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Abstract
Background: Drug-induced parkinsonism (DIP) predominantly occurs due to antipsychotic drugs (APDs) blocking dopamine
D2 receptors (D2Rs). However, in vitro assays often fail to fully reflect real-world variability in clinical outcomes.
Objective: This study aimed to evaluate whether in vitro pharmacological metrics correspond to real-world risk of DIP
associated with APD use.
Methods: For 8 commonly used APDs, key in vitro parameters—including inhibition constants (Ki) of D2Rs and the
serotonin 2A receptor, reversal rate (Kr) of D2Rs, and blood-brain barrier (BBB) penetration rate—were compiled to construct
6 composite DIP risk metrics. The real-world DIP risk was assessed using the Seoul National University Hospital common
data model (2002‐2021). APD users were matched 1:1 to selective serotonin reuptake inhibitor users using propensity score
matching, and Cox proportional hazard regression was performed to estimate the hazard ratios (HRs) for DIP risk. Correlation
between each in vitro metric and real-world DIP risk was evaluated using logarithmic regression models.
Results: Among 44,664 patients from 8 matched cohorts, haloperidol showed the highest DIP risk (HR=4.56, 95% CI
2.29‐9.07), whereas aripiprazole exhibited the lowest risk (HR=2.11, 95% CI 1.56‐2.86). Metric 4 (pKr × BBB penetration
rate) exhibited the strongest correlation with real-world DIP risk (R2=0.95). The correlation decreased when aripiprazole, a
partial D2R agonist, was included in the analysis (R2=0.58).
Conclusions: Integrating receptor-binding kinetics with BBB penetration may provide an in vitro framework that reflects
real-world variation in DIP risk among D2R-antagonizing APDs. These findings support the relevance of combining kinetic
and central nervous system exposure parameters for early safety evaluation.
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Introduction
The pharmacological action of drugs generally occurs through
receptor binding, and side effects are often the consequences
of these interactions [1]. To understand how drugs function
and anticipate their potential side effects, extensive in vitro
experiments on drug-receptor interactions are conducted from
the early stages of drug development. However, relying on in
vitro analysis, often referred to as “test tube experiments,”
makes it difficult to predict how often side effects will
occur in real-world patients [2,3]. This translational gap has
highlighted the need for mechanistically informed models
that integrate binding kinetics and pharmacokinetic factors to
better approximate real-world safety outcomes [3].

Drug-induced parkinsonism (DIP), predominantly caused
by antipsychotic drugs (APDs), is one of the most common
forms of secondary parkinsonism and remains a clinically
significant dose-limiting adverse effect [4]. DIP arises
primarily from dopamine D2 receptor (D2R) blockade within
the nigrostriatal pathway, leading to symptoms of movement
disorders such as muscle stiffness, slow movements, and
tremors [5-10]. Because these symptoms can impair quality of
life and daily functioning, understanding the pharmacologic
determinants that underlie variability in DIP risk across APDs
has become an important clinical and research priority [11,
12].

In efforts to explain interdrug differences, the inhibition
constant (Ki) and dissociation constant (Kd) have been
widely used as a key measure for D2R blockade; lower
values indicate stronger binding to D2Rs at equivalent
drug concentrations [13]. Sykes et al [14] further expan-
ded this framework by demonstrating that receptor-rebinding

kinetics—reflecting the probability that a ligand re-engages
adjacent receptors after dissociation—can also account for
differences in extrapyramidal symptom liability. Other studies
have implicated the serotonin 2A receptor (5-HT2AR) in
DIP modulation, with newer APDs often exhibiting a higher
5-HT2AR–to-D2R affinity ratio associated with lower DIP
risk [15-17]. While binding kinetics contributes to under-
standing variation in APD-related neurological syndromes,
additional pharmacological factors also appear to play
important roles. A recent meta-analysis demonstrated that the
dose of APDs and D2R occupancy correlate with extrap-
yramidal symptom onset, indicating that in vivo exposure
should be considered alongside in vitro parameters [18,
19]. Furthermore, blood-brain barrier (BBB) permeability,
which regulates central nervous system (CNS) drug exposure
and can change with certain clinical conditions, may also
influence the clinical expression of D2R blockade [20].

