
Original Paper

Balancing Human Mobility and Health Care Coverage
in Sentinel Surveillance of Brazilian Indigenous Areas:
Mathematical Optimization Approach

Juliane Fonseca Oliveira1, PhD; Adriano O Vasconcelos2, PhD; Andrêza L Alencar3, PhD; Maria Célia S L Cunha2,
PhD; Izabel Marcilio1,4, MD, PhD; Manoel Barral-Netto1,5*, MD, PhD; Pablo Ivan P Ramos1*, PhD
1Center for Data and Knowledge Integration for Health, Gonçalo Moniz Institute, Fundação Oswaldo Cruz, Salvador, Brazil
2Luiz Coimbra Institute of Graduate and Engineering Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3Department of Computer Science, Federal Rural University of Pernambuco, Recife, Brazil
4Bahiana School of Medicine and Public Health (EBMSP), Salvador, Brazil
5Medicine and Precision Public Health Laboratory, Gonçalo Moniz Institute, Fundação Oswaldo Cruz, Salvador, Brazil
*these authors contributed equally

Corresponding Author:
Juliane Fonseca Oliveira, PhD
Center for Data and Knowledge Integration for Health
Gonçalo Moniz Institute, Fundação Oswaldo Cruz
Parque Tecnológico da Edf. Tecnocentro, R. Mundo, 121 - sala 315 - Trobogy
Salvador, 41745-715
Brazil
Phone: 55 71 3176 2357
Email: juliane.oliveira@fiocruz.br

Abstract
Background: Optimizing sentinel surveillance site allocation for early pathogen detection remains a challenge, particularly in
ensuring coverage of vulnerable and underserved populations.
Objective: This study evaluates the current respiratory pathogen surveillance network in Brazil and proposes an optimized
sentinel site distribution that balances Indigenous population coverage and national human mobility patterns.
Methods: We compiled Indigenous Special Health District (Portuguese: Distrito Sanitário Especial Indígena [DSEI])
locations from the Brazilian Ministry of Health and estimated national mobility routes by using the Ford-Fulkerson algorithm,
incorporating air, road, and water transportation data. To optimize sentinel site selection, we implemented a linear optimization
algorithm that maximizes (1) Indigenous region representation and (2) human mobility coverage. We validated our approach
by comparing results with Brazil’s current influenza sentinel network and analyzing the health attraction index from the
Brazilian Institute of Geography and Statistics to assess the feasibility and potential benefits of our optimized surveillance
network.
Results: The current Brazilian network includes 199 municipalities, representing 3.6% (199/5570) of the country’s cities.
The optimized sentinel site design, while keeping the same number of municipalities, ensures 100% coverage of all 34 DSEI
regions while rearranging 108 (54.3%) of the 199 cities from the existing flu sentinel system. This would result in a more
representative sentinel network, addressing gaps in 9 of 34 previously uncovered DSEI regions, which span 750,515 km² and
have a population of 1.11 million. Mobility coverage would improve by 16.8 percentage points, from 52.4% (4,598,416 paths
out of 8,780,046 total paths) to 69.2% (6,078,747 paths out of 8,780,046 total paths). Additionally, all newly selected cities
serve as hubs for medium- or high-complexity health care, ensuring feasibility for pathogen surveillance.
Conclusions: The proposed framework optimizes sentinel site allocation to enhance disease surveillance and early detection.
By maximizing DSEI coverage and integrating human mobility patterns, this approach provides a more effective and equitable
surveillance network, which would particularly benefit underserved Indigenous regions.
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Introduction
Sentinel surveillance, which involves systematic and regular
clinical sample collection for monitoring the emergence
of infectious diseases across a network of sites, is a key
component of public health strategies [1]. Ideally, a sentinel
surveillance network should be representative of the general
population while also prioritizing high-risk subpopulations,
such as Indigenous groups [2-5].

