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Abstract
Background: In response to the early spread of COVID-19 in Lebanon, the University of Balamand developed the HAYATI
app, a community-focused, geographic information system (GIS)–based digital health platform aimed at enhancing public
health surveillance. At the time, while the Lebanese Ministry of Public Health utilized centralized dashboards to report
confirmed cases and monitor national trends, no interactive tool existed to engage the public directly in real-time risk
assessment and surveillance, especially in underserved regions.
Objective: The aim of this study was to design, implement, and evaluate the effectiveness of the HAYATI app as a
GIS-integrated digital surveillance tool to identify high-risk individuals and support targeted testing and contact tracing during
the early stages of the COVID-19 pandemic in Lebanon.
Methods: The HAYATI app was launched in March 2020 using ArcGIS Survey123 and real-time dashboards, incorporating
a risk scoring algorithm based on 21 clinical and behavioral criteria. Between April 2020 and March 2021, self-reported data
were collected from 10,235 individuals across Lebanon. Participants identified as high or major risk through the automated
scoring algorithm were referred for free polymerase chain reaction testing at the University of Balamand. Test results were
securely communicated to local municipalities and the Ministry of Public Health. Data were analyzed for associations between
symptoms and positivity rates, as well as geographic and demographic trends using spatial analysis tools.
Results: Of the 10,235 individuals who submitted data, 1782 were classified as high or major risk and referred for polymerase
chain reaction testing. Among them, 394 (22.1%) tested positive for SARS-CoV-2. Loss of smell and taste was strongly
associated with positive test results (P<.001). The highest positivity rates were observed among individuals aged 18‐29
years and in the North Governorate. GIS mapping enabled real-time visualization of case clusters, which informed localized
containment responses.
Conclusions: The HAYATI app effectively filled a critical surveillance gap during the early pandemic phase in Lebanon. By
integrating GIS technology, automated risk stratification, and community-level engagement, it provided a scalable model for
public health surveillance in resource-limited settings. This approach has potential for broader applications in managing future
outbreaks and endemic diseases through decentralized, real-time digital health strategies.
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Introduction
The emergence of the novel coronavirus SARS-CoV-2 in
Wuhan, China, in December 2019, set off a chain of events
that would lead to a global health emergency unprecedented
in recent history [1-3]. The first confirmed case of COVID-19
in Lebanon, reported on February 21, 2020, marked the
beginning of the nation’s encounter with the pandemic,
leading to a series of public health responses aimed at curbing
the virus’s spread [4]. Lebanon’s COVID-19 epidemiologi-
cal trajectory was characterized by fluctuating infection and
mortality rates, a pattern mirrored by public health respon-
ses that ranged from stringent lockdowns to comprehensive
vaccination campaigns (Figure 1). The challenges faced by
the government of Lebanon in response to the emerging
pandemic were enormous due to very limited resources as
the outbreak came at a time when Lebanon was going
through the worst economic crisis in its history and during an
unstable and conflicting political situation. The coronavirus
outbreak also stretched the health sector that was already
strained due to the lack of finance caused by the banking
crisis that imposed severe restrictions on foreign currency
fund transfers from the Lebanese Central Bank. This has
caused a setback in Lebanon’s effort in its fight against
COVID-19 on top of all other economic disasters. Despite
all the efforts taken by the Lebanese government to mobilize
resources to equip public hospitals, the unmet needs were
immense and the hospitals remained underequipped. At the
start of the pandemic, COVID-19 testing was limited to a
single designated facility at Rafic Hariri Public Hospital in
Beirut, with a restricted supply of testing kits that could not
meet the high market demand. Parallel to that, there were
concerns that the coronavirus outbreak would hit vulnerable
areas (poor and overpopulated) in Lebanon, such as the

North Governorate, where people could not afford polymer-
ase chain reaction (PCR) testing, and government interven-
tion was limited in combating the spread of the pandemic.
Given the limited testing capacity and resources, it became
necessary to develop a targeted testing strategy to rationalize
and prioritize the use of PCR kits. This included the smart
identification of high-risk individuals, the establishment of
a contact tracing mechanism, and the implementation of a
robust surveillance system. In response to these challenges,
the GIS Center at the Faculty of Engineering at the University
of Balamand harnessed the power of geographic information
systems (GISs) to enable rapid screening and tracing of
COVID-19 cases, while also supporting the targeted use of
PCR testing. By mid-March 2020, just 2 weeks after the
first confirmed case in Lebanon, the GIS Center launched the
HAYATI app, built using the Esri Geospatial Cloud. During
this time, the strategic application of GIS emerged as an
essential tool in navigating the complexities introduced by
the pandemic [5]. GIS played a pivotal role in tracking and
tracing the spread of COVID-19 by enabling spatial visu-
alization, real-time data integration, and informed decision-
making. Through interactive dashboards, GIS facilitated the
monitoring of infection rates, mortality, and recovery data
across global, national, and local scales. Health authorities
used GIS tools to identify hotspots, track the movement
of infected individuals, and model the spread of the virus,
which was critical in guiding quarantine efforts and allocat-
ing medical resources. Additionally, GIS supported contact
tracing initiatives by integrating spatial and temporal data,
helping to map the networks of potential exposure. By linking
demographic, mobility, and health data, GIS allowed for
targeted interventions and effective communication with the
public, underscoring its value as an essential tool in public
health crisis management.
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Figure 1. Monthly trends of infection and death cases with key pandemic events and interventions (January 2020-May 2023). The black line indicates
active cases, while the red line denotes deaths, with each point on the lines corresponding to the number of cases reported monthly. Key events
are marked, including the start and end of 4 lockdown periods, the emergence of the Delta and Omicron variants, and the beginning of vaccination
efforts. Following May 2023, the data for both active cases and deaths are considered incomplete due to the discontinuation of regular reporting by
centers, which no longer publish positivity rate statistics.