These prior observations collectively suggest that DIP
risk reflects an interplay among receptor-binding kinetics,
CNS pharmacokinetics, and dose-response. However, despite
extensive research on DIP, its precise mechanism and the
quantitative translation between in vitro pharmacological
parameters and real-world DIP risk remain unclear [6,7,21].
Therefore, this study aimed to evaluate whether specific
in vitro pharmacological metrics correspond to variation in
real-world DIP risk, with a particular focus on D2R-antago-
nizing APDs. First, we derived multiple candidate in vitro
DIP risk metrics based on receptor-binding and pharmacoki-
netic parameters of APDs (Figure 1). Second, using longi-
tudinal real-world data (RWD), we estimated the DIP risk
associated with commonly used APDs. Finally, we assessed
the extent to which each in vitro metric correlated with the
observed real-world DIP risk.
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Figure 1. Study overview. 5-HT2AR: serotonin 2A receptor; APD: antipsychotic drug; BBBpr: blood-brain barrier penetration rate; D2R: dopamine
D2 receptor; DIP: drug-induced parkinsonism; EMR: electronic medical record; HR: hazard ratio; PD: Parkinson disease.

Methods
Study Design and Overview
This study consisted of two components: (1) an assessment
of in vitro pharmacological parameters of APDs related to
DIP and (2) a retrospective cohort study evaluating the effect
of APDs on the risk of DIP using the common data model
(CDM) of Seoul National University Hospital. We subse-
quently examined the relationship between in vitro metrics
and the real-world DIP risk. This study was reported in
accordance with the Strengthening the Reporting of Observa-
tional Studies in Epidemiology guidelines [22].
In Vitro DIP Risk Metrics
The key parameters of the APDs used to calculate the
in vitro DIP risk were the pKr values for D2Rs and 5-
HT2AR collected from DrugBank and BindingDB [23-25].
The receptor reversal rate (Kr) values for D2Rs as suggested
by Sykes et al [14] were also obtained. Considering that the
primary site of action for APDs is within the CNS, the BBB
penetration rate of each APD was considered an adjustment
factor [26]. The 6 main metrics for the in vitro DIP risk were
as follows:

• Metric 1: pKi for D2Rs
• Metric 2: (pKi for D2Rs) × BBB penetration rate
• Metric 3: pKr for D2Rs
• Metric 4: (pKr for D2Rs) × BBB penetration rate
• Metric 5: (pKi for D2Rs) / (pKi for 5-HT2AR)
• Metric 6: (pKi for D2Rs) / (pKi for 5-HT2AR) × BBB

penetration rate

All the data were collected through a manual search
conducted by the research team. When multiple values were
reported, the geometric mean was used as an integrated value.

RWD Source
The CDM of Seoul National University Hospital inclu-
ded longitudinal data on patient demographics, diagnostic
information (such as Parkinson disease and other comorbid-
ities), and prescription details (including prescribed drugs,
prescription dates, dosages, and duration of use) from 2002
to 2021. The CDM includes standardized fields for these
domains, so conventional item-level missingness is minimal;
however, care and prescriptions received outside the hospital
are not captured and may result in incomplete ascertain-
ment of medication exposure and clinical events, which was
considered when interpreting the results.

Study Population
Patients were recruited into the study cohort based on
prescription records. The experimental group consisted of
patients prescribed APDs, including haloperidol, olanzapine,
quetiapine, risperidone, amisulpride, aripiprazole, clozapine,
and ziprasidone. The active comparator group, which served
as the control, consisted of patients treated with selective
serotonin reuptake inhibitors (SSRIs), including citalopram
and escitalopram, fluoxetine, paroxetine, and sertraline, which
are known to have minimal D2R binding affinity (Ki of
approximately 10,000 nM) [23-25].

The index date was defined as the date of the first
outpatient prescription of an APD or an SSRI during the
study period. To maintain methodological consistency, only
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outpatient prescriptions of the oral formulations of the study
drugs were included in the analysis. Patients were excluded
based on the following criteria: (1) concurrent prescriptions
of APDs and SSRIs; (2) diagnosis of Parkinson disease
prior to the index date as the study focused on identifying
new-onset DIP attributable to drug exposure; (3) use of
D2R agonists within 1 year prior to the index date; (4)
fewer than 3 prescriptions of the study drugs after the index
date because such limited exposure is unlikely to represent
sustained treatment and may not meaningfully influence DIP
onset (in our setting, outpatient prescriptions of APDs and
SSRIs are usually written for short durations [approximately
2‐4 weeks], so at least 3 prescriptions typically correspond to
2 to 3 months of continuous therapy and help avoid misclas-
sifying sporadic or trial use as ongoing treatment, consistent
with previous register-based studies evaluating psychotropic
and antipsychotic medication exposure [27,28]); and (5)
poor medication adherence, defined as a proportion of days
covered of less than 0.7 as inconsistent medication use could
confound assessments of DIP risk [29].

