Published on in Vol 4, No 3 (2018): Jul-Sept

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/11203, first published .
Bringing Real-Time Geospatial Precision to HIV Surveillance Through Smartphones: Feasibility Study

Bringing Real-Time Geospatial Precision to HIV Surveillance Through Smartphones: Feasibility Study

Bringing Real-Time Geospatial Precision to HIV Surveillance Through Smartphones: Feasibility Study

Journals

  1. G. Andryukov B. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiology 2020;6(3):280 View
  2. Turbé V, Herbst C, Mngomezulu T, Meshkinfamfard S, Dlamini N, Mhlongo T, Smit T, Cherepanova V, Shimada K, Budd J, Arsenov N, Gray S, Pillay D, Herbst K, Shahmanesh M, McKendry R. Deep learning of HIV field-based rapid tests. Nature Medicine 2021;27(7):1165 View
  3. Khosla N, Lesinski J, Colombo M, Bezinge L, deMello A, Richards D. Simplifying the complex: accessible microfluidic solutions for contemporary processes within in vitro diagnostics. Lab on a Chip 2022;22(18):3340 View
  4. Young L, Nan Y, Jang E, Stevens R. Digital Epidemiological Approaches in HIV Research: a Scoping Methodological Review. Current HIV/AIDS Reports 2023;20(6):470 View
  5. Arumugam S, Ma J, Macar U, Han G, McAulay K, Ingram D, Ying A, Chellani H, Chern T, Reilly K, Colburn D, Stanciu R, Duffy C, Williams A, Grys T, Chang S, Sia S. Rapidly adaptable automated interpretation of point-of-care COVID-19 diagnostics. Communications Medicine 2023;3(1) View
  6. Rabiei R, Bastani P, Ahmadi H, Dehghan S, Almasi S. Developing public health surveillance dashboards: a scoping review on the design principles. BMC Public Health 2024;24(1) View