Major global sentinel networks include the Global
Influenza Surveillance and Response System established by
the World Health Organization, which operates across 127
countries [6]; the European Influenza Surveillance Network
[7], which relies on reports from general practitioners
to monitor flu activity; and SARInet plus (Severe Acute
Respiratory Infections Network) in the Americas, which
is coordinated by the Pan American Health Organization
[8]. These networks are essential for monitoring flu cases,
detecting emerging respiratory viruses, guiding public health
interventions and vaccine development, and standardizing
global sentinel surveillance practices.

The effectiveness of and capability for early pathogen
detection depend on local routine surveillance, which varies
widely across regions and faces significant challenges [6,9].
In fact, despite the falling costs of genomic sequencing and
advancements in metagenomics allowing for the monitoring
of multiple pathogens and the identification of novel agents,
low- and middle-income countries still struggle to scale up
sentinel surveillance due to financial constraints, as well as a
lack of political support for and investment in technological
and scientific developments [10-13]. As a result, sentinel sites
are often chosen based on convenience, leaving populations
at high risk and important target regions, such as Indige-
nous communities, underserved. In this context, the use of
alternative data streams to understand pathogen emergence
and the likely pathways of disease spread may maximize
the available information for improving the data-driven
allocation of surveillance resources [11,13-16]. In particular,
this approach enables the incorporation of epidemiological
intelligence into planning the target population and geograph-
ical location for sentinel clinical sample collection. Motivated
by this, we integrated human mobility data with Indigenous
population coverage to refine sentinel site selection in Brazil.

The boundaries between wild landscapes and human
settlements have been increasingly blurred by climate
change, agricultural and urban expansion, deforestation,
and landscape fragmentation. These compounding factors
heighten Indigenous communities’ vulnerability to infec-
tious disease spillover, which can rapidly spread to urban
areas [17]. In addition, Brazilian Indigenous populations
face significant barriers to health care access, limiting
their awareness of circulating diseases and disproportion-
ately increasing their disease burden [2-4,18]. During the
COVID-19 pandemic, the incidence of and mortality resulting

from the disease among Indigenous and traditional people
were higher when compared to those among the general
population, highlighting the need for tailored public health
strategies to address health disparities in these communities
[19-22].

We recently showed how human mobility patterns can
inform the redesign of existing sentinel networks to improve
early pathogen detection [13]. However, the high risk of
pathogen emergence in Indigenous communities may remain
undetected when relying solely on mobility data, potentially
delaying the identification of health threats in these popula-
tions. To address this gap, we aimed to build and expand
on our mobility-based model by explicitly incorporating
the geographical distribution of Indigenous communities in
Brazil. In particular, we aimed to provide an optimized list
of cities that could serve as strategic candidate sites for early
pathogen detection in Brazil, while also adding an equity
component into sentinel planning.

Methods
Data Sources
For our analyses, we collected data on cities within Brazil-
ian Indigenous Special Health Districts (Portuguese: Distrito
Sanitário Especial Indígena [DSEI]), which were obtained
from the Brazilian Ministry of Health, along with mobility
coverage data derived from the Ford-Fulkerson algorithm
[13,23].

To ensure the practical applicability of our results, we
also collected information on the composition of Brazil’s
current influenza sentinel surveillance network, which was
obtained through direct communication with the Ministry of
Health. We also incorporated a health attraction index, which
quantifies a city’s potential to attract individuals seeking
health care services. This index, as estimated by the Brazil-
ian Institute of Geography and Statistics [24], categorizes
cities based on their capacity to provide low-, medium-, and
high-complexity health services, and its incorporation further
refined our sentinel site selection process. The complete
dataset is available in a GitHub directory [25].
Optimization Problem
To identify the most suitable sentinel sites for maximizing
both human mobility coverage and the representation of
DSEIs, we applied an optimization approach.