Outcome Assessment
The onset of DIP was defined by the presence of diagnostic
codes for DIP (G21.1, G21.2, G21.8, and G21.9) based on the
International Classification of Diseases, 10th Revision [30].
To enhance diagnostic specificity, patients were considered
to have developed DIP only if they received prescriptions for
D2R agonists or anticholinergic agents (standard treatments
for DIP) within 60 days of initial diagnosis.
Covariates
A total of 28 covariates were selected based on the pres-
ence of comorbidities or concurrent medication history
within 1 year of the start date of medication use. The
11 comorbidities included chronic obstructive pulmonary
disease, dementia, diabetes mellitus, dyslipidemia, end-stage
renal disease, gout, hypertension, liver disease, osteoarthritis,
osteoporosis, and stroke. The list of International Classifi-
cation of Diseases, 10th Revision codes for comorbidities
is shown in Table S1 in Multimedia Appendix 1. The 17
concurrent medications included renin-angiotensin-aldoster-
one system inhibitors, such as angiotensin-converting enzyme
inhibitors and angiotensin receptor blockers; alpha-glucosi-
dase inhibitors; anticonvulsants; anxiolytics; beta-blockers;
calcium channel blockers; dipeptidyl peptidase-4 inhibitors;
erythropoiesis-stimulating agents; glucagonlike peptide-1
receptor agonists; insulin; iron; loop diuretics; meglitinides;
metformin; sodium-glucose cotransporter 2 inhibitors; statins;
and sulfonylureas. A detailed list of concurrent medications is
provided in Table S2 in Multimedia Appendix 1.
Statistical Analysis
Statistical analyses were performed for the treated population.
Patients were followed up on until the earliest events of DIP
onset, the last day the patient took their prescribed medication
+ 30 days, or the end of the 1-year study period. Each APD
user was matched 1:1 to an SSRI user, and the distribution
of the propensity score was inspected [31]. The matching
variables included age, sex, comorbidities, and concurrent

medications. A standardized difference of >0.1 was regarded
as a sign of imbalance [32]. The baseline characteristics
were summarized using descriptive statistics. Cox propor-
tional hazard regression was used to estimate the hazard ratio
(HR) and 95% CI for the risk of DIP associated with APD
use. A dose-response analysis was performed by stratifying
patients according to their average daily exposure based on
the defined daily dose (DDD) [33]. Patients were categorized
into 3 groups (<0.5 the DDD, 0.5‐1.5 the DDD, and ≥1.5
the DDD) to contextualize the in vitro correlation within a
clinical dose-response pattern.

Correlation Analysis
To explore the relationship between the in vitro and real-
world DIP risks, we correlated the 6 in vitro metrics with
the HR estimated from the real-world cohort. Coefficients of
determination (R2) were calculated to quantify the explana-
tory strength of each association, and an R2 value of 0.7 was
used as a descriptive threshold for a strong relationship [34].
The primary analysis focused on APDs with D2R antago-
nist properties, whereas aripiprazole—a partial agonist—was
examined separately in an exploratory analysis to reflect its
distinct pharmacologic profile [35].

For each drug i, the association between the clinical
outcome—expressed as an HR—and the corresponding in
vitro pharmacological metric (metric 1‐6) was modeled using
a logarithmic regression:

HRi = β0 + β1ln Xi + εi
In this expression, Xi represents the in vitro metric for the ith
drug. As each HR estimate was accompanied by a 95% CI,
weighted least squares was used to incorporate the varying
uncertainty across drugs, allowing the regression to account
for the differing precision of each HR estimate. A 95%
confidence band for the fitted regression line was constructed
based on the SE of the mean predicted HR values:

