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Abstract

Background: Influenza outbreaks affect millions of people every year and its surveillance is usually carried out in developed
countries through a network of sentinel doctors who report the weekly number of Influenza-like Illness cases observed among
the visited patients. Monitoring and forecasting the evolution of these outbreaks supports decision makers in designing effective
interventions and allocating resources to mitigate their impact.

Objective: Describe the existing participatory surveillance approaches that have been used for modeling and forecasting of the
seasonal influenza epidemic, and how they can help strengthen real-time epidemic science and provide a more rigorous
understanding of epidemic conditions.

Methods: We describe three different participatory surveillance systems, WISDM (Widely Internet Sourced Distributed
Monitoring), Influenzanet and Flu Near You (FNY), and show how modeling and simulation can be or has been combined with
participatory disease surveillance to: i) measure the non-response bias in a participatory surveillance sample using WISDM; and
ii) nowcast and forecast influenza activity in different parts of the world (using Influenzanet and Flu Near You).

Results: WISDM-based results measure the participatory and sample bias for three epidemic metrics i.e. attack rate, peak
infection rate, and time-to-peak, and find the participatory bias to be the largest component of the total bias. The Influenzanet
platform shows that digital participatory surveillance data combined with a realistic data-driven epidemiological model can
provide both short-term and long-term forecasts of epidemic intensities, and the ground truth data lie within the 95 percent
confidence intervals for most weeks. The statistical accuracy of the ensemble forecasts increase as the season progresses. The
Flu Near You platform shows that participatory surveillance data provide accurate short-term flu activity forecasts and influenza
activity predictions. The correlation of the HealthMap Flu Trends estimates with the observed CDC ILI rates is 0.99 for 2013-2015.
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Additional data sources lead to an error reduction of about 40% when compared to the estimates of the model that only incorporates
CDC historical information.

Conclusions: While the advantages of participatory surveillance, compared to traditional surveillance, include its timeliness,
lower costs, and broader reach, it is limited by a lack of control over the characteristics of the population sample. Modeling and
simulation can help overcome this limitation as well as provide real-time and long-term forecasting of influenza activity in
data-poor parts of the world.

(JMIR Public Health Surveill 2017;3(4):e83) doi: 10.2196/publichealth.7344
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Introduction

Epidemiological surveillance is an important facet in the
detection and prevention of the spread of an epidemic [1].
Knowing which diseases and variations of these diseases are
present can help medical researchers identify appropriate
interventions as well as strategies for treatment to reduce overall
impact of the disease, including mortality. Because of the utility
of such data, a number of agencies collect and distribute
surveillance reports on prevailing epidemics or other diseases
of interest. In the United States, the Centers for Disease Control
and Prevention (CDC) produces surveillance counts for
influenza and other diseases based on reports from state and
local laboratories and medical health centers
(www.cdc.gov/flu/weekly/summary.htm). Internationally, the
World Health Organization and other agencies produce
surveillance data for a number of emerging diseases such as
Zika and Ebola (www.who.int/emergencies/zika-virus/
situation-report/25-august-2016/en/).

While these clinically-based disease surveillance systems are
necessary to keep track of disease prevalence and contain their
spread, they have practical limitations [2]. Given the time
required to collate surveillance numbers, the reports are usually
several weeks old, resulting in a mismatch between the public
health response and conditions on the ground [3]. Depending
upon the transmissibility of the epidemic, there can be a big
difference in prevalence from week to week. Additionally, even
when collecting data from local medical centers, coverage is
not always uniform. As a result, the CDC weights the public
health response based on state population as well as a region’s
past history of influenza-like illness (ILI) cases [1]. Finally, the
level of detail afforded by the medical laboratories and centers
reporting to these clinically-based systems may not be sufficient
for examining the type of regional demographics that help to
identify interventions that are likely to be effective [3].

A number of algorithms and technical approaches have been
developed in recent years to attempt to mitigate the shortcomings
in clinically collected surveillance data. To address the time
delay between when surveillance data become available and
the current date, approaches have been developed for ILI that
use mechanistic modeling based on epidemiological knowledge
of the pathways of flu transmission to estimate near real-time
and future estimates of flu activity [4,5]. Other approaches have
attempted to leverage information from constantly changing
Internet-based data sources to identify patterns that may signal
a change in the incidence of ILI cases in a population. These

data sources include Internet search engines [6-12], Twitter and
its microblogs [13-17], clinicians’ Internet search engines [18],
and participatory disease surveillance systems where responders
on the ground report on disease propagation [19]. Sharpe et al
[20] conducted a comparative study to analyze whether Google-,
Twitter-, or Wikipedia-based surveillance performs the best
when compared to CDC ILI data.