In this study, we highlight how the HAYATI app provi-
ded valuable insights into the interplay between clinical
symptoms, demographics, and public health interventions,
demonstrating the effectiveness of GIS in characterizing
the pandemic. We also discuss the continued relevance of
digital health tools like the HAYATI project in managing the
endemic phase of COVID-19 and emphasize their critical role
in addressing current and future public health challenges.

Methods
The HAYATI App
By mid-March 2020, just 2 weeks after the first COVID-19
case was reported in Lebanon, the GIS Center at the Faculty
of Engineering at the University of Balamand launched the
HAYATI app, a digital public health solution built using
the Esri Geospatial Cloud. The app was developed as part
of the University’s social responsibility efforts to support
national containment strategies, particularly in underserved
areas of North Lebanon. It was made freely accessible
to municipalities across the country to support the rapid
identification and management of COVID-19 cases.

The HAYATI app integrated core Esri technologies,
including ArcGIS Survey123 (version 3.9.149) for smart
data collection and ArcGIS Dashboards for real-time data
visualization and sharing. To streamline data processing,
the Feature Manipulation Engine (version 2020.2.0.0; Safe
Software Inc.) was used to extract and automate data transfers
from ArcGIS Online feature services. The Esri ArcGIS
Portal Feature Service was further embedded into the Feature
Manipulation Engine pipeline to ensure timely dissemination
of collected data to both municipal stakeholders and the
University of Balamand’s PCR Testing Center (Figure 2).
This fully coordinated system created a closed-loop work-
flow involving municipalities, the PCR test center, and the
University of Balamand medical team. Figure 2 illustrates the
end-to-end process, from data crowdsourcing and distribution
to PCR testing, laboratory analysis, result reporting, and
follow-up actions such as quarantine and contact tracing.
This workflow enabled efficient identification, risk-based
triage, and timely intervention for individuals likely to have
contracted COVID-19.
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Figure 2. Operational workflow of the HAYATI app for COVID-19 risk assessment and targeted testing. This figure outlines the end-to-end
workflow implemented through the HAYATI app, developed by the University of Balamand to support targeted polymerase chain reaction
(PCR) testing and contact tracing during the COVID-19 pandemic. The process begins with data crowdsourcing using ArcGIS Survey123, where
respondents provide information related to symptoms, demographics, and risk factors. Feature Manipulation Engine (FME) automates the extraction
of these data from ArcGIS Online and distributes the data to municipalities and the PCR testing center. Municipalities divide their teams: one
validates symptom data and contacts individuals, while the second handles logistics for PCR sample collection using kits provided by the University
of Balamand (UOB) medical team. Samples are transported to the PCR testing center within 12 hours for analysis, with patient identities protected
by serial number coding. Test results are reported back to municipalities, which then notify individuals and initiate contact tracing or quarantine
measures based on the outcomes.

At the core of the app was a COVID-19 risk calcula-
tor developed by the University of Balamand, in line
with recommendations from the World Health Organiza-
tion, the Centers for Disease Control and Prevention, and
the Lebanese Society of Infectious Diseases and Clinical
Microbiology. The calculator incorporated 21 criteria grouped
into 3 categories. Group 1 (critical exposures and symptoms)
included 5 criteria: recent travel, contact with a traveler,
contact with a suspected case, and sudden loss of smell
or taste. The presence of any single Group 1 criterion
automatically classified the respondent as high risk and
mandated referral for PCR testing. Group 2 (key clinical
symptoms) included 4 criteria: dry cough, sore throat, fever,
and shortness of breath. The presence of any 2 Group 2
criteria also triggered PCR referral. Group 3 (additional
epidemiological and clinical risk factors) included 12 criteria:
public transportation use, exposure to crowded areas, hospital
visits, rhinorrhea, productive cough, common cold, diarrhea,

myalgia, headache, fatigue, abdominal pain, and cyanosis.
Each of these criteria was assigned a weight ranging from 1 to
3 points. When neither Group 1 nor Group 2 conditions were
met, the cumulative weight of Group 3 criteria determined the
overall risk category.

Based on the total score, individuals were stratified into 4
categories: minor (<10% of total weight; score 0‐2), moderate
(10%‐30%; score 2‐6), major (30%‐60%; score 6‐12), and
high (>60%; score 12‐20) (Table 1). Only those categorized
as major or high risk were referred for free PCR testing at
the University’s testing center. This targeted testing strategy
was crucial during the country’s economic crisis, as it enabled
rational allocation of limited testing kits and resources. The
full list of variables and their assigned weights is provided
in Table S1 in Multimedia Appendix 1, while Table 1
summarizes the scoring thresholds and corresponding testing
recommendations.