CI95%(x) = HR(x) ± t0.975, df ⋅ SEHR(x)
In this equation, HR x  is the predicted HR at a given in
vitro metric value x; t0.975, df is the 2-tailed critical value from
the Student t distribution at a 95% confidence level, with df
representing the df; and SEHR x  is the SE of the estimated
mean HR at x, derived from the variance-covariance matrix
of the weighted least squares model. The upper and lower
confidence limits were visualized as a shaded band around the
fitted trend line for each metric. All analyses were performed
using SAS (version 9.4; SAS Institute) and Python (version
3.12.12; Python Software Foundation).
Sensitivity Analysis
A sensitivity analysis was conducted in which the outcome
definition was modified by removing the requirement for
anticholinergic prescriptions within 60 days of initial DIP
diagnosis, allowing for the assessment of potential misclassi-
fication. In a second analysis, we recalculated the in vitro
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metrics using pKi values extracted exclusively from the
single-source dataset reported by Sykes et al [14]. Because
this recalculation affected only the pKi-dependent metrics,
the additional evaluation was performed to determine whether
the observed in vitro–clinical relationships were robust to
variability in pKi data sources.
Ethical Considerations
This study was approved by the institutional review
boards of Gachon University Gil Hospital (1044396-202312-
HR-230-01) and Seoul National University Hospital
(E-2409-042-1569). The requirement for informed consent
was waived by both review boards because the study
involved a retrospective analysis of fully anonymized data,
and no identifiable personal information was accessed. All
procedures adhered to applicable local and national regu-
lations regarding the protection of personal information,
privacy, and confidentiality. As this study involved only
secondary analysis of existing anonymized data, no compen-
sation was provided to participants. All personal informa-
tion was encrypted to ensure that the individuals could not
be identified, and access to the dataset was restricted to
authorized investigators in accordance with institutional data
governance policies.

Results
In Vitro DIP Risks
The in vitro pharmacological characteristics of APDs used
to derive the 6 in vitro DIP risk metrics are summarized
in Table S3 in Multimedia Appendix 1, and corresponding
metric values are visualized in Figure 2. Haloperidol showed
consistently high values across metrics, ranking first in 4 of
the 6 metrics. In contrast, quetiapine exhibited the lowest
overall metric values. Amisulpride ranked lower on most
measures but held first place in metric 5 (D2R pKi/5-HT2AR
pKi = 1.70), reflecting its particularly low affinity for
5-HT2AR. Clozapine showed a mixed pattern: although it had
relatively low D2R pKr, its BBB penetration rate–adjusted
values were higher, placing it second in both metric 2 (D2R
pKi × BBB penetration rate = 19.08) and metric 6 (D2R
pKi/5-HT2AR pKi × BBB penetration rate = 2.34). Olanza-
pine, risperidone, and ziprasidone generally exhibited low to
intermediate levels across metrics. Aripiprazole showed high
values for several metrics, ranking first in metric 3 (D2R
pKi=8.87) despite its distinct partial agonist mechanism.

Figure 2. Calculated in vitro risk metrics for drug-induced parkinsonism. The intensity of the blue color represents the relative magnitude of the
antipsychotic drug’s metric within the same in vitro measurement. 5-HT2AR: serotonin 2A receptor; BBBpr: blood-brain barrier penetration rate;
D2R: dopamine D2 receptor.

Patient Characteristics
A total of 324,449 patients who were exclusively prescribed
APDs or SSRIs during outpatient visits were included in
the cohort (Figure 3). After eligibility assessment, the final
eligible cohort included 109,436 SSRI users and 28,945 APD
users. Table 1 presents the baseline characteristics of the
haloperidol cohort as a representative example, and those
of the remaining cohorts are shown in Tables S4-S10 in
Multimedia Appendix 1. Before matching, SSRI users were
generally older, whereas APD users showed higher anticon-
vulsant use. After 1:1 propensity score matching, the final
matched cohort included the following numbers for each
drug: 575 for haloperidol, 657 for amisulpride, 1013 for

clozapine, 3328 for olanzapine, 6693 for quetiapine, 5454 for
risperidone, 657 for ziprasidone, and 3955 for aripiprazole.
Differences in age and anticonvulsant use, along with other
minor discrepancies, were substantially reduced, resulting in
well-balanced matched cohorts. Standardized differences for
all covariates were below 0.1 across all study cohorts. The
median follow-up period was 287 (IQR 142‐366) days across
all participants, with a median of 298 (IQR 159‐366) days
in the SSRI group and 272 (IQR 131‐364) days in the APD
group. The median time to DIP was 71 (IQR 28‐171) days for
the entire dataset, 90 (IQR 39‐194) days for the SSRI group,
and 63 (IQR 23‐157) days for the APD group.
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Figure 3. Flowchart of real-world data analysis. PD: Parkinson disease.