In addition to helping address the time delay problem,
participatory disease surveillance can also offer valuable insight
into the characteristics of a disease and the demographics of the
affected population [19,21-24]. It can help to augment coverage
in areas where there are fewer medical centers or where infected
people are less likely to go for clinical evaluation. Finally,
participatory surveillance also offers a good opportunity to
promote awareness of an epidemic [25].

Participatory surveillance has its limitations as well, especially
participatory bias resulting from nonuniform coverage and from
waning interest and participation over the duration of an
epidemic [22]. Additionally, although not addressed with the
examples in this paper, training and trust issues may lead to
under- or incorrect reporting [23]. Combining participatory
surveillance with modeling and simulation can not only help to
reduce participatory bias but can also improve real-time
forecasting and thus help identify which interventions are most
likely to be effective over time in a given area.

In this article, we investigate how an understanding of the results
from 3 participatory disease surveillance systems, WISDM
(Widely Internet-Sourced Distributed Monitoring), Influenzanet,
and Flu Near You (FNY), can be or have been extended through
the use of modeling, simulation, and forecasting.

Methods

Widely Internet-Sourced Distributed Monitoring and
Synthetic Information

Using Modeling to Measure Participatory Bias
WISDM is a Web-based tool developed at Virginia Tech that
supports crowdsourced behavioral data collection, inspection,
and forecasting of social dynamics in a population. When
integrated with online crowdsourcing services such as Amazon’s
Mechanical Turk (MTurk), WISDM provides a cost-effective
approach to real-time surveillance of potentially evolving disease
outbreaks [26]. So far, WISDM has been used primarily to
collect demographic and health behavior data for
epidemiological research. Here, we describe how modeling can
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be used in combination with WISDM to measure participatory
(nonresponse) bias.

Crowdsourcing platforms like MTurk can be used to recruit
responders for a low fee. MTurk allows requesters to recruit
human intelligence to conduct tasks that computers cannot do;
individuals who browse among existing jobs are called workers.
However, there is some concern that users recruited on
crowdsourcing platforms may not be representative of the
population at large [27,28]. MTurk workers tend to be young,
educated, and digitally savvy, so their responses may
systematically differ from the responses of those who did not
participate in the survey. Given this potential for nonresponse
or participatory bias, understanding how to use data from such
surveys for epidemic surveillance is a challenge.

To address this issue, we developed a simulation-based
approach. Specifically, we combined results of a survey of
Delhi, India, residents conducted on WISDM through MTurk
with agent-based simulations of the Delhi population to
understand the MTurk sample bias. First, we constructed a
synthetic population that was statistically indistinguishable from
the Delhi census (V in Figure 1), thus providing the best extant
at-scale representation of the population.

The synthetic population is generated by combining marginal
distributions of age, household income, and household size for
each Census block group with the corresponding Public Use
Microdata Sample. This is done using the iterative proportional

fitting procedure [29]. Validation is done by comparing
distributions of variables not included in the iterative
proportional fitting step with the corresponding distributions in
the generated synthetic population. The procedure is guaranteed
to converge [30] and the inferred joint distribution is the best
in the maximum entropy sense [31].

The synthetic population is generated for each block group,
which is the highest resolution at which US Census data are
available publicly. We generate social contact networks (contact
matrices) for the synthetic population through a detailed
data-driven model where, after the agents matching the region's
demographics are generated, they are assigned home locations
using road network data (from Here, formerly known as Navteq),
daily activity patterns are assigned using the National Household
Travel Survey data, and activity locations are assigned using
Dun and Bradstreet data. This allows social contact networks
to be extracted based on agents being simultaneously present
at locations for overlapping durations. We refer to the literature
for a detailed description of the construction of synthetic
populations and their applications [32-41].

From this synthetic population, we selected individuals whose
demographics most closely matched the demographics of the
MTurk respondents of the WISDM survey (the S in Figure 1).
Then, epidemic characteristics of this selected subsample were
studied and compared to the epidemic characteristics of the
entire synthetic population.