Table 1. COVID-19 risk score calculation and polymerase chain reaction (PCR) testing strategy.
Risk level Minimum risk score Maximum risk score PCR test
Minor 0 2 No PCR test
Moderate 2 6 No PCR test
Major 6 12 PCR recommended
High 12 20 PCR needed

To complement the risk stratification system, an operational
dashboard was developed using ArcGIS to display risk scores
and testing outcomes in real time (Figure 3, Figure S1 in
Multimedia Appendix 2). The dashboard provided geographic
visualization of COVID-19 risk levels by plotting respondent

data on an interactive map. Users could monitor daily changes
in case distribution and view demographic breakdowns (by
age, gender, and district) of high-and major-risk respondents.
It also displayed epidemiological indicators such as recent
travel history and hallmark COVID-19 symptoms (eg, fever,
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cough, loss of smell), alongside aggregated PCR test results at
the municipal level.

Figure 3. Visualization of COVID-19 risk distribution via the HAYATI dashboard. This figure presents a comprehensive screenshot of the HAYATI
dashboard developed by the GIS Center at the University of Balamand, showcasing the geographic and demographic distribution of COVID-19 risk
across Lebanon. The central map displays the locations of respondents, with color-coded dots representing different risk levels: red for high risk,
orange for major risk, yellow for moderate risk, and green for minor risk. At the top of the dashboard, the current number of high, major, moderate,
and minor risk cases is displayed, with a comparison to the previous day’s data. On the left sidebar, the distribution of cases by governorate highlights
the regions most affected. To the right of the map, bar charts illustrate the breakdown of high and major risk cases by gender, age group, and caza
(district). Additional charts below include data on respondents’ travel history and the presence of loss of smell, a key symptom of COVID-19. At the
bottom of the dashboard, summary statistics show the total number of reported respondents (n=21,175), high-risk cases (n=12,650), and major-risk
cases (n=908).

Beyond its real-time monitoring capabilities, the HAYATI
app was uniquely designed to integrate risk prediction, testing
triage, and surveillance within a single platform. Unlike
Go.Data, a digital tool developed by the WHO that focu-
ses primarily on case investigation and contact follow-up,
the HAYATI app combined algorithm-based risk scoring
with geospatial visualization and diagnostic referral. This
integration enabled immediate classification and response,
ensuring that high-risk individuals received timely diagnostic
testing and public health follow-up.
Participant Enrollment and App
Accessibility
The app was primarily developed to support surveillance
efforts in North Lebanon; however, it was made pub-
licly accessible to all individuals across Lebanon, without
geographic restriction. Any person residing in Lebanon could
access the app, complete the survey, and be referred for
testing, regardless of their governorate of residence. Our
survey app was deployed between April 2020 and March
2021, during the first and second waves of the COVID-19
pandemic in Lebanon.

Nucleic Acid Extraction and SARS-CoV-2
Testing
Sample collection began with a nasopharyngeal swab from
each participant. The swab was immediately placed into viral
transport medium and transported to the Microbiology and
Molecular Biology Laboratory at the University of Balamand,
a facility certified for COVID-19 testing and operating in
coordination with the Lebanese Ministry of Public Health.
Upon arrival, SARS-CoV-2 RNA extraction was performed
using the AccuPrep Viral RNA Extraction Kit. Extracted
RNA was then subjected to real-time reverse transcription
polymerase chain reaction testing using the GeneFinder
COVID-19 Plus RealAmp Kit, which targets the nucleocap-
sid, envelope, and RNA-dependent RNA polymerase genes of
the virus. RNase P was used as an internal control to ensure
sample integrity and extraction efficiency.
Data Processing
Although no age restrictions were applied during participant
recruitment, we performed several quality-control filters on
the survey data to ensure data consistency and reliability for
analysis. First, we removed 13 entries that shared the same
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participant serial number, retaining only 1 representative
response per duplicate set. We then excluded 60 participants
under 5 years old and 3 participants over 90 years old.
These extreme age values were removed due to concerns
about data accuracy and the ability of very young partici-
pants to self-report symptoms reliably. After filtering, a total
of 10,954 participant entries were retained for downstream
analyses.
Statistical Analysis
Statistical analyses were performed using the R programming
language (v4.2.2; R Core Team) [6]. Enriched demographic
factors and symptoms in SARS-CoV-2 positive versus
negative individuals were identified based on Fisher exact
tests, implemented via the exact2x2 R package (v1.6.9)
[7]. In cases where frequency tables larger than 2×2 were
analyzed, Fisher exact tests were performed using Monte
Carlo simulations with the fisher.test function from the stats
package. All symptoms were initially tested individually,
and statistical significance was determined using Benjamini-
Hochberg-adjusted P values, with a threshold of <.05. For the
multisymptom analysis, we focused on symptom combina-
tions that were observed in at least 10 participants to ensure
sufficient statistical power. This more lenient threshold was
adopted due to decreased statistical power and was considered
justified as the analysis aimed to recapitulate well-known
symptomatic signatures based on digital survey data rather
than to robustly identify novel associations.

We conducted a PERMANOVA (permutational multivari-
ate analysis of variance) using the adonis2 function from
the vegan R package (v2.6.4) [8], based on pairwise Jaccard
distances computed from the symptom presence or absence
matrix. Only individuals reporting at least 2 symptoms were
included in this analysis.

All data visualizations were also generated in R. Heatmaps
were produced using the ComplexHeatmap package (v2.14.0)
[9], and UpSet plots were generated using ComplexUpset
(v1.3.3) [10]. Shapefiles representing Lebanese administrative
boundaries were downloaded from the Humanitarian Data
Exchange [11], maintained by the Office for the Coordination
of Humanitarian Affairs. All additional figures were created
using the ggplot2 package (v3.4.0) [9]. The complete analysis
code is publicly available on GitHub [12].
Ethical Considerations
A pivotal aspect of the Hayati project’s integrity and
commitment to ethical standards was its approval by
the institutional review board at the University of Bala-
mand (IRB-REC/o/023-07/1123). This approval highlights

the project’s strict adherence to ethical research principles,
ensuring that all data collection and participant engage-
ment were conducted responsibly and with full respect for
individual privacy and welfare.