Brazil’s 34 DSEIs are administrative regions designed
to manage health activities for Indigenous territories in an
ethnically and culturally sensitive manner. DSEIs encompass
1470 of Brazil’s 5570 municipalities, with partial overlap
in 46 others. Overlaps occur because Indigenous territories
often span multiple municipalities or states, and DSEIs are
designed to align with Indigenous geography rather than
political borders. In our work, we considered a DSEI to be
covered in the sentinel network if at least 1 municipality
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completely located within a DSEI was included in the design
of the network.

To define mobility coverage, we constructed an intercity
mobility network, which was represented as graph G=(V, E),
where the set of nodes (V) corresponds to cities, and the set
of links (E) represents movement frequencies between them.
Using this network, we applied the Ford-Fulkerson algorithm
[13] to model potential disease spread pathways, identifying
the most probable routes for pathogen transmission from
a source city. This approach allowed us to determine key
locations for early detection by analyzing how frequently
cities appeared at different stages in these transmission paths.
Further methodological details are available in our previously
published paper [13]. Based on the output of the Ford-Fulker-
son algorithm, we defined a city’s mobility coverage over
another city, as follows: city A covers city B if n% of the
most likely transmission paths originating from city B include
city A as their first step; n is a value between 0 and 100, and
when n=100, it is considered that city A fully covers city B.

To maximize mobility coverage while ensuring that all
DSEI regions are represented, we formulated this as an
optimization problem. Mathematically, we let xi be a binary
variable, where xi=1 if city i is selected for the sentinel
network and xi=0 otherwise. Further, we let ωi represent the
mobility coverage weight of city i. Additionally, we let Rj
denote the set of cities within DSEI region j and let N be the
total number of cities to be selected for the sentinel network.
The optimization function was then defined as follows:

max i  ωixi
subject to

1. i  xi  =  N , that is, select N cities to compose the

sentinel.
2. ∑j ∈ Rjxj ≥ 1, for all j ∈ 1, 2, . . . , 34 , that is, for

each DSEI region j, at least 1 city in Rj is selected.
The optimization problem was implemented in Python and

solved by using the Python Universal Linear Programming
library [25].
Practical Applicability
Brazil’s flu sentinel network primarily requires sites in capital
cities, with 1 site per 500,000 inhabitants, except in the
south region, where 1 site is implemented for every 300,000
inhabitants, regardless of metropolitan status. Additionally,
sample collection occurs in intensive care unit services that

cover approximately 10% of the available intensive care
unit beds in each municipality, ensuring coverage across age
groups [26].

To assess the practical applicability of our proposed
sentinel network, we compared it with Brazil’s existing flu
sentinel network to evaluate improvements in mobility and
Indigenous region coverage. We also assessed whether the
newly identified cities serve as key access points for health
care services across different levels of complexity. This
evaluation reinforced that the proposed sentinel locations
align with urban centers that attract individuals seeking health
care, making them strategic candidates for genomic sample
collection.

Ethical Considerations
This study used publicly available secondary data sources.
No personal data were collected or analyzed, ensuring the
complete anonymity of all data. Ethical approval was not
required, as the dataset consisted of anonymized, aggregated
information, following resolutions 466/2012 and 510/2016
(article 1, sections III and V) from the National Health
Council (Conselho Nacional de Saúde), Brazil. All analyses
were carried out in accordance with relevant ethical guide-
lines for data protection and research integrity.

Results
The current network includes 310 sentinel sites in 199
municipalities, representing only 3.6% (199/5570) of the
country’s cities. To compose a more representative sentinel
network for the country, we optimized the selection of 199
cities—the same number considered in Brazil’s current flu
sentinel network. In the optimized network, we achieved
100% DSEI coverage by selecting the cities (87/199, 43.7%)
that are fully inside of DSEI regions. In addition, 69.2%
of the country’s mobility pattern is covered by these cities,
translating to 6,078,747 paths (of 8,780,046 total paths)
originating from each city in the country.