Figure 1. Mapping of MTurk sample to synthetic individuals.

Process for Finding the Mechanical Turk–Matched
Delhi Synthetic Population
First, we used WISDM to collect demographics and health
behaviors of about 600 MTurk workers; the health behaviors
included preventative and treatment behaviors related to
influenza. Then we calculated the Euclidean distance between
each of these approximately 600 responders and every person
in the synthetic population of the same age, gender, and

household size. Next, we selected the closest synthetic matches
to each survey respondent. If more than 1 match was identified,
all of the matches were retained. We repeated this procedure
for each responder in the survey, which provided us with a
subpopulation of the synthetic population that most closely
matched the WISDM-based survey respondents. This
subpopulation is denoted by S in Figure 1, and V denotes the
total synthetic population of Delhi.
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However, the synthetic subpopulation (S) was not statistically
representative of the MTurk sample given that survey
respondents could be matched with multiple individuals. Thus,
we used stratified sampling to construct a finer sample of the
synthetic population that was equivalent to those who took the
MTurk survey.

Specifically, we divided both the survey and synthetic
subpopulation (S) data into H mutually exclusive strata, where
each stratum corresponded to a unique combination of 3
demographic variables, specifically age, gender, and household
size. Only these 3 demographic factors were used for
stratification since India Census did not have information on
other common socioeconomic variables like income, education,
employment, and access to Internet. Variables such as income
and access to Internet could be especially important in matching
MTurk with individuals in the synthetic population, but due to
lack of data this could not be done. This is a significant
limitation of the current analysis which we expect to improve
upon as more data becomes available in the future.

We discretized age into A distinct intervals and household size
into B intervals. Gender was split into 2 groups. This resulted
in H=2AB strata. Because all matched synthetic people had
been retained, the number of observations (N1) in the synthetic
subpopulation (ie, first stratum of subpopulation S) was much
larger than the number of observations (n1) in the first stratum
in the MTurk survey (ie, first stratum of the actual survey
sample). Thus, to obtain a representative sample of this first
stratum, n1 observations were randomly sampled from the
synthetic subpopulation without replacement. The same
procedure was performed for all the remaining strata. This
provided us with the final MTurk-matched Delhi synthetic
population sample set S' in Figure 1, which demographically
matched the MTurk survey data.

Comparing Epidemic Outcomes Using Widely
Internet-Sourced Distributed Monitoring
Our goal was to understand the differences in influenza epidemic
outcomes across the 3 populations (V, S, and S’). We considered
3 different metrics for measuring epidemics: (1) the size of the
epidemic (ie, the attack rate), (2) the peak number of infections,
and (3) the time it takes for the epidemic to peak. A difference
in these metrics between S and S' would be equivalent to the
sample bias if we assume S captures the entire MTurk
population. This may not be true unless the sample size is very
large, which is not the case in this study. However, for very
large samples, it would give the sample bias since S' is the
sample and S is the entire synthetic subpopulation that matches
the attributes of the sample. Differences between V and S
metrics would be equivalent to the nonresponse bias because
individuals outside S did not participate in the survey.

In order to compare the epidemic outcomes, we simulated an
influenza outbreak using a susceptible, exposed, infected, and
recovered (SEIR) disease model [34,35] in the synthetic Delhi
population. Each node in the network represents an individual,
and each edge represents a contact on which the disease can
spread. Each node is in 1 of 4 states at any given time: S, E, I,
or R. An infectious person spreads the disease to each

susceptible neighbor independently with a probability referred

to as the transmission probability, given by p=λ(1–(1–τ)Δt),
where λ is a scaling factor to lower the probability (eg, in the
case of vaccination), τ is the transmissibility, and Δt is the
duration of interaction in minutes. Durations of contact are
labels on the network edges. A susceptible person undergoes
independent trials from all of its neighbors who are infectious.
If an infectious person infects a susceptible person, the
susceptible person transitions to the exposed (or incubating)
state. The exposed person has contracted influenza but cannot
yet spread it to others. The incubation period is assigned per
person according to the following distribution: 1 day (30%), 2
days (50%), 3 days (20%). At the end of the exposed or
incubation period, the person switches to an infected state. The
duration of infectiousness is assigned per person according to
the following distribution: 3 days (30%), 4 days (40%), 5 days
(20%), 6 days (10%). After the infectious period, the person
recovers and stays healthy for the simulation period. This
sequence of state transitions is irreversible and is the only
possible disease progression. We seed the epidemic in a
susceptible population with 10 infections that are randomly
chosen every day. A total of 25 replicates were run to account
for the stochastic randomness arising from the selection of initial
infectors.