Participation in the Hayati study was open to the public
and entirely voluntary. Individuals who suspected exposure to
COVID-19, experienced COVID-19-like symptoms, or were
simply concerned about their health status were encouraged
to participate. There were no specific inclusion or exclusion
criteria, and no age restrictions were imposed. Any person
willing to undergo screening and complete the survey was
eligible. In cases where the participant was a minor, the
application was filled out by a parent or legal guardian,
and children were accompanied by a guardian during testing
and enrollment. Recruitment occurred through community
outreach in coordination with municipalities, health care
centers, and public awareness campaigns.

All participants provided informed consent through the
application, which clearly described the purpose of the study,
procedures involved, potential risks and benefits, and strict
confidentiality measures. Data collected via the app were
securely stored in the ArcGIS online cloud platform, with
full compliance with Lebanese data protection laws. Data
access and processing were handled solely by the Univer-
sity of Balamand, with offline backup and secure archiving
maintained at the GIS Center within the Faculty of Engineer-
ing.

Results
Demographic Distribution by Region,
Gender, and Age
Our filtered dataset includes results from 10,954 individuals
tested for COVID-19. Table 2 summarizes the demographic
statistics of these individuals, categorized by governorate,
gender, and age group. The largest proportion of individu-
als resided in the North governorate, ~70% (n=7635) of
the population, followed by Mount Lebanon with ~25%
(n=2781). The gender distribution was balanced, with males
(n=5640, 51.5%) slightly outnumbering females (n=5116,
46.7%). Age information was available for the majority of
participants; however, 42 individuals did not provide their
age and were therefore excluded from age-specific analyses
but retained in other parts of the dataset. Among those with
available age data, the largest group was aged 18-29 years,
indicating a youthful demographic, while those aged above 90
constituted the smallest group. The mean age of participants
with known age was 38 years (SD=17) (Figure 4).

Table 2. Demographic and clinical characteristics of polymerase chain reaction (PCR)–tested individuals across governorates in Lebanon.
Total, n (%) Positive for SARS-CoV-2, n (%)

Governate
  Akkar 411 (3.8) 37 (9)
  Baalbek-Hermel 2 (0.0) 0 (0)
  Beirut 103 (0.9) 6 (5.8)

 

JMIR PUBLIC HEALTH AND SURVEILLANCE Bassim et al

https://publichealth.jmir.org/2025/1/e80331 JMIR Public Health Surveill2025 | vol. 11 | e80331 | p. 6
(page number not for citation purposes)

https://publichealth.jmir.org/2025/1/e80331


 
Total, n (%) Positive for SARS-CoV-2, n (%)

  Beqaa 15 (0.1) 1 (6.7)
  Mount Lebanon 2781 (25.4) 319 (11.5)
  El Nabatieh 1 (0.0) 0 (0)
  North 7635 (69.7) 907 (11.9)
  South 6 (0.1) 0 (0)
  Missing 0 (0) 0 (0)
Gender
  Female 5116 (46.7) 605 (11.8)
  Male 5640 (51.5) 639 (11.3)
  Missing 198 (1.8) 26 (13.1)
Blood group
  A+ 3278 (29.9) 465 (14.2)
  B+ 784 (7.2) 96 (12.2)
  AB+ 299 (2.7) 40 (13.4)
  O+ 2908 (26.5) 360 (12.4)
  A– 263 (2.4) 40 (15.2)
  B– 72 (0.7) 11 (15.3)
  AB– 44 (0.4) 10 (22.7)
  O– 325 (3) 37 (11.4)
  Missing 2981 (27.2) 211 (7)
Social distancing
  Yes 4370 (39.9) 427 (9.8)
  No 6525 (59.6) 840 (12.9)
  Missing 59 (0.5) 3 (5.1)
Public transportation
  Yes 1530 (14) 124 (8.1)
  No 9420 (86) 1146 (12.2)
  Missing 4 (0.0) 0 (0)
Crowded area
  Yes 3599 (32.9) 317 (8.8)
  No 7351 (67.1) 953 (13.0)
  Missing 4 (0.0) 0 (0)
Recent travel
  Yes 1141 (10.4) 25 (2.2)
  No 9809 (89.5) 1245 (12.7)
  Missing 4 (0.0) 0 (0)
Contact with travelers
  Yes 653 (6) 28 (4.3)
  No 10,297 (94) 1242 (12.1)
  Missing 4 (0.0) 0 (0)
Contact with COVID positive patients
  Yes 4133 (37.7) 595 (14.4)
  No 6819 (62.3) 675 (9.9)
  Missing 2 (0.0) 0 (0)
Hospital visit
  Yes 941 (8.6) 84 (8.9)
  No 10,009 (91.4) 1186 (11.8)
  Missing 4 (0.0) 0 (0)
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Figure 4. Age distribution of all samples tested for COVID-19. The violin plot illustrates the density of different ages, showing both the range and
the frequency of ages within the tested population. The boxplot within the violin plot provides a summary of the central tendency and dispersion of
ages, with the median age indicated by the thick black line.