Table 1. Baseline characteristics of the haloperidol cohort.
Variable Before matching After matching

SSRIa (n=15,312) Haloperidol
(n=584)

Standardized
difference

SSRI (n=575) Haloperidol
(n=575)

Standar
dized
differe
nce

Sex (male), n (%) 6789 (44.3) 362 (62.0) 0.3 361 (62.8) 356 (61.9) −0.01
Age (y), mean (SD) 44.0 (20.7) 39.0 (22.7) −0.2 41.4 (22.4) 38.6 (22.6) −0.1
Comorbidities, n (%)
  COPDb 76 (0.5) 6 (1.0) 0.06 5 (0.9) 5 (0.9) 0
  Dementia 1074 (7.0) 21 (3.6) −0.1 18 (3.1) 21 (3.7) 0.02
  DMc 695 (4.5) 38 (6.5) 0.08 33 (5.7) 33 (5.7) 0
  Dyslipidemia 725 (4.7) 17 (2.9) −0.09 21 (3.7) 17 (3.0) −0.03
  ESRDd 53 (0.3) 9 (1.5) 0.1 5 (0.9) 8 (1.4) 0.04
  Gout 25 (0.2) 2 (0.3) 0.03 1 (0.2) 2 (0.3) 0.03
  Hypertension 978 (6.4) 27 (4.6) −0.07 27 (4.7) 26 (4.5) −0.008
  Liver disease 7 (0.0) 12 (2.1) 0.2 4 (0.7) 3 (0.5) −0.02
  Osteoarthritis 329 (2.1) 6 (1.0) −0.09 4 (0.7) 6 (1.0) 0.03
  Osteoporosis 197 (1.3) 10 (1.7) 0.03 8 (1.4) 9 (1.6) 0.01
  Stroke 1412 (9.2) 47 (8.0) −0.04 50 (8.7) 45 (7.8) −0.03
Concurrent medications, n (%)
  ACEIse and ARBsf 1223 (8.0) 52 (8.9) 0.03 53 (9.2) 50 (8.7) −0.01
  BBsg 2545 (16.6) 136 (23.3) 0.1 135 (23.5) 129 (22.4) −0.02
  CCBsh 1269 (8.3) 74 (12.7) 0.1 68 (11.8) 67 (11.7) −0.005
  Anticonvulsants 2084 (13.6) 138 (23.6) 0.2 153 (26.6) 138 (24.0) −0.06
  Anxiolytics 8643 (56.4) 286 (49.0) −0.1 231 (40.2) 279 (48.5) 0.1
  ESAsi 74 (0.5) 13 (2.2) 0.1 8 (1.4) 12 (2.1) 0.05
  Iron 14 (0.1) 2 (0.3) 0.05 0 (0.0) 2 (0.3) 0.08
  Loop diuretics 302 (2.0) 58 (9.9) 0.3 41 (7.1) 50 (8.7) 0.05
  Other diuretics 743 (4.9) 72 (12.3) 0.2 57 (9.9) 63 (11.0) 0.03
  Statins 1403 (9.2) 54 (9.2) 0.003 52 (9.0) 49 (8.5) −0.01
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Variable Before matching After matching

SSRIa (n=15,312) Haloperidol
(n=584)

Standardized
difference

SSRI (n=575) Haloperidol
(n=575)

Standar
dized
differe
nce

  AGIsj 55 (0.4) 2 (0.3) −0.003 0 (0.0) 2 (0.3) 0.08
  DPP4k inhibitors 179 (1.2) 26 (4.5) 0.2 20 (3.5) 21 (3.7) 0.009
  GLP-1l agonists 2 (0.0) 0 (0.0) −0.01 0 (0.0) 0 (0.0) 0
  Insulin 247 (1.6) 41 (7.0) 0.2 31 (5.4) 34 (5.9) 0.02
  Meglitinides 28 (0.2) 2 (0.3) 0.03 2 (0.3) 2 (0.3) 0
  Metformin 441 (2.9) 34 (5.8) 0.1 29 (5.0) 30 (5.2) 0.007
  SGLT2m inhibitors 29 (0.2) 3 (0.5) 0.05 2 (0.3) 3 (0.5) 0.02
  Sulfonylurea 291 (1.9) 19 (3.3) 0.08 15 (2.6) 16 (2.8) 0.01

aSSRI: selective serotonin reuptake inhibitor.
bCOPD: chronic obstructive pulmonary disease.
cDM: diabetes mellitus.
dESRD: end-stage renal disease.
eACEI: angiotensin-converting enzyme inhibitor.
fARB: angiotensin II receptor blocker.
gBB: beta-blocker.
hCCB: calcium channel blocker.
iESA: erythropoiesis-stimulating agent.
jAGI: alpha-glucosidase inhibitor.
kDPP4: dipeptidyl peptidase-4.
lGLP-1: glucagonlike peptide-1.
mSGLT2: sodium-glucose cotransporter-2.