Influenzanet
In 2008, a large research project funded by the European
Commission and coordinated by the Institute for Scientific
Interchange in Turin, Italy, led to the creation of Influenzanet,
a network of Web-based platforms for participatory surveillance
of ILI in 10 European countries [42]. The ambition was to
collect real-time information on population health through the
activity of volunteers who provide self-reports about their health
status and, by combining this real-time data feed with a
dynamical model for spatial epidemic spreading, build a
computational platform for epidemic research and data sharing.
The results of this multiannual activity have been used to create
a novel, modular framework (the FluOutlook framework)
capable of capturing the disease transmission dynamics across
country boundaries, estimating key epidemiological parameters,
and forecasting the long-term trend of seasonal influenza [43].

The framework consists of 3 main components: (1) input, (2)
simulation and forecast, and (3) output (Figure 2).

The input component estimates initial infections for a given
week in any census area from collected self-reported information
from volunteers on Influenzanet platforms or from other data
proxies like Twitter. Influenzanet data collection has been
described in several previous papers [44]. The number of users
reporting a case of ILI each week is used to calculate the weekly
incidence of ILI among active users. Active users are those who
completed at least 1 Influenzanet symptoms questionnaire during
the influenza season. Since users report their place of residence
at the level of postal codes, the ILI weekly incidence can be
calculated at the resolution level of postal codes.

The simulation and forecast component is a computational
modeling and simulation engine named Global Epidemic And
Mobility model (GLEAM) [45,46]. The GLEAM dynamical
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model is based on geographical census areas defined around
transportation hubs and connected by long- and short-range
mobility networks. The resulting meta-population network
model can be used to simulate infectious disease spreading in
a fully stochastic fashion. The simulations, given proper initial
conditions and disease model, generate an ensemble of possible
epidemic evolution for epidemic parameters such as newly
generated cases. In the application to seasonal influenza,
GLEAM is limited to the level of a single country with only the
population and mobility of the country of interest taken into
account. The number of ILI cases extracted from the
Influenzanet platforms are mapped onto the corresponding
GLEAM geographical census areas and used as seeds to
initialize the simulations. The unique advantage provided by
using the data collected by the Influenzanet platform as initial
conditions consist in the high resolution, in time (daily) and
space (postal code level), with which data are available. This
geographical and temporal resolution for the initial conditions
cannot be achieved with any other signal. Moreover, these are
not proxy data for the ILI activity among the population but
indeed represent a high-specificity ground truth for the initial
conditions that cannot be obtained with any other source of
information. Given these high quality and highly reliable initial
conditions, the GLEAM simulations perform a Latin hypercube

sampling of a parameter space covering possible ranges of
transmissibility, infection periods, immunization rates, and a
tuning parameter regulating the number of generated infected
individuals. In the prediction component of the framework, the
large-scale simulations generate a statistical ensemble of the
epidemic profiles for each sampled point in the parameter space.
From each statistical ensemble, the prediction component
measures its likelihood function with respect to up-to-date ILI
surveillance data and selects a set of models by considering a
relative likelihood region [47].

The set of selected models represents the output component and
provides both long-term (ie, 4 weeks in advance) and short-term
predictions for epidemic peak time and intensity. Results are
disseminated as interactive plots that can be explored on the
public website fluoutlook.org [48].

To quantify the simulation’s forecast performance, the Pearson
correlation between each predicted time series and sentinel
doctors’ surveillance time series can be used. Moreover, the
mean absolute percent error can be used to evaluate the
magnitude estimation and the peak week accuracy defined as
the percentage of the selected ensemble of simulations providing
predictions within 1 week for peak time.

Figure 2. The FluOutlook framework.