Associations Between Demographic and
Behavioral Factors With SARS-CoV-2
Positivity Rates
Our dataset provides a detailed breakdown of SARS-CoV-2
positivity rates across various demographic and behavioral
factors, including gender, age group, geographic region,
quarantine practices, and blood group, as illustrated in
Table 2. Overall, the COVID-19 positivity rate was approxi-
mately 11.5% (1270/10,954). Rates were comparable between
females (605/5116, 11.8%) and males (639/5640, 11.3%),
indicating no significant difference by gender.

While age groups showed relatively consistent positivity
rates, slightly higher rates were observed among participants
aged 30‐39 years. In contrast, more pronounced differences
appeared across blood group types, with the lowest positivity
rate among individuals with blood type O– (37/325, 11.4%)
and the highest among those with AB– (10/44, 22.7%). These
trends prompted further statistical analysis of the association
between blood group and SARS-CoV-2 positivity, presented
below.

To assess the relationship between blood group and
COVID-19 test positivity, we performed Fisher exact tests,
comparing the distribution of positive and negative cases
for each blood group against all other groups combined. A
statistically significant association was identified: individuals
with blood type O+ were significantly less likely to test
positive (OR 0.716, 95% CI 0.72-0.93; BH-corrected P=.01).

We also tested for associations between SARS-CoV-2
positivity and 7 self-reported behavioral factors, all of
which showed statistically significant associations (BH-cor-
rected P<.006, Fisher exact tests). Two behaviors followed
expected patterns: individuals who reported adhering to social
distancing had a lower positivity rate (427/4370, 9.8%)
compared to those who did not (840/6525, 12.9%), and those
who reported contact with confirmed COVID-19 cases had a
higher positivity rate (595/4133, 14.4%) compared to those
without known contact (675/6819, 10.9%).

In contrast, additional behaviors, which would be expected
to be associated with higher positivity rates (were all
possible confounders excluded), were significantly associated
with lower positivity rates. In particular, the use of pub-
lic transportation was associated with an 8.1% (124/1530)
positivity rate, whereas those not using public transportation
had a higher rate of 12.2% (1146/9420). Being in crowded
areas was associated with a lower positivity rate of 8.8%
(317/3599) compared to a 13.0% (953/7351) positivity rate
for those who avoided crowded areas. Similarly, recent travel
was negatively related to positivity rates, with recent travelers
showing a rate of 2.2% (25/1141) against 12.7% (1245/9809)
for those who had not traveled. In addition, individuals
who had contact with travelers showed a lower COVID-19
positivity rate (28/653, 4.3%) compared to those who did
not have such contact (1242/10,297, 12.1%). Separately,
participants who reported visiting a hospital recently had a
positivity rate of 8.9% (84/941), whereas those who had not
visited a hospital had a higher rate of 11.8% (1186/10,009).
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Age-Specific Analysis of COVID-19
Positivity Rates
In the analysis of COVID-19 positivity rates across differ-
ent age groups, we observed notable variation in positivity
percentages (Multimedia Appendix 3). The study included
participants aged 5 years and above, following quality-con-
trol filtering that excluded individuals under the age of 5
years. Age groups ranged from 5 to over 90 years, with data
analyzed accordingly.

A total of 1270 PCR-positive cases were identified
from the tested individuals. The age-specific positivity rates
highlight variation in infection distribution across differ-
ent age groups (Multimedia Appendix 3). Notably, higher
positivity rates were observed among individuals aged 11‐17
years and those over 80 years old, compared to other age
cohorts. For example, the 11‐17 age group exhibited a
higher positivity rate than younger children. In contrast,
younger adults and middle-aged groups showed relatively

lower positivity rates. These patterns were recorded during
the study period, which coincided with phases of school
closures, lockdowns, and movement restrictions in Lebanon.
While individual-level data were collected, household-level
clustering (eg, siblings or cohabitants) was not tracked.
COVID-19 Positivity Rates by Caza
We analyzed COVID-19 positivity rates based on partici-
pants’ reported caza of current residence, as shown in Figure
5. This variability likely reflects differences in viral spread
and testing efficacy across regions. Notably, El Koura and El
Meten reported the highest positivity rates among cazas with
sufficient testing, at 11.4% (318/2774) and 12.5% (269/2139),
respectively, suggesting they are focal points of infection.
Tripoli, meanwhile, exhibited the highest positivity rate at
18.5% (22/119). Akkar and El Batroun also showed consider-
able positivity rates of 9.1% (37/408) and 10.9% (79/726),
indicating moderate transmission levels.

Figure 5. Geographical distribution of COVID-19 positivity rates across different cazas over any time during the survey period. Shaded areas indicate
the positivity percentage, with darker shades denoting higher rates. Numerical overlays show the fraction of positive cases compared to total tests
administered regionally.

Trends in COVID-19 Positivity Rates: An
Analysis From April 2020 to March 2021
Between April 2020 and March 2021, COVID-19 positivity
rates, derived from PCR-confirmed cases following submis-
sions made through the HAYATI app, varied significantly,
as shown in Figure 6. The rates started at negligible levels,

gradually increased during the spring and early summer
months, and showed a marked surge in the fall, peaking in
October. After a slight decline in November, a sharp spike
was recorded in January 2021, coinciding with the emergence
of the Delta variant and representing the highest positivity
rate observed during the study period. This was followed by a
notable decline through March 2021. A similar temporal trend
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was observed in the official COVID-19 case data published
by the Ministry of Public Health (MoPH).

Figure 6. Monthly COVID-19 positivity trends. Stacked bars represent the total number of participants tested each month, divided into negative
(gray) and positive (red) test results. The percentages atop each bar indicate the positivity rate for that month.