In the current network, 53.8% (107/199) of the munici-
palities overlap 25 DSEIs (Figure 1). However, the follow-
ing nine DSEIs lack any sentinel coverage: Altamira (Pará),
Kayapó (Mato Grosso), Kayapó (Pará), Médio Rio Purus
(Amazonas), Parque Indígena do Xingu (Mato Grosso), Rio
Tapajós (Pará), Vale do Javari (Amazonas), Xavante (Mato
Grosso), and Yanomami (Roraima). These regions span more
than 750,515 km² and are home to more than 1.11 million
people. In addition, Brazil’s current flu sentinel network
covers only 52.4% (4,598,416 of 8,780,046 paths) of mobility
patterns (considering air, road, and waterway transportation
modes).
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Figure 1. Left: distribution of active surveillance sites within DSEIs in Brazil (2025). This map illustrates the current coverage of DSEIs by the
national influenza surveillance network, highlighting the geographical distribution of sentinel sites across Indigenous regions. Colored areas represent
DSEI regions according to the number of sentinel units. Right: proposed optimized list of municipalities within underserved Indigenous regions
not currently covered by the Brazilian flu sentinel network, along with their corresponding mobility coverage. This list, which was generated from
the optimization process, aims to improve DSEI coverage while incorporating Brazil’s national human mobility patterns. The proposed cities guide
resource allocation to enhance surveillance effectiveness in the country’s underserved Indigenous areas. DSEI: Distrito Sanitário Especial Indígena.
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By rearranging 108 cities in Brazil’s flu sentinel network—
keeping 91 cities that are already included in the current
network—we achieved 100% DSEI coverage and increased
national mobility coverage by 16.8 percentage points (from
52.4% to 69.2%). Figure 1 shows the list of municipalities
that would ensure coverage for DSEIs without sentinel sites
in Brazil’s flu sentinel network.

Finally, we analyzed the movement of people seeking
health care in the cities selected for the optimized sentinel
network. None of the identified cities had a low health
care attraction index. The majority (192/199, 96.5%) of
cities serve as hubs for high-complexity health care serv-
ices, while 3.5% (7/199) are classified as medium-complexity
hubs. Among cities within DSEIs, 33% (29/87) have a high
health care attraction index and are not currently covered by
Brazil’s flu sentinel network. Additionally, 67% (58/87) have
a medium attraction index, with 4 lacking sentinel coverage.

Discussion
In this study, we present an optimized list of 199 cities
that would enhance early pathogen detection by strategically
balancing Indigenous area coverage and human mobility
patterns. Our selection ensures 100% coverage of Indigenous
regions through 87 key cities while also capturing 69.2%
of the country’s human mobility flows. Additionally, the
feasibility of implementing sentinel surveillance in these
locations is supported by their high health care attraction
index, which indicates their role as hubs for complex health
care services.

Our findings introduce a novel approach that integra-
tes human mobility and Indigenous population coverage to

optimally rearrange Brazil’s current flu sentinel network
locations for clinical sample collection. By focusing on the
historically excluded Indigenous communities, the proposed
approach aligns with expert recommendations to enhance
surveillance in underserved areas [2-4,10], thereby ultimately
protecting vulnerable communities while improving Brazil’s
ability to detect and respond to emerging health threats.

By ensuring that all DSEIs are represented by at least 1
sentinel site, we addressed surveillance gaps in 9 previously
uncovered regions that, collectively, are home to over 1
million people. This outcome is particularly significant, given
the increased disease risks faced by Indigenous populations
residing at the wildlife-urban interface. Our mobility-based
optimization, which was combined with a restriction to 199
sentinel cities, reduced the number of cities within DSEIs
when compared to Brazil’s current flu sentinel network.
This highlights the following two key considerations: (1)
some DSEI regions covered in the existing network may
be overserved, and (2) the total number of cities selected
for sample collection may be insufficient to account for
Brazil’s geographic and epidemiological diversity, potentially
limiting early pathogen detection. Nevertheless, maintain-
ing or expanding routine sentinel surveillance is paramount
to establishing a baseline of case incidence and tracking
circulating viruses [1], which enable the early detection of
outbreaks and the introduction of emergent pathogens. For
instance, the absence of baseline testing likely contributed to
the delay in the recognition of the Zika virus outbreak in the
Americas, which peaked in 2015 to 2016 but probably spread
undetected since late 2013 [27,28].