Flu Near You
FNY is a participatory disease surveillance system launched in
October 2011 by HealthMap of Boston Children’s Hospital, the
American Public Health Association, and the Skoll Global
Threats Fund [17]. FNY maintains a website and mobile app
that allows volunteers in the United States and Canada to report
their health information using a brief weekly survey. Every
Monday, FNY sends users a weekly email asking them to report
whether or not they experienced any of the following symptoms
during the previous week: fever, cough, sore throat, shortness
of breath, chills, fatigue, nausea, diarrhea, headache, or body
aches. Users are also asked to provide the date of symptom

onset for any reported symptoms. Users experiencing fever plus
cough and/or sore throat are considered by FNY to be
experiencing an ILI. FNY’s definition of ILI differs slightly
from the US CDC outpatient Influenza-Like Illness Surveillance
Network (ILINet) definition, which defines ILI as fever plus
cough and/or sore throat without a known cause other than
influenza.

FNY was conceived to capture flu activity in a population group
that may not necessarily seek medical attention, while CDC’s
ILINet was designed to monitor the percentage of the population
seeking medical attention with ILI symptoms. Recent estimates
confirm that only approximately 35% of FNY participants who

JMIR Public Health Surveill 2017 | vol. 3 | iss. 4 | e83 | p. 5http://publichealth.jmir.org/2017/4/e83/
(page number not for citation purposes)

Brownstein et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


report experiencing ILI symptoms seek medical attention.
Despite this design (and observed) difference and because these
2 distinct groups (those seeking medical attention versus those
not doing so) interact, large changes in ILI in the CDC’s ILINet
are also generally observed in the FNY signal, as shown in
Figure 3 for the 2013-2014 and 2014-2015 flu seasons and as
previously shown by Smolinski et al [19]. To produce Figure
3, spikes of unrealistic increased FNY ILI rates (calculated as
the weekly number of users who experienced ILI divided by
the total number of reports received during the same week) were
first removed. These unrealistic spikes (defined as a weekly
change in the FNY ILI rates larger than 10 standard deviations
from the mean change of the last 4 weeks) are often associated
with media attention on FNY that causes a temporary surge of
interest in the system among people sick with the flu, as
described Aslam et al [17]. Flu estimates were then produced
1 week ahead of the publication of CDC reports by combining
historical CDC-reported flu activity (via a lag-2 autoregressive
model) with the smoothed weekly FNY rates. These flu
estimates are displayed in blue and labeled AR(2)+FNY on
Figure 3.

The reason why we used CDC-reported ILI rates as our reference
for traditional flu surveillance is because these ILI rates have
been recorded for multiple years, and public health officials
have used them as proxies of influenza levels in the population.

This is consistent with multiple influenza activity prediction
studies in the United States [7-9,49-50]. With the intent of
providing more timely yet still familiar information to public
health officials, we use the smoothed FNY ILI rates as one of
multiple data inputs into the HealthMap Flu Trends influenza
surveillance and forecasting system [51].

The HealthMap Flu Trends system relies on a machine-learning
modeling approach to predict flu activity using disparate data
sources [49] including Google searches [8-9], Twitter [15], near
real-time electronic health records [50], and data from
participatory surveillance systems such as FNY [19]. The
HealthMap Flu Trends system provides accurate real-time and
forecast estimates of ILI rates at the national as well as regional
levels in the United States up to 2 weeks ahead of CDC’s ILINet
flu reports.

The multiple data sources entered into the HealthMap Flu Trends
system are each individually processed using machine-learning
algorithms to obtain a predictor of ILI activity. These individual
predictions of ILI rates are then fed into an ensemble
machine-learning algorithm that combines the individual
predictions to produce robust and accurate ILI estimates,
described by Santillana et al [49]. The estimates produced by
this ensemble machine-learning approach outperform all of the
predictions made using each of the data sources independently.

Figure 3. (Top panel) The US Centers for Disease Control and Prevention (CDC) influenza-like illness (ILI) percent value (y-axis) is displayed as a
function of time (x-axis). Predictions produced 1 week ahead of the publication of CDC-ILI reports using (1) only historical CDC information via an
autoregressive model, AR(2), (2) an autoregressive model that combines historical CDC information with Flu Near You (FNY) information, AR(2)+FNY,
and (3) an ensemble method that combines multiple data sources including FNY, Google search frequencies, electronic health records, and historical
CDC information (all sources) are shown. (Bottom panel) The errors between the predictions and the CDC-reported ILI for each prediction model are
displayed.