Real-World DIP Risks
The HRs and 95% CIs for DIP across various medications
are summarized in Table 2. The typical APD, haloperi-
dol, had the highest DIP risk (HR=4.56, 95% CI 2.29‐
9.07). Among the atypical APDs, clozapine (HR=3.59, 95%
CI 2.33‐5.52), olanzapine (HR=3.53, 95% CI 2.68‐4.66),
risperidone (HR=3.16, 95% CI 2.45‐4.06), and ziprasidone

(HR=3.04, 95% CI 1.68‐5.50) showed relatively higher risks.
Lower HRs were observed with amisulpride (HR=2.36, 95%
CI 1.67‐3.34), quetiapine (HR=2.21, 95% CI 1.76‐2.78), and
aripiprazole (HR=2.11, 95% CI 1.56‐2.86). Overall, among
the medications analyzed, haloperidol exhibited the highest
DIP risk, whereas aripiprazole and quetiapine were associated
with the lowest risks.

Table 2. Hazard ratios of drug-induced parkinsonism associated with antipsychotic drugs vs selective serotonin reuptake inhibitors.
Antipsychotic drug Hazard ratio (95% CI)
Haloperidol 4.56 (2.29‐9.07)
Amisulpride 2.36 (1.67‐3.34)
Clozapine 3.59 (2.33‐5.52)
Olanzapine 3.53 (2.68‐4.66)
Quetiapine 2.21 (1.76‐2.78)
Risperidone 3.16 (2.45‐4.06)
Ziprasidone 3.04 (1.68‐5.50)
Aripiprazole 2.11 (1.56‐2.86)

Correlation Between In Vitro and Real-
World DIP Risks
Among the 6 in vitro metrics evaluated, metric 4 (D2R pKr ×
BBB penetration rate) demonstrated the strongest correlation
with real-world DIP risk (R2=0.95), whereas metric 5 (D2R
pKi/5-HT2AR pKi) showed the weakest correlation (R2=0.03;
Figure 4). Incorporating BBB penetration markedly improved
the explanatory strength across all metric pairs (metric 1 vs
metric 2, metric 3 vs metric 4, and metric 5 vs metric 6).

Aripiprazole, a partial D2R agonist, deviated from the pattern
observed among D2R antagonists. When aripiprazole was
included in the analysis for metric 4, the correlation coeffi-
cient decreased substantially from 0.95 to 0.58, reflecting its
fundamentally different pharmacological mechanism. Across
all 6 metrics, stratification by DDD suggested a trend toward
higher DIP risk with increasing exposure (Figure 5). For
metric 4, the stratified curves showed the clearest parallel
pattern across exposure groups, although the explanatory
strength declined within strata.
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Figure 4. Correlation analysis of in vitro metrics with clinical risk of drug-induced parkinsonism: (A) dopamine D2 receptor (D2R) pKi (metric
1); (B) D2R pKi × blood-brain barrier penetration rate (BBBpr; metric 2); (C) D2R pKr (metric 3); (D) D2R pKr × BBBpr (metric 4); (E) D2R
pKi/serotonin 2A receptor (5-HT2AR) pKi (metric 5); and (F) D2R pKi/5-HT2AR pKi × BBBpr (metric 6). The vertical error bars represent the 95%
CIs of the hazard ratios. The blue dashed line and yellow-shaded region indicate the logarithmic regression and 95% confidence band, respectively.
The coefficient of determination (R2) is shown for models calculated with and without aripiprazole (Ari). Ami: amisulpride; Clo: clozapine; Hal:
haloperidol; Ola: olanzapine; Ris: risperidone; Zip: ziprasidone.
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Figure 5. Dose-response analysis of in vitro metrics with clinical risk of drug-induced parkinsonism: (A) dopamine D2 receptor (D2R) pKi (metric
1); (B) D2R pKi × blood-brain barrier penetration rate (BBBpr; metric 2); (C) D2R pKr (metric 3); (D) D2R pKr × BBBpr (metric 4); (E) D2R
pKi/serotonin 2A receptor (5-HT2AR) pKi (metric 5); and (F) D2R pKi/5-HT2AR pKi × BBBpr (metric 6). Each curve represents the fitted logarithmic
regression within a dose stratum. Dose 1 (<0.5 the defined daily dose [DDD]), dose 2 (0.5‐1.5 the DDD), and dose 3 (≥1.5 the DDD) are shown in
light, intermediate, and dark red, respectively. The coefficient of determination (R2) is shown for models calculated without aripiprazole.