Symptom Distribution Among Individuals
Screened for COVID-19
The analysis of symptoms was based on self-reported data
collected through the HAYATI app and linked to PCR
test results. Individuals presenting at the testing center
exhibited a range of symptoms, leading to assessments for
COVID-19. Notably, symptom presence was not a require-
ment for participation, allowing for the inclusion of asympto-
matic individuals in the study. Among those who reported
symptoms via the app, fever was recorded in 1273 individu-
als, with a corresponding positivity rate of 23%. Headaches

and sore throats, reported in 3058 and 1844 cases, respec-
tively, each had a positivity rate of 17%. Additionally, the
loss of smell and taste was reported by 1065 and 914
individuals, respectively, correlated with a higher positivity
rate of 25%. Figure 7. Our analysis demonstrates that loss of
smell and taste was more strongly associated with positive
COVID-19 test results than other common symptoms such
as fever, myalgia, and cold. This correlation is illustrated
in Figures 7 and 8, which visualize the distribution and
frequency of self-reported symptoms within the tested cohort.
Figure 8 reveals distinct symptom clusters that are more
commonly observed in PCR-positive cases.
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Figure 7. Symptom frequency in SARS-CoV-2 polymerase chain reaction (PCR) results. Bar plot of the number of symptoms reported by individuals
with positive and negative SARS-CoV-2 PCR results.
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Figure 8. Overview of the co-occurrence of surveyed symptoms with SARS-CoV-2 PCR test results. Each row represents a different symptom, and
the columns are individual participants, from any time during the survey period. Blue indicates that the participants reported the symptom, while grey
indicates they did not report having the symptom. The overall percent prevalence (‘Prev.’) of each symptom is indicated in orange on the right side.
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Further exploration of the HAYATI app data examined the
relationship between the number of reported symptoms and
test positivity (Figure 7). A trend of increasing positivity
rates was observed as the number of symptoms increased,
particularly from 3 symptoms onward.

To evaluate the consistency of survey-based symptom
reporting with known clinical patterns, we assessed symptom

enrichment among positive cases (Figure 9). Significant
symptom sets, including fever, myalgia, and notably, smell
and taste loss, were markedly enriched in PCR-positive
individuals. Analysis of specific symptom combinations
further revealed elevated odds ratios for patterns involving
respiratory and systemic symptoms such as cold, dry cough,
and myalgia (Figure 10).

Figure 9. Intersection analysis of symptoms in positive and negative cases. Summary of reported symptoms enriched in participants with positive
versus negative test results. Summary of reported symptoms enriched in participants with positive versus negative test results. The odds ratios based
on a Fisher exact test are indicated for each individual symptom (bars indicate 95% CIs). Odds ratios >1 are enriched in positive cases. The left panel
shows the odds ratio for the full dataset, including asymptomatic individuals, who are much more common among participants who tested negative.
The right panel shows the same analysis restricted to participants with at least one symptom. Black points signify statistically significant differences
(Benjamini-Hochberg corrected P values <.05) in symptom prevalence between positive and negative cases. The dotted line indicates an odds ratio of
1. Sig: significant.

Full dataset
(including those without symptoms)

Individuals with at
least 1 symptom

1 2 3 1 2 3

Abdominal pain

Diarrhea

Productive cough

Pink eye

Shortness breath

Extremities redness pain

Sore throat

Headache

Fatigue

Rhinorrhea

Dry cough

Myalgia

Fever

Cold

Taste loss

Smell loss

Odds ratio (enrichment in positive vs negative cases)

S
ym

pt
om

Test result

Not sig.

Sig.

JMIR PUBLIC HEALTH AND SURVEILLANCE Bassim et al

https://publichealth.jmir.org/2025/1/e80331 JMIR Public Health Surveill2025 | vol. 11 | e80331 | p. 12
(page number not for citation purposes)

https://publichealth.jmir.org/2025/1/e80331


Figure 10. Enriched symptom combinations in COVID-19 positive cases. Significantly enriched symptom combinations in individuals with
COVID-19 compared to individuals who tested negative (based on Fisher exact tests). Only individuals with at least 2 symptoms and symptom
combinations that occurred at least 10 times were considered for this analysis. The plot illustrates the odds ratios for symptom combinations that
are significantly more common in positive cases, with a Benjamini-Hochberg corrected P value <.2. The vertical bars represent the 95% confidence
intervals for these ratios. The dotted line indicates an odds ratio of 1.
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Additionally, the UpSet plots (Figure 11) derived from
HAYATI app data illustrate the frequency and co-occur-
rence of symptoms among PCR-positive and PCR-negative
individuals, highlighting the predominance of smell and
taste loss among those who tested positive. These patterns
were further investigated through a principal coordinates
analysis (Figure 12), which graphically represents individual

cases based on symptom similarity. Although a statisti-
cally significant difference was detected (PERMANOVA:
R²=0.0046, P=.001), the effect size was minimal, suggesting
that while differences in symptom profiles between positive
and negative cases exist, they explain only a small portion of
the overall variation.
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Figure 11. Intersection analysis of COVID-19 symptoms in positive and negative cases. The figure juxtaposes the symptom profiles of individuals
with positive versus negative SARS-CoV-2 results using an UpSet plot format. Panel (A) focuses on the symptom intersections within the positive
cases, while panel (B) does the same for the negative cases. The vertical bars represent the number of individuals reporting each intersection of
symptoms, with the connected dots below delineating the specific symptoms within each intersection. This visualization elucidates the common
symptom combinations in both cohorts (restricted to the top 20 most common symptoms in each case). The number of participants with each
individual symptom is indicated by the horizontal bars on the left.