Results

Widely Internet-Sourced Distributed
Monitoring–Based Results
The results based on WISDM are illustrated as time series of
daily infections (also called epidemic curves) in Figure 4.
Figures 4 a and 4 b correspond to low transmission (0.00003
per minute of contact time and R0=1.4) and high transmission

(0.00006 per minute of contact time and R0=2.7) rates,
respectively. The red epidemic curve in each represents the
entire Delhi synthetic population (V). The black and blue
epidemic curves show results for the MTurk-matched Delhi
synthetic population (S') and the entire MTurk-matched Delhi
synthetic population (S), respectively. Under a high transmission
rate, the attack rate and peak infection rate are higher but the
time-to-peak is lower. This is expected since a higher
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transmission rate spreads the disease quickly and to more
individuals in the population.

If surveillance is restricted to only the MTurk sample (S'), the
level of bias would equal the difference between the red and
black curves. This difference represents a combination of the
nonresponse bias (difference between the red curve and blue
curve) and the sample-size bias (difference between the blue
curve and black curve).

In order to measure the significance of the total bias, the
nonresponse bias, and the sample-size bias of the simulation
illustrated in Figure 4, we tested the differences in attack rate,
peak infection rate, and time-to-peak by using the 2-sample t
test. The mean difference, 95% confidence intervals, and P
values are summarized in Tables 1 and 2 for low and high
transmission rates, respectively.

As shown in Table 1, with a low transmission rate (0.00003),
the attack rate for S' is about 10% lower than that for V, while
the peak infection rate for S' is 1.36% lower and the epidemic
curve peaks 1 day later. Total biases for all 3 metrics are
statistically significant. Also for all 3 metrics, the nonresponse
bias is larger than the sample bias and dominates the total bias.
This is consistent with the fact that MTurk survey responders
tend to be younger, educated males among whom the incidence
of disease is typically lower than much of the rest of the
population.

Results for the higher transmission rate (0.00006) are similar
(Table 2). Note, however, that the difference between the red
and black curves (in Figure 4) shrinks as the transmission rate
becomes higher.

Table 1. Bias in epidemic metrics under low transmission rate.

Total bias (V-S')Sample-size bias (S-S')Nonresponse bias (V-S)Metric

Attack rate

10.032.137.90Mean difference, %

9.47 to 10.581.58 to 2.687.88 to 7.9195% CI

<.001<.001<.001P value

Peak infection rate

1.360.141.22Mean difference, %

1.27 to 1.450.05 to 0.231.22 to 1.2295% CI

<.001.003<.001P value

Time to peak

–10.76–1.76Mean difference, days

–1.58 to –0.420.16 to 1.36–1.96 to –1.5695% CI

.002.02<.001P value

Table 2. Bias in epidemic metrics under high transmission rate.

Total bias (V-S')Sample-size bias (S-S')Nonresponse bias (V-S)Metric

Attack rate

9.903.586.31Mean difference, %

9.38 to 10.423.06 to 4.106.30 to 6.3295% CI

<.001<.001<.001P value

Peak infection rate

3.140.632.51Mean difference, %

3.01 to 3.280.49 to 0.772.50 to 2.5395% CI

<.001<.001<.001P value

Time to peak

–1.320.12–1.44Mean difference, days

–1.59 to –1.05–0.10 to 0.34–1.69 to –1.2095% CI

<.001.28<.001P value
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Figure 4. (a) Epidemic curves under low transmission rate. (b) Epidemic curves under high transmission rate.

Influenzanet-Based Results
In this section, we show results for simulations and forecasts
performed for the 2015-2016 influenza season. The input
component of the framework has been initialized with ILI cases
from a number of selected countries that are part of the
Influenzanet network: Belgium, Denmark, Italy, the Netherlands,
Spain, and the United Kingdom. In the simulation component,
weekly surveillance data of sentinel doctors, also called
traditional surveillance, in each of the selected countries have
been used as ground truth to select the set of models with
maximum likelihood.

Figure 5 illustrates the results of 1-week, 2-week, 3-week, and
4-week predictions. We include results for 1-week, also called
now-casting, predictions for the following reason. The
now-casting predictions (ie, inferring the incidence value that
the traditional influenza surveillance will report in the following
week) are usually used to evaluate the performance of the
predictions based on the model described in this work with
respect to predictions based on linear regression models applied
to traditional surveillance data only. In a recent work by Perrotta
et al [52], it has been shown how real-time forecasts of seasonal
influenza activity in Italy can be improved by integrating
traditional surveillance data with data from the participatory
surveillance platform called Influweb, and the now-casting
predictions have been used as a benchmark test to compare the
2 approaches.