Sensitivity Analysis
In the sensitivity analysis using an outcome definition without
anticholinergic confirmation, all overall correlation patterns
were preserved, and metric 4 continued to show the strongest
correlation, with R2=0.83 (Figure S1 in Multimedia Appen-
dix 1). When the in vitro metrics were recalculated using
pKi values derived from a single-study source, the overall
correlation pattern remained similar (Table S11 in Multime-
dia Appendix 1).

Discussion
Principal Findings
In this study, we demonstrated that in vitro–derived DIP
risk was closely related to the risk of DIP due to the use
of APDs observed in real-world clinical settings. Previous
studies have evaluated the inhibitory effects of APDs on
D2Rs or 5-HT2AR through in vitro experiments [14,36-38].
However, such in vitro receptor affinity measures alone often
fail to reliably predict the frequency of clinical adverse
events such as DIP [24,25]. Conversely, RWD studies have
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assessed the impact of APDs on the incidence of DIP.
However, most of these studies have often been limited
by the evaluation of only a small subset of medications
or lack of appropriate active comparator groups [30,39-
43]. Consequently, numerous randomized controlled trials
comparing the risk of DIP among patients taking APDs have
been conducted over time, resulting in significant expendi-
ture of time and resources [44-51]. A notable strength of
this study is that it provides a comprehensive comparison of
DIP risks associated with 8 commonly used APDs within a
single institutional cohort using robust matching techniques
to minimize confounding and demonstrating the relation-
ship between in vitro pharmacological metrics and observed
clinical outcomes. These findings suggest that integrating in
vitro pharmacological data with clinical evidence may help
generate hypotheses for future safety evaluation frameworks,
particularly in early exploratory stages of drug development.

Consistent with previous literature, APDs significantly
increased the risk of DIP compared to SSRIs, which served
as active comparators [14,40,52]. Haloperidol, a typical APD,
exhibited the highest DIP risks in both the in vitro metrics
and the real-world analysis, aligning with its strong D2R
antagonist properties. In contrast, atypical APDs showed
lower HRs, with aripiprazole exhibiting the lowest DIP
risk despite its relatively high receptor affinity and kinetic
parameters (pKi, pKr, and pKr × BBB penetration rate).
Sensitivity analyses supported the robustness of the overall
associations: using an outcome definition without anticholi-
nergic confirmation yielded correlation patterns that were
directionally similar, and recalculating the in vitro metrics
with pKi values derived from a single-study source pro-
duced a correlation structure comparable to that of the
main analysis. Although the DDD-based stratification was
exploratory, the generally increasing DIP risk across exposure
levels offers qualitative support for a dose-response pattern
consistent with prior pharmacological understanding of D2R
blockade [18,40]. This pattern was most apparent for metric
4, which showed a broadly similar ranking across dose strata.
However, the reduced explanatory strength within strata
suggests that dose-based subgrouping introduces analytic
instability, likely reflecting loss of covariate balance and
reduced variability after stratification. These observations
indicate that, while dose may influence the in vitro–clini-
cal relationship, larger datasets with broader dosing distribu-
tions and more detailed exposure metrics, such as treatment
duration and receptor occupancy, will be required to more
robustly characterize dose-dependent effects.

Aripiprazole deviated from the general correlation pattern,
presenting a lower HR than that expected from metric 4
(D2R pKr × BBB penetration rate), with similar discrepancies
across other metrics. This divergence is most likely attrib-
utable to the unique pharmacodynamic profile of aripipra-
zole as a partial D2R agonist [35]. Unlike full antagonists,
aripiprazole displays intrinsic activity at the D2Rs, enabling
it to maintain a degree of dopaminergic signaling even
at high receptor occupancy. A number of positron emis-
sion tomography studies have demonstrated that therapeutic
doses of aripiprazole achieve high D2R occupancy without

producing corresponding extrapyramidal adverse effects,
indicating that occupancy does not translate directly into
functional blockade for partial agonists [53-55]. Additionally,
aripiprazole exhibits functional selectivity and stabilizes D2R
signaling rather than fully suppressing it, which reduces the
likelihood of inducing movement disorders despite strong
binding [35]. Such pharmacological nuances highlight that
future extensions of this framework may require incorporat-
ing measures of functional efficacy, such as intrinsic activity,
partial agonist efficacy, or occupancy-response weighting, to
more accurately model APDs whose clinical effects diverge
from antagonist-based predictions.

