Published on in Vol 1, No 2 (2015): Jul-Dec

Identifying Adverse Effects of HIV Drug Treatment and Associated Sentiments Using Twitter

Identifying Adverse Effects of HIV Drug Treatment and Associated Sentiments Using Twitter

Identifying Adverse Effects of HIV Drug Treatment and Associated Sentiments Using Twitter

Journals

  1. Mavragani A. Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206 View
  2. Golder S, O’Connor K, Hennessy S, Gross R, Gonzalez-Hernandez G. Assessment of Beliefs and Attitudes About Statins Posted on Twitter. JAMA Network Open 2020;3(6):e208953 View
  3. Mayer K, Agwu A, Malebranche D. Barriers to the Wider Use of Pre-exposure Prophylaxis in the United States: A Narrative Review. Advances in Therapy 2020;37(5):1778 View
  4. Aramburu M, Berlanga R, Lanza I. Social Media Multidimensional Analysis for Intelligent Health Surveillance. International Journal of Environmental Research and Public Health 2020;17(7):2289 View
  5. Chan M, Lohmann S, Morales A, Zhai C, Ungar L, Holtgrave D, Albarracín D. An Online Risk Index for the Cross-Sectional Prediction of New HIV Chlamydia, and Gonorrhea Diagnoses Across U.S. Counties and Across Years. AIDS and Behavior 2018;22(7):2322 View
  6. Kim Y, Huang J, Emery S. Garbage in, Garbage Out: Data Collection, Quality Assessment and Reporting Standards for Social Media Data Use in Health Research, Infodemiology and Digital Disease Detection. Journal of Medical Internet Research 2016;18(2):e41 View
  7. Bousquet C, Dahamna B, Guillemin-Lanne S, Darmoni S, Faviez C, Huot C, Katsahian S, Leroux V, Pereira S, Richard C, Schück S, Souvignet J, Lillo-Le Louët A, Texier N. The Adverse Drug Reactions from Patient Reports in Social Media Project: Five Major Challenges to Overcome to Operationalize Analysis and Efficiently Support Pharmacovigilance Process. JMIR Research Protocols 2017;6(9):e179 View
  8. Convertino I, Ferraro S, Blandizzi C, Tuccori M. The usefulness of listening social media for pharmacovigilance purposes: a systematic review. Expert Opinion on Drug Safety 2018;17(11):1081 View
  9. Jordan S, Hovet S, Fung I, Liang H, Fu K, Tse Z. Using Twitter for Public Health Surveillance from Monitoring and Prediction to Public Response. Data 2018;4(1):6 View
  10. Katsuki T, Mackey T, Cuomo R. Establishing a Link Between Prescription Drug Abuse and Illicit Online Pharmacies: Analysis of Twitter Data. Journal of Medical Internet Research 2015;17(12):e280 View
  11. Salathé M. Digital Pharmacovigilance and Disease Surveillance: Combining Traditional and Big-Data Systems for Better Public Health. Journal of Infectious Diseases 2016;214(suppl 4):S399 View
  12. Mackey T, Nayyar G. A review of existing and emerging digital technologies to combat the global trade in fake medicines. Expert Opinion on Drug Safety 2017;16(5):587 View
  13. Créquit P, Mansouri G, Benchoufi M, Vivot A, Ravaud P. Mapping of Crowdsourcing in Health: Systematic Review. Journal of Medical Internet Research 2018;20(5):e187 View
  14. Roberts K, Boland M, Pruinelli L, Dcruz J, Berry A, Georgsson M, Hazen R, Sarmiento R, Backonja U, Yu K, Jiang Y, Brennan P. Biomedical informatics advancing the national health agenda: the AMIA 2015 year-in-review in clinical and consumer informatics. Journal of the American Medical Informatics Association 2017;24(e1):e185 View
  15. Huang R, Liu N, Nicdao M, Mikaheal M, Baldacchino T, Albeos A, Petoumenos K, Sud K, Kim J. Emotion sharing in remote patient monitoring of patients with chronic kidney disease. Journal of the American Medical Informatics Association 2020;27(2):185 View
  16. Ocampo J, Smart J, Allston A, Bhattacharjee R, Boggavarapu S, Carter S, Castel A, Collmann J, Flynn C, Hamp A, Jordan D, Kassaye S, Kharfen M, Lum G, Pemmaraju R, Rhodes A, Stover J, Young M. Improving HIV Surveillance Data for Public Health Action in Washington, DC: A Novel Multiorganizational Data-Sharing Method. JMIR Public Health and Surveillance 2016;2(1):e3 View
  17. Fagherazzi G, Ravaud P. Digital diabetes: Perspectives for diabetes prevention, management and research. Diabetes & Metabolism 2019;45(4):322 View
  18. Park H, Jung H, On J, Park S, Kang H. Digital Epidemiology: Use of Digital Data Collected for Non-epidemiological Purposes in Epidemiological Studies. Healthcare Informatics Research 2018;24(4):253 View
  19. Yin Z, Sulieman L, Malin B. A systematic literature review of machine learning in online personal health data. Journal of the American Medical Informatics Association 2019;26(6):561 View
  20. Edo-Osagie O, De La Iglesia B, Lake I, Edeghere O. A scoping review of the use of Twitter for public health research. Computers in Biology and Medicine 2020;122:103770 View
  21. Lardon J, Bellet F, Aboukhamis R, Asfari H, Souvignet J, Jaulent M, Beyens M, Lillo-LeLouët A, Bousquet C. Evaluating Twitter as a complementary data source for pharmacovigilance. Expert Opinion on Drug Safety 2018;17(8):763 View