Figure 5 shows that for all countries under study, the empirical
observations (ie, the ground truth of the traditional surveillance
reference data represented as black dots in the figure) lie within
the 95% confidence intervals for most weeks. This gives a
qualitative indication of the accuracy of the predictions.

In Figure 6, we show results for the Pearson correlation between
each predicted time series and sentinel doctors' surveillance

time series and also results for the mean absolute percent error
(MAPE). As expected, the statistical accuracy of the ensemble
forecasts increase as the season progresses. In the case of a
1-week lead prediction, the correlation is close to 1 for Italy
and Belgium. The correlations are around 0.8 for 2-week
predictions for the United Kingdom, around 0.7 for the
Netherlands, and above 0.8 for 4-week lead predictions for
United Kingdom and Italy. The peak magnitude is 1 of the free
parameters we fit in the model. As the correlation increases as
the season progresses, the MAPE (ie, the percentage error on
the peak magnitude estimated by the model) decreases or
remains quite stable for countries like the United Kingdom, in
which the correlation is consistently high. For other countries,
the performance is not as good and the peak magnitude is not
so well estimated. Belgium and Spain are the 2 countries in
which the performance is the worst. This might be due to the
fact that the ILI incidence curve from Influenzanet in Spain is
very noisy, mainly due to low participation, and this has affected
the quality of the predictions in terms of amplitude and
correlation. In Belgium, the ILI incidence data from traditional
surveillance have been very noisy due to an unusually mild
influenza season in this country. More information about the
Influenzanet ILI incidence curves in the various countries can
be found at the Influenzanet page (www.influenzanet.eu/
en/flu-activity/). The peak week accuracy also increases as the
season progresses and, notably, accuracy is already above 60%
with up to 4 weeks lead time in the case of Italy, the
Netherlands, and Spain.

Overall, even for a peculiar influenza season such as 2015-2016,
with an unusually late peak, the results show that our framework
is capable of providing accurate short-range (1-week, 2-week)
forecasts and reasonably accurate longer range (3-week, 4-week)
predictions of seasonal influenza intensities and temporal trends.
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Figure 5. Epidemic profiles for Belgium, Denmark, Italy, the Netherlands, Spain, and the United Kingdom considering 4-week, 3-week, 2-week, and
1-week lead predictions. The best estimation (solid line) and the 95% confidence interval (colored area) are shown together with sentinel doctors'
surveillance data (black dots) which represent the ground truth (ie, the target signals).

Figure 6. Pearson correlations, mean absolute percentage errors, and peak week accuracy obtained by comparing the forecast results and the sentinel
doctors' influenza-like illness surveillance data along the entire season in each country.
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Figure 7. Heatmap showing the relevance of each of the input data sources on the flu prediction during the 7/2013-4/2015 time window (x-axis). These
values change from week to week due to a dynamic model recalibration process. The multiple data sources entered into the HealthMap Flu Trends
system are on the y-axis with their tendencies, or derivatives. The bar on the right is a color code of the magnitude of the regression coefficients of the
multiple data sources used as inputs.

Flu Near You–Based Results
We quantitatively confirmed that incorporating data from our
participatory surveillance system improved real-time influenza
predictions by comparing the aforementioned influenza
estimates with estimates produced using a model based only on
historical CDC-reported influenza activity (a lag-2
autoregressive model), labeled AR(2) in Figure 3. The
correlation between the observed influenza activity and the
estimates obtained using a model based only on historical ILI
information for the 2013-2015 time window was 0.95, whereas
the correlation with the model that incorporates FNY
information was 0.96. While this represents a mild improvement
in the correlation values, a more statistically robust test
introduced by Yang et al [9] showed that the incorporation of
FNY information led to a 10% mean error reduction (90% CI
0.04 to 0.24) when compared to the baseline autoregressive
model. The bottom panel of Figure 3 shows visually the errors
from each model.