Another key finding of this study was that Kr better
reflects the DIP risks observed in clinical settings than Ki.
This observation aligns with that made in a previous study
by Sykes et al [14], which highlighted the importance of
rebinding kinetics in DIP. Our study extends these find-
ings by integrating BBB penetration rate, which improved
the strength of the correlation across all metrics. Among
the models tested, the combination of D2R pKr and BBB
penetration rate (metric 4) showed the strongest correla-
tion with clinical DIP risk. Notably, the correlation coef-
ficient increased from 0.28 (pKr alone) to 0.95 (pKr ×
BBB penetration rate), indicating that accounting for CNS
exposure meaningfully shifted the strength of the associa-
tion. Conversely, the metrics that incorporated D2R Ki did
not sufficiently reflect the variations in real-world DIP risk.
Taken together, these findings suggest that CNS accessibility
and rebinding kinetics capture important mechanistic features
underlying observed differences among APDs.

Several studies have illustrated the relevance of incor-
porating BBB penetration rate into risk models. Amisulpr-
ide and risperidone, both of which have BBB penetration
rate values below 1 (0.55 and 0.81, respectively), appeared
below the trend line in unadjusted models, indicating a
lower-than-expected DIP risk despite high in vitro receptor
affinity (Figures 4A and 4C). This discrepancy is likely
due to the limited BBB penetration. When BBB penetration
rate–adjusted metrics were applied (Figures 4B and 4D),
both drugs aligned closer to the trend line. A similar trend
was observed for olanzapine and clozapine, which showed
comparable HRs in the clinical data. Although olanzapine
exhibited a 46% higher pKr value than clozapine, this
difference was reduced to 20% after adjusting for BBB
penetration rate, suggesting that the superior BBB penetration
of clozapine may compensate for its lower binding affinity,
highlighting the importance of accounting for BBB permea-
bility in DIP risk prediction.
Limitations
Our study had several limitations. First, the in vitro indica-
tors presented herein are aggregate estimates that are not
intended for individual patient prediction. Future research
could develop individualized risk prediction models that
incorporate these indicators. Second, because most patients in
the cohort were treated with relatively low APD doses (≤1.0
the DDD), dose-response characterization was inherently
limited, and the relationship between the in vitro metrics
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and clinical risk across the full dosing spectrum remains
unvalidated. Future studies encompassing a wider dosing
distribution will be needed to more fully delineate dose-
dependent patterns. Third, while the metrics demonstrated
correlation with real-world DIP risk among D2R antagonists,
the analysis could not cover all APDs owing to insufficient
prescribing frequency, and the current framework does not
incorporate intrinsic efficacy, limiting its applicability to
partial agonists such as aripiprazole. Therefore, expansion to
additional APDs and methodological extensions that account
for intrinsic efficacy will be essential for assessing general-
izability. Finally, this study used a single-institution CDM
database; prescribing patterns and clinical characteristics
outside this setting were not captured, and residual confound-
ing inherent to the observational nature may remain despite
rigorous propensity score matching. In addition, the identi-
fication of DIP onset, even with an enhanced operational
definition, may still allow for potential misclassification.

Multicenter studies will be valuable to further evaluate the
generalizability of the proposed framework. Given these
constraints, the findings should be interpreted as exploratory
associations rather than definitive causal inferences.
Conclusions
In conclusion, this study demonstrated that combining
receptor-binding kinetics with BBB penetration provides
robust in vitro metrics that strongly correlate with the
real-world clinical risk of DIP. These findings underscore
the importance of integrating receptor kinetics and neurophar-
macokinetics with real-world evidence, offering a conceptual
foundation that may support more mechanistically informed
approaches to future pharmacovigilance and adverse event
predictions. Ultimately, such integrative methodologies may
help refine early safety assessment and improve decision-
making across the drug development continuum, potentially
reducing the cost and duration of clinical trials.
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