TY - JOUR AU - Ogbudebe, Chidubem AU - Jeong, Dohyo AU - Odume, Bethrand AU - Chukwuogo, Ogoamaka AU - Dim, Cyril AU - Useni, Sani AU - Okuzu, Okey AU - Malolan, Chenchita AU - Kim, Dohyeong AU - Nwariaku, Fiemu AU - Nwokoye, Nkiru AU - Gande, Stephanie AU - Nongo, Debby AU - Eneogu, Rupert AU - Odusote, Temitayo AU - Oyelaran, Salewa AU - Chijioke-Akaniro, Obioma AU - Nihalani, Nrip AU - Anyaike, Chukwuma AU - Gidado, Mustapha PY - 2023 DA - 2023/2/8 TI - Identifying Hot Spots of Tuberculosis in Nigeria Using an Early Warning Outbreak Recognition System: Retrospective Analysis of Implications for Active Case Finding Interventions JO - JMIR Public Health Surveill SP - e40311 VL - 9 KW - early warning outbreak recognition system KW - active case finding KW - WHO-four-symptom screen KW - GeneXpert KW - active case KW - cluster KW - early warning KW - hot spot KW - mapping KW - disease spread KW - infection spread KW - retrospective study KW - retrospective analysis KW - surveillance KW - outbreak KW - TB KW - tuberculosis KW - infectious disease KW - case finding KW - communicable disease AB - Background: Undiagnosed tuberculosis (TB) cases are the major challenge to TB control in Nigeria. An early warning outbreak recognition system (EWORS) is a system that is primarily used to detect infectious disease outbreaks; this system can be used as a case-based geospatial tool for the real-time identification of hot spot areas with clusters of TB patients. TB screening targeted at such hot spots should yield more TB cases than screening targeted at non–hot spots. Objective: We aimed to demonstrate the effectiveness of an EWORS for TB hot spot mapping as a tool for detecting areas with increased TB case yields in high TB-burden states of Nigeria. Methods: KNCV Tuberculosis Foundation Nigeria deployed an EWORS to 14 high-burden states in Nigeria. The system used an advanced surveillance mechanism to identify TB patients’ residences in clusters, enabling it to predict areas with elevated disease spread (ie, hot spots) at the ward level. TB screening outreach using the World Health Organization 4-symptom screening method was conducted in 121 hot spot wards and 213 non–hot spot wards selected from the same communities. Presumptive cases identified were evaluated for TB using the GeneXpert instrument or chest X-ray. Confirmed TB cases from both areas were linked to treatment. Data from the hot spot and non–hot spot wards were analyzed retrospectively for this study. Results: During the 16-month intervention, a total of 1,962,042 persons (n=734,384, 37.4% male, n=1,227,658, 62.6% female) and 2,025,286 persons (n=701,103, 34.6% male, n=1,324,183, 65.4% female) participated in the community TB screening outreaches in the hot spot and non–hot spot areas, respectively. Presumptive cases among all patients screened were 268,264 (N=3,987,328, 6.7%) and confirmed TB cases were 22,618 (N=222,270, 10.1%). The number needed to screen to diagnose a TB case in the hot spot and non–hot spot areas was 146 and 193 per 10,000 people, respectively. Conclusions: Active TB case finding in EWORS-mapped hot spot areas yielded higher TB cases than the non–hot spot areas in the 14 high-burden states of Nigeria. With the application of EWORS, the precision of diagnosing TB among presumptive cases increased from 0.077 to 0.103, and the number of presumptive cases needed to diagnose a TB case decreased from 14.047 to 10.255 per 10,000 people. SN - 2369-2960 UR - https://publichealth.jmir.org/2023/1/e40311 UR - https://doi.org/10.2196/40311 UR - http://www.ncbi.nlm.nih.gov/pubmed/36753328 DO - 10.2196/40311 ID - info:doi/10.2196/40311 ER -