM and Word Embedding. IEEE Access 2020;8:189054 View
  7. Kafieh R, Saeedizadeh N, Arian R, Amini Z, Serej N, Vaezi A, Javanmard S. Isfahan and Covid-19: Deep spatiotemporal representation. Chaos, Solitons & Fractals 2020;141:110339 View
  8. Mohammad Masum A, Khushbu S, Keya M, Abujar S, Hossain S. COVID-19 in Bangladesh: A Deeper Outlook into The Forecast with Prediction of Upcoming Per Day Cases Using Time Series. Procedia Computer Science 2020;178:291 View
  9. Asadzadeh A, Pakkhoo S, Saeidabad M, Khezri H, Ferdousi R. Information technology in emergency management of COVID-19 outbreak. Informatics in Medicine Unlocked 2020;21:100475 View
  10. Kaveh-Yazdy F, Zarifzadeh S. Track Iran's national COVID-19 response committee’s major concerns using two-stage unsupervised topic modeling. International Journal of Medical Informatics 2021;145:104309 View
  11. Alnazzawi N, Fiorini N. Building a semantically annotated corpus for chronic disease complications using two document types. PLOS ONE 2021;16(3):e0247319 View
  12. Amin S, Uddin M, alSaeed D, Khan A, Adnan M, Aziz F. Early Detection of Seasonal Outbreaks from Twitter Data Using Machine Learning Approaches. Complexity 2021;2021(1) View
  13. Khalil R, Saeed N, Masood M, Fard Y, Alouini M, Al-Naffouri T. Deep Learning in the Industrial Internet of Things: Potentials, Challenges, and Emerging Applications. IEEE Internet of Things Journal 2021;8(14):11016 View
  14. Melton C, Olusanya O, Ammar N, Shaban-Nejad A. Public sentiment analysis and topic modeling regarding COVID-19 vaccines on the Reddit social media platform: A call to action for strengthening vaccine confidence. Journal of Infection and Public Health 2021;14(10):1505 View
  15. Antonio F, Itami A, Dalmedico J, Mendes R. On the dynamics of reporting data: A case study of UFO sightings. Physica A: Statistical Mechanics and its Applications 2022;603:127807 View
  16. Thakur N, Han C. An Exploratory Study of Tweets about the SARS-CoV-2 Omicron Variant: Insights from Sentiment Analysis, Language Interpretation, Source Tracking, Type Classification, and Embedded URL Detection. COVID 2022;2(8):1026 View
  17. Athanasiou M, Fragkozidis G, Zarkogianni K, Nikita K. Long Short-term Memory–Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation. Journal of Medical Internet Research 2023;25:e42519 View
  18. Gour A, Aggarwal S, Kumar S. Lending ears to unheard voices: An empirical analysis of user‐generated content on social media. Production and Operations Management 2022;31(6):2457 View
  19. Mokhberi M, Biswas A, Masud Z, Kteily-Hawa R, Goldstein A, Gillis J, Rayana S, Ahmed S. Development of a COVID-19–Related Anti-Asian Tweet Data Set: Quantitative Study. JMIR Formative Research 2023;7:e40403 View
  20. Chumachenko T, Chumachenko D. SIMULATION OF EPIDEMIC PROCESSES: A REVIEW OF MODERN METHODS, MODELS AND APPROACHES. Inter Collegas 2022;9(1):66 View
  21. Albalawi U, Mustafa M. Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review. International Journal of Environmental Research and Public Health 2022;19(10):5901 View
  22. Wang A, Dara R, Yousefinaghani S, Maier E, Sharif S. A Review of Social Media Data Utilization for the Prediction of Disease Outbreaks and Understanding Public Perception. Big Data and Cognitive Computing 2023;7(2):72 View
  23. Thakur N. Sentiment Analysis and Text Analysis of the Public Discourse on Twitter about COVID-19 and MPox. Big Data and Cognitive Computing 2023;7(2):116 View
  24. Shi B, Huang W, Dang Y, Zhou W. Leveraging social media data for pandemic detection and prediction. Humanities and Social Sciences Communications 2024;11(1) View
  25. Babanejaddehaki G, An A, Papagelis M. Disease Outbreak Detection and Forecasting: A Review of Methods and Data Sources. ACM Transactions on Computing for Healthcare 2024 View

Books/Policy Documents

  1. Sathya D. , Sudha V. , Jagadeesan D. . Handbook of Research on Applications and Implementations of Machine Learning Techniques. View
  2. Patel J, Urolagin S. Advances in Machine Learning and Computational Intelligence. View
  3. Sathya D. , Sudha V. , Jagadeesan D. . Research Anthology on Machine Learning Techniques, Methods, and Applications. View
  4. Nazeer S, Yayavaram P, Anbarasi L. Computer Vision and Machine Intelligence Paradigms for SDGs. View