Published on in Vol 4, No 4 (2018): Oct-Dec

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/10834, first published .
Characterizing Tweet Volume and Content About Common Health Conditions Across Pennsylvania: Retrospective Analysis

Characterizing Tweet Volume and Content About Common Health Conditions Across Pennsylvania: Retrospective Analysis

Characterizing Tweet Volume and Content About Common Health Conditions Across Pennsylvania: Retrospective Analysis

Journals

  1. Sarker A, Gonzalez-Hernandez G, Ruan Y, Perrone J. Machine Learning and Natural Language Processing for Geolocation-Centric Monitoring and Characterization of Opioid-Related Social Media Chatter. JAMA Network Open 2019;2(11):e1914672 View
  2. Reuter K, Danve A, Deodhar A. Harnessing the power of social media: how can it help in axial spondyloarthritis research?. Current Opinion in Rheumatology 2019;31(4):321 View
  3. Viguria I, Alvarez-Mon M, Llavero-Valero M, Asunsolo del Barco A, Ortuño F, Alvarez-Mon M. Eating Disorder Awareness Campaigns: Thematic and Quantitative Analysis Using Twitter. Journal of Medical Internet Research 2020;22(7):e17626 View
  4. Stens O, Weisman M, Simard J, Reuter K. Insights From Twitter Conversations on Lupus and Reproductive Health: Protocol for a Content Analysis. JMIR Research Protocols 2020;9(8):e15623 View
  5. Mavragani A. Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206 View
  6. Adejare A, Gautam Y, Madzia J, Mersha T. Unraveling racial disparities in asthma emergency department visits using electronic healthcare records and machine learning. Journal of Asthma 2022;59(1):79 View
  7. Reuter K, Lee D. Perspectives Toward Seeking Treatment Among Patients With Psoriasis: Protocol for a Twitter Content Analysis. JMIR Research Protocols 2021;10(2):e13731 View
  8. Reuter K, Deodhar A, Makri S, Zimmer M, Berenbaum F, Nikiphorou E. The impact of the COVID-19 pandemic on people with rheumatic and musculoskeletal diseases: insights from patient-generated data on social media. Rheumatology 2021;60(SI):SI77 View
  9. Chenworth M, Perrone J, Love J, Graves R, Hogg-Bremer W, Sarker A. Methadone and suboxone® mentions on twitter: thematic and sentiment analysis. Clinical Toxicology 2021;59(11):982 View
  10. Bunyan A, Venuturupalli S, Reuter K. Expressed Symptoms and Attitudes Toward Using Twitter for Health Care Engagement Among Patients With Lupus on Social Media: Protocol for a Mixed Methods Study. JMIR Research Protocols 2021;10(5):e15716 View
  11. Zhao Y, He X, Feng Z, Bost S, Prosperi M, Wu Y, Guo Y, Bian J. Biases in using social media data for public health surveillance: A scoping review. International Journal of Medical Informatics 2022;164:104804 View
  12. Alvarez-Mon M, Donat-Vargas C, Santoma-Vilaclara J, Anta L, Goena J, Sanchez-Bayona R, Mora F, Ortega M, Lahera G, Rodriguez-Jimenez R, Quintero J, Álvarez-Mon M. Assessment of Antipsychotic Medications on Social Media: Machine Learning Study. Frontiers in Psychiatry 2021;12 View
  13. Reuter K, Angyan P, Le N, Buchanan T. Using Patient-Generated Health Data From Twitter to Identify, Engage, and Recruit Cancer Survivors in Clinical Trials in Los Angeles County: Evaluation of a Feasibility Study. JMIR Formative Research 2021;5(11):e29958 View
  14. Xu W, Sobhani A, Fu T, Khabooshani A, Vazirinasab A, Shokoohyar S, Sobhani A, Raouf B. An analysis of ridesharing trip time using advanced text mining techniques. Digital Transportation and Safety 2023;2(4):308 View