9

5

7

22

7 7

5

14

11

6
7

17

5
66

9

6

8
7

5

0

5

10

15

20

In
te

rs
e

c
ti
o

n
 s

iz
e

010
0

20
0

30
0

40
0

50
0

Set size

Taste loss
Sore throat
Smell loss

Shortness of breath
Rhinorrhea

Productive cough
Pink eye
Myalgia

Headache
Fever

Fatigue
Extremities redness pain

Dry cough
Diarrhea

Cold
Abdominal pain

Positive SARS−CoV−2 Results

62
49

212

115

73

30
41

3136
24

81

54

90

60

154

31
49

2424

70

0

50

100

150

200

In
te

rs
e

c
ti
o

n
 s

iz
e

050
0

10
00

15
00

20
00

25
00

Set size

Taste loss
Sore throat
Smell loss

Shortness of breath
Rhinorrhea

Productive cough
Pink eye
Myalgia

Headache
Fever

Fatigue
Extremities redness pain

Dry cough
Diarrhea

Cold
Abdominal pain

Negative SARS−CoV−2 Results

(A)

(B)

JMIR PUBLIC HEALTH AND SURVEILLANCE Bassim et al

https://publichealth.jmir.org/2025/1/e80331 JMIR Public Health Surveill2025 | vol. 11 | e80331 | p. 14
(page number not for citation purposes)

https://publichealth.jmir.org/2025/1/e80331


Figure 12. Symptom overlap and SARS-CoV-2 test results of principal coordinate analysis (PCoA). PCoA plot illustrating the similarity in symptom
reporting between individuals with at least 2 symptoms, segmented by their SARS-CoV-2 polymerase chain reaction (PCR) test results. Each point
represents a participant, with red indicating a positive test result and gray indicating a negative result. The proximity of points suggests the degree of
similarity in symptoms reported. The effect size and P value of a PERMANOVA (permutational multivariate analysis of variance) statistical test of
whether the PCR test result explains variation across samples is indicated.
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Discussion
Transforming Infectious Disease
Management: The Hayati Project’s Role
The Hayati project was developed as a geospatial public
health tool during a period of economic hardship, aiming to
fill critical gaps in national surveillance by capturing data
from individuals in underserved regions of North Lebanon.
While national trends in COVID-19 cases were broadly
reported by the Lebanese Ministry of Public Health, the
HAYATI app provided several distinct advantages. First,
the app enabled early, community-level surveillance by
collecting self-reported symptoms and exposure data in
near real-time, even before PCR confirmation. This type
of participatory surveillance extended beyond the scope of
MoPH systems, which primarily focused on confirmed case
reporting. Hayati thus enabled proactive identification of
potential hotspots before official case numbers increased.
Second, and critically, the app was technically integrated
with ArcGIS Pro, a professional-grade desktop GIS soft-
ware. This allowed for automated spatial analysis, enabling
researchers and public health officials to map the distribu-
tion of reported symptoms and confirmed cases, identify
emerging clusters, and visualize epidemiologic trends in
real time. This feature enhanced the utility of the data for
rapid response and spatial decision-making, especially at the
district (caza) level, where local municipalities could respond
with targeted testing, outreach, or awareness efforts. Third,

the initiative highlighted the role of a private academic
institution in supporting national efforts through commun-
ity-based, digital health tools. By offering free testing and
building a regional digital infrastructure for data collection
and spatial analysis, the University of Balamand demonstra-
ted how academia can contribute actionable insights and
public health resources during crises, particularly in resource-
limited settings. Although some trends observed in the Hayati
dataset aligned with national-level epidemiologic patterns, the
value of the app lies in how the data were collected (commun-
ity-driven), analyzed (spatially, via ArcGIS Pro), and acted
upon (locally), providing operational support to public health
authorities in a decentralized, real-time manner. A potential
limitation of this study lies in the variability of self-reported
data obtained through the app, particularly during the early
phase of implementation when user compliance and reporting
accuracy could not be consistently verified. This limitation is
common in digital surveillance tools launched during public
health emergencies and should be considered when interpret-
ing risk profiles and exposure data.
Alignment With Global COVID-19
Patterns
The patterns observed in the Hayati project are consistent
with globally recognized characteristics of the COVID-19
pandemic, including variation in infection rates by age,
symptom profile, and exposure-related behaviors. While
these trends were broadly documented in national MoPH
reports and international literature [13-17], the HAYATI
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app provided a community-driven, real-time dataset that
mirrored these findings through self-reported inputs. For
example, the strong association between loss of taste and
smell and positive PCR results in our dataset reinforces the
global understanding of these symptoms as key indicators of
infection.

Although the Hayati project did not generate new
epidemiological insights beyond those already known,
it demonstrated that digital self-reporting platforms can
effectively capture meaningful and reliable public health data,
even in decentralized or resource-limited settings. The app’s
ability to collect, visualize, and analyze spatially referenced
data at the community level, particularly in underserved
regions, offers a complementary tool to traditional surveil-
lance systems.

Moreover, the implementation of the Hayati project during
Lebanon’s economic and public health crisis serves as a case
study for the feasibility and utility of digital health inter-
ventions in emergency contexts [18-20]. This model aligns
with international efforts that highlight the value of early
digital surveillance, public engagement, and spatial mapping
to enhance pandemic preparedness and response [21-26].