The optimized sentinel network achieved 69.2% mobility
coverage—an improvement over Brazil’s current flu sentinel
network. This shows that incorporating Indigenous population
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criteria resulted in the optimized network’s mobility coverage
being only slightly lower than the 70% we reported [13] for
a network based solely on mobility patterns. This under-
scores the need to examine the key epidemiological prior-
ities (which may include socioeconomic deprivation and
regions with a high risk of climate-related disasters) that
should be taken into account when designing a represen-
tative sentinel network for early pathogen detection, as
these factors may impact coverage metrics. Consequently,
identifying an optimal balance between the minimum number
of cities required for sentinel surveillance and the diversity
of epidemiological priorities remains a critical area for future
research.

Establishing a sentinel surveillance network, including
a pipeline from sample collection to laboratory analy-
sis, demands substantial resources, especially in regions
with limited infrastructure. To address this challenge, we
strategically centered our focus around DSEIs—an already
in-place health administrative structure in Brazil that provides
primary care to Indigenous populations and articulates with
other networks in the Unified Health System to guarantee
access to medium- and high-complexity services. Addition-
ally, by evaluating the health attraction index and taking
into account the outdated requirement for sentinel network
implementation that was established by the Brazilian Ministry
of Health [26], we found that the newly selected cities already
offer medium- to high-complexity health care services—
an indication that may support genomic sample collection.
Leveraging this existing infrastructure not only facilitates
routine surveillance but also strengthens overall health care
capacity.

This work contributes novel insights to the literature by
addressing the need for more effective selection of epide-
miologically relevant criteria for early pathogen detection,
while promoting a more equitable distribution of sentinel
surveillance sites. To our knowledge, no previous study has
explicitly optimized both underserved community coverage
and human mobility patterns within a sentinel network

framework. Existing research may only indicate standard
criteria, such as gender, ethnicity, age, population coverage,
and incidence of a specific disease [1,5,10], or rely on a single
data source with anticipatory potential [29], without assessing
whether these criteria are sufficient to truly maximize the
chances of early threat detection. Our approach bridges this
gap by offering a data-driven framework to enhance public
health preparedness, and our findings may encourage the
scientific community to discuss more about the importance
of setting up and optimizing sentinel surveillance.

Our work has some limitations. Despite the significance
of our findings, the data used in this study primarily identify
the geographical regions encompassing Indigenous popula-
tions, without capturing other factors, such as climate-related
risks or socioeconomic disparities, that may worsen these
communities’ vulnerability to emerging new or unknown
pathogens. Further research is needed to refine surveillance
strategies tailored to these populations. Additionally, as we
previously highlighted [13], access to up-to-date mobility data
remains a key challenge. Finally, we emphasize that this
study represents a step toward more data-driven approaches
in designing sentinel surveillance networks, demonstrating
how different epidemiological criteria (exemplified by the
two considered herein) can be integrated into the optimization
process to enhance disease monitoring.

To conclude, our results indicate that our proposed
framework can be used to effectively guide the optimiza-
tion of sentinel site allocation, and the framework can be
further validated for use during new emergencies or in the
monitoring of flu syndrome in Brazil. Our results contrib-
ute to increasing the likelihood of early pathogen detection
without requiring an expansion in the number of sentinel
site locations that have already been put into place by the
Brazilian Ministry of Health, thereby addressing the critical
challenge of limited funding—a well-documented barrier to
improving global epidemiological surveillance, especially in
low- and middle-income countries.
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