HealthMap Flu Trends national-level real-time predictions that
were available 1 week ahead of the publication of the weekly
CDC reports for the 2013-2014 and 2014-2015 influenza seasons

are shown in red on Figure 3. For comparison purposes, the
correlation of the HealthMap Flu Trends estimates with the
observed CDC ILI rates is 0.99 for the 2013-2015 time window,
and the addition of multiple data sources leads to a mean error
reduction of about 83% (90% CI 0.69 to 0.85) when compared
to the estimates of the model that only uses CDC historical
information (AR(2)). In Figure 7, the historical contributions
of the different individual predictors (and their tendencies) in
the HealthMap influenza estimates are displayed. As illustrated
in Figure 7, FNY inputs do contribute to the ensemble-based
influenza prediction estimates.

Discussion

We have described 3 different participatory surveillance
systems, WISDM, Influenzanet, and FNY, and we have shown
how modeling and simulation can be or has been combined with
participatory disease surveillance to (1) measure the nonresponse
bias present in a participatory surveillance sample using WISDM
and (2) now-cast and forecast influenza activity in different
parts of the world using Influenzanet and FNY.
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While the advantages of participatory surveillance, compared
to traditional surveillance, include its timeliness, lower costs,
and broader reach, it is limited by a lack of control over the
characteristics of the population sample. Modeling and
simulation can help overcome this limitation.

Use of MTurk and WISDM combined with synthetic population
modeling, as shown here, is one way to measure nonresponse
and sample bias. The results measure the nonresponse and
sample bias for three epidemic outcomes (ie, epidemic size,
peak infection rate, and time-to-peak). As shown in Table 1, a
lower transmission rate results in a higher nonresponse bias and
higher total bias. Total biases for all 3 metrics are statistically
significant. Also for all three metrics, the nonresponse bias is
larger than the sample bias and dominates the total bias. This
is consistent with the fact that MTurk survey responders tend
to be younger, educated males among whom the incidence of
disease is typically lower than much of the rest of the population.
Results for the higher transmission rate are similar. In summary,
WISDM-based results show that the bias that occurs in a skewed
survey sample can be measured through modeling and
simulation to infer more dependable observations than what
can be derived from the survey data alone.

Our results confirmed that combining participatory surveillance
information from FNY with modeling approaches improve
short-term influenza activity predictions. In addition, we
described how combining participatory surveillance information
with other data sources, by means of a robust machine-learning
modeling approach, has led to substantial improvements in
short-term influenza activity predictions [49]. Information from
participatory surveillance may also help improve influenza
forecasting approaches such as those proposed in other studies
[53-56].

Moreover, we have shown how by combining digital
participatory surveillance data with a realistic data-driven
epidemiological model we can provide both short-term
now-casts (1 or 2 weeks in advance) of epidemic intensities and
long-term (3 or 4 weeks in advance) forecasts of significant
indicators of an influenza season. It is indeed the participatory
surveillance data component that allows for real-time forecasts

of seasonal influenza activity. ILI incidence estimates produced
by traditional surveillance systems undergo weekly revisions,
are usually released with at least a 1-week lag, and lack the
geographical resolution needed to inform high-resolution
dynamical models such as GLEAM. Participatory surveillance
data are available as soon as participants report their health
status. This real-time component allows for accurate now-casting
(1 week) and forecasting (2, 3, and 4 weeks) as soon as the
influenza activity among the population begins, even before the
epidemic curve surpasses the threshold. Data from traditional
surveillance up until a specific week are used to fit the selected
ensembles which then provide predictions for the upcoming
weeks, but these ensembles need to be generated by using the
high-resolution real-time data from participatory surveillance.

For future work aimed at harmonizing these three approaches,
results from the WISDM platform about nonresponse bias could
be used to assess similar biases in groups of self-selected
individuals participating in Influenzanet and FNY [24].

The projects described here not only strengthen the case for
modeling and simulation becoming an integral component of
the epidemic surveillance process, but they also open up several
new directions for research. Important questions are yet to be
answered. How do we optimally integrate other sources of data
with data obtained through participatory surveillance? How do
we incorporate participatory surveillance data that are
reweighted at each point in time based on active learning
techniques to maximize forecast accuracy? How can hypotheses
be generated and tested in an abductive setting? An abductive
setting is where the models and experiments can be run
iteratively to test data-driven hypotheses that evolve as new
data arrives in real time.

With the increasing reach of the Internet and cellular
communication, participatory surveillance offers the possibility
of early detection of and response to infectious disease
epidemics. Continued integration of participatory surveillance
with modeling and simulation techniques will help to strengthen
real-time epidemic science and provide a more rigorous
understanding of epidemic conditions.
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