Demographic and Behavioral
Associations With COVID-19 Positivity
Rates
Our study reveals important insights into the associations
between demographic factors, behaviors, and SARS-CoV-2
positivity rates. We observed a slight variance in positivity
rates between genders, with females showing marginally
higher rates than males. Contrary to findings from previ-
ous studies, significant disparities in positivity rates were
observed across different blood types. Specifically, individ-
uals with the O+ blood type were significantly less likely
to test positive for COVID-19 compared to individuals with
other blood types [27,28].

Our study reveals that behavioral factors, particularly
adherence to social distancing and contact with confirmed
cases, demonstrated a strong correlation with infection rates.
Specifically, individuals who adhered to social distancing had
a lower positivity rate of 9.9% compared to 13.0% for those
who did not. Additionally, contact with COVID-19 positive
patients was associated with a markedly higher positivity rate
of 14.6%, in contrast to 10.0% for those without such contact.

Interestingly, several behaviors that we would expect
to be associated with higher positivity rates were instead
linked to lower positivity rates. For example, the use of
public transportation was associated with a lower positiv-
ity rate of 8.2%, compared to 12.3% for those not using
public transportation. Similarly, being in crowded areas was
associated with a lower positivity rate of 8.9%, compared to
13.1% for those who avoided crowded areas. Recent travel
was also negatively related to positivity rates, with recent
travelers showing a significantly lower positivity rate of
2.2%, compared to 12.9% for those who had not traveled.
Moreover, the rate of positivity was higher in people who
did not have contact with travelers (12.2%) versus those who

did (4.3%). Hospital visits were associated with a positivity
rate of 9.0%, whereas those who had not recently visited
a hospital had a higher rate of 12.0%. These counterintui-
tive findings may be explained by the context in which the
data were collected, specifically during intermittent lock-
downs and movement restrictions in Lebanon between April
2020 and February 2021. During these periods, individuals
who traveled, used public transportation, or accessed public
spaces were often essential workers or lower-risk individ-
uals who adhered strictly to preventive measures such as
mask-wearing, hand hygiene, and distancing. Conversely,
people remaining at home may have been at increased risk
of household transmission, which was a dominant mode of
infection during lockdowns. Additionally, the possibility of
uncontrolled confounding, such as differing levels of risk
awareness or health status, must be considered. For instance,
healthier individuals may have been more likely to engage in
public activities while taking effective precautions. Finally,
we acknowledge that all behavioral data were self-reported,
which may introduce information and recall biases that could
affect the accuracy of the observed associations.

Our data collection was not based on a random sam-
ple of the population, which introduces another layer of
potential bias. Younger individuals, possibly more concerned
about contracting COVID-19, may have been more likely to
participate. This bias in participant demographics could affect
the generalizability of our findings.

By recognizing these limitations, we can better understand
the complexities of COVID-19’s transmission dynamics and
further validate the critical role of public health guidelines.

The detailed analysis of how specific behaviors and
demographic factors influence infection rates provides
valuable insights for policymakers and public health officials
in crafting targeted interventions to control the spread of the
virus.
Age-Specific Analysis and the Impact on
Different Demographics
The age-specific analysis of COVID-19 positivity rates in our
study reveals notable variation across age groups, with the
highest number of positive cases observed among individu-
als aged 18-29 years. While this may reflect greater social
activity or increased likelihood of seeking testing within this
age group, it is essential to interpret these findings with
caution. The study was based on a self-selected, nonrandom
sample, which introduces potential selection bias. Younger
individuals may have been more inclined to participate
due to greater digital access, heightened health awareness,
or perceived risk, which could influence the observed age
distribution.

Moreover, participation in the study may have been
shaped by socioeconomic and behavioral factors, such as
access to mobile technology, willingness to engage with
digital platforms, or the ability to reach testing centers.
These potential confounders limit the generalizability of our
findings to the broader population.
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Given these limitations, the results should be viewed
as indicative rather than representative, offering insights
into symptom trends and positivity rates within a specific,
engaged segment of the population. Future studies using
randomized or more representative sampling strategies are
needed to more accurately characterize COVID-19 transmis-
sion dynamics across different age groups.
Conclusion
The study’s results highlight the impact of the Hayati
project in deepening our understanding of COVID-19’s
epidemiological characteristics within Lebanon. While the
detailed analysis of demographic, behavioral, and clinical
factors associated with SARS-CoV-2 positivity rates was

conducted post-pandemic, it validates known global patterns
and provides localized insights crucial for informed public
health decision-making. This retrospective analysis under-
scores the potential benefits of real-time data analysis. Had
these data been analyzed as they were collected, it could
have significantly enhanced the responsiveness of health
interventions during the pandemic. The successful applica-
tion of GIS technology and self-reported data in tracking
pandemic trends demonstrates the robustness and reliability
of digital health tools. These tools hold promise for augment-
ing traditional epidemiological methods and offer valuable
lessons for managing future health crises, particularly by
leveraging real-time analysis to enable more timely and
effective responses.
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HAYATI COVID-19 survey questionnaire by the University of Balamand GIS Center. This figure shows a part of the
HAYATI COVID-19 survey questionnaire interface, developed by the GIS Center at the University of Balamand, as it appears
while being filled out.
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Multimedia Appendix 3
COVID-19 positivity rates by age group. The bar graph quantifies the percentage of positive cases within each age category
(over all surveyed time periods). The absolute count of positive cases is indicated above each bar.
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