  22. Radzikowski J, Stefanidis A, Jacobsen K, Croitoru A, Crooks A, Delamater P. The Measles Vaccination Narrative in Twitter: A Quantitative Analysis. JMIR Public Health and Surveillance 2016;2(1):e1 View
  23. Routray R, Tetarenko N, Abu-Assal C, Mockute R, Assuncao B, Chen H, Bao S, Danysz K, Desai S, Cicirello S, Willis V, Alford S, Krishnamurthy V, Mingle E. Application of Augmented Intelligence for Pharmacovigilance Case Seriousness Determination. Drug Safety 2020;43(1):57 View
  24. Ahne A, Orchard F, Tannier X, Perchoux C, Balkau B, Pagoto S, Harding J, Czernichow T, Fagherazzi G. Insulin pricing and other major diabetes-related concerns in the USA: a study of 46 407 tweets between 2017 and 2019. BMJ Open Diabetes Research & Care 2020;8(1):e001190 View
  25. Leis A, Ronzano F, Mayer M, Furlong L, Sanz F. Evaluating Behavioral and Linguistic Changes During Drug Treatment for Depression Using Tweets in Spanish: Pairwise Comparison Study. Journal of Medical Internet Research 2020;22(12):e20920 View
  26. Mendhe C, Henderson N, Srivastava G, Mago V. A Scalable Platform to Collect, Store, Visualize, and Analyze Big Data in Real Time. IEEE Transactions on Computational Social Systems 2021;8(1):260 View
  27. van Heerden A, Young S, Park C. Use of social media big data as a novel HIV surveillance tool in South Africa. PLOS ONE 2020;15(10):e0239304 View
  28. Bour C, Schmitz S, Ahne A, Perchoux C, Dessenne C, Fagherazzi G. Scoping review protocol on the use of social media for health research purposes. BMJ Open 2021;11(2):e040671 View
  29. Jarynowski A, Semenov A, Kamiński M, Belik V. Mild Adverse Events of Sputnik V Vaccine in Russia: Social Media Content Analysis of Telegram via Deep Learning. Journal of Medical Internet Research 2021;23(11):e30529 View
  30. Pilipiec P, Liwicki M, Bota A. Using Machine Learning for Pharmacovigilance: A Systematic Review. Pharmaceutics 2022;14(2):266 View
  31. Déguilhem A, Malaab J, Talmatkadi M, Renner S, Foulquié P, Fagherazzi G, Loussikian P, Marty T, Mebarki A, Texier N, Schuck S. Identifying Profiles and Symptoms of Patients With Long COVID in France: Data Mining Infodemiology Study Based on Social Media. JMIR Infodemiology 2022;2(2):e39849 View
  32. Shakeri Hossein Abad Z, Butler G, Thompson W, Lee J. Crowdsourcing for Machine Learning in Public Health Surveillance: Lessons Learned From Amazon Mechanical Turk. Journal of Medical Internet Research 2022;24(1):e28749 View
  33. Effenberger M, Kronbichler A, Bettac E, Grabherr F, Grander C, Adolph T, Mayer G, Zoller H, Perco P, Tilg H. Using Infodemiology Metrics to Assess Public Interest in Liver Transplantation: Google Trends Analysis. Journal of Medical Internet Research 2021;23(8):e21656 View
  34. Engelmann L. Digital epidemiology, deep phenotyping and the enduring fantasy of pathological omniscience. Big Data & Society 2022;9(1) View
  35. Pathak R, Catalan-Matamoros D. Can Twitter posts serve as early indicators for potential safety signals? A retrospective analysis. International Journal of Risk & Safety in Medicine 2023;34(1):41 View
  36. Jang M, Cha S, Kim S, Lee S, Lee K, Shin K. Application of tree-based machine learning classification methods to detect signals of fluoroquinolones using the Korea Adverse Event Reporting System (KAERS) database. Expert Opinion on Drug Safety 2023;22(7):629 View
  37. Stemmer M, Parmet Y, Ravid G. Identifying Patients With Inflammatory Bowel Disease on Twitter and Learning From Their Personal Experience: Retrospective Cohort Study. Journal of Medical Internet Research 2022;24(8):e29186 View
  38. Koss J, Rheinlaender A, Truebel H, Bohnet-Joschko S. Social media mining in drug development—Fundamentals and use cases. Drug Discovery Today 2021;26(12):2871 View
  39. Keller R, Spanu A, Puhan M, Flahault A, Lovis C, Mütsch M, Beau-Lejdstrom R. Social media and internet search data to inform drug utilization: A systematic scoping review. Frontiers in Digital Health 2023;5 View
  40. Young L, Nan Y, Jang E, Stevens R. Digital Epidemiological Approaches in HIV Research: a Scoping Methodological Review. Current HIV/AIDS Reports 2023;20(6):470 View
  41. Ijaz M, Anwar N, Safran M, Alfarhood S, Sadad T, Imran , Rana T. Domain adaptive learning for multi realm sentiment classification on big data. PLOS ONE 2024;19(4):e0297028 View
  42. Rao V, Valdez D, Muralidharan R, Agley J, Eddens K, Dendukuri A, Panth V, Parker M. Digital Epidemiology of Prescription Drug References on X (Formerly Twitter): Neural Network Topic Modeling and Sentiment Analysis. Journal of Medical Internet Research 2024;26:e57885 View
  43. Mowlabocus S. Mediating PrEP – Introduction to Special Section. Sexualities 2020;23(8):1321 View

Books/Policy Documents

  1. Alves V, Capuzzi S, Baker N, Muratov E, Trospsha A, Hickey A. Approaching Complex Diseases. View
  2. Jiang K, Zhang D, Bernard G. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. View