Published on in Vol 4, No 1 (2018): Jan-Mar
Journals
- Lavertu A, Altman R. RedMed: Extending drug lexicons for social media applications. Journal of Biomedical Informatics 2019;99:103307 View
- Adams N, Artigiani E, Wish E. Choosing Your Platform for Social Media Drug Research and Improving Your Keyword Filter List. Journal of Drug Issues 2019;49(3):477 View
- Mavragani A, Ochoa G, Tsagarakis K. Assessing the Methods, Tools, and Statistical Approaches in Google Trends Research: Systematic Review. Journal of Medical Internet Research 2018;20(11):e270 View
- Miliano C, Margiani G, Fattore L, De Luca M. Sales and Advertising Channels of New Psychoactive Substances (NPS): Internet, Social Networks, and Smartphone Apps. Brain Sciences 2018;8(7):123 View
- Hu H, Phan N, Chun S, Geller J, Vo H, Ye X, Jin R, Ding K, Kenne D, Dou D. An insight analysis and detection of drug-abuse risk behavior on Twitter with self-taught deep learning. Computational Social Networks 2019;6(1) View
- Mackey T, Kalyanam J, Klugman J, Kuzmenko E, Gupta R. Solution to Detect, Classify, and Report Illicit Online Marketing and Sales of Controlled Substances via Twitter: Using Machine Learning and Web Forensics to Combat Digital Opioid Access. Journal of Medical Internet Research 2018;20(4):e10029 View
- Artigiani E, Wish E. Introducing the National Drug Early Warning System. Current Opinion in Psychiatry 2020;33(4):319 View
- Mavragani A, Ochoa G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health and Surveillance 2019;5(2):e13439 View
- Li Z, Du X, Liao X, Jiang X, Champagne-Langabeer T. Demystifying the Dark Web Opioid Trade: Content Analysis on Anonymous Market Listings and Forum Posts. Journal of Medical Internet Research 2021;23(2):e24486 View
- Xie J, Zhang Z, Liu X, Zeng D. Unveiling the Hidden Truth of Drug Addiction: A Social Media Approach Using Similarity Network-Based Deep Learning. Journal of Management Information Systems 2021;38(1):166 View
- Wiesinger H, Wang Z, Hellweg S. Deep Dive into Plastic Monomers, Additives, and Processing Aids. Environmental Science & Technology 2021;55(13):9339 View
- Saran S, Salinas K, Foulds J, Kaynak Ö, Hoglen B, Houser K, Krebs N, Yingst J, Allen S, Bordner C, Hobkirk A. A Comparison of Vaping Behavior, Perceptions, and Dependence among Individuals Who Vape Nicotine, Cannabis, or Both. International Journal of Environmental Research and Public Health 2022;19(16):10392 View
- Fuller A, Vasek M, Mariconti E, Johnson S. Understanding and preventing the advertisement and sale of illicit drugs to young people through social media: A multidisciplinary scoping review. Drug and Alcohol Review 2024;43(1):56 View
- Tang L, Korona-Bailey J, Zaras D, Roberts A, Mukhopadhyay S, Espy S, Walsh C. Using Natural Language Processing to Predict Fatal Drug Overdose From Autopsy Narrative Text: Algorithm Development and Validation Study. JMIR Public Health and Surveillance 2023;9:e45246 View
- Yuan Y, Kasson E, Taylor J, Cavazos-Rehg P, De Choudhury M, Aledavood T. Examining the Gateway Hypothesis and Mapping Substance Use Pathways on Social Media: Machine Learning Approach. JMIR Formative Research 2024;8:e54433 View
- Almeida A, Patton T, Conway M, Gupta A, Strathdee S, Bórquez A. The Use of Natural Language Processing Methods in Reddit to Investigate Opioid Use: Scoping Review. JMIR Infodemiology 2024;4:e51156 View
- Holbrook E, Wiskur B, Nagykaldi Z. Discovering opioid slang on social media: A Word2Vec approach with reddit data. Drug and Alcohol Dependence Reports 2024;13:100302 View
Books/Policy Documents
- González S, Sakata T, Nogueira R. Artificial Intelligence and Soft Computing. View
- Lobantsev A, Loginova V, Burlakova Y, Andreev N, Matveeva V, Filimonova I, Dobrenko N, Gusarova N. Digital Transformation and Global Society. View
- Vyas P, Vyas G, Chauhan A, Rawat R, Telang S, Gottumukkala M. Using Computational Intelligence for the Dark Web and Illicit Behavior Detection. View