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Abstract
Background: Cervical cancer remains a major global health issue. Personalized, data-driven cervical cancer prevention (CCP)
strategies tailored to phenotypic profiles may improve prevention and reduce disease burden.
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Objective: This study aimed to identify subgroups with differential cervical precancer or cancer risks using machine learning,
validate subgroup predictions across datasets, and propose a computational phenomapping strategy to enhance global CCP
efforts.
Methods: We explored the data-driven CCP subgroups by applying unsupervised machine learning to a deeply phenotyped,
population-based discovery cohort. We extracted CCP-specific risks of cervical intraepithelial neoplasia (CIN) and cervical
cancer through weighted logistic regression analyses providing odds ratio (OR) estimates and 95% CIs. We trained a super-
vised machine learning model and developed pathways to classify individuals before evaluating its diagnostic validity and
usability on an external cohort.
Results: This study included 551,934 women (median age, 49 years) in the discovery cohort and 47,130 women (median
age, 37 years) in the external cohort. Phenotyping identified 5 CCP subgroups, with CCP4 showing the highest carcinoma
prevalence. CCP2–4 had significantly higher risks of CIN2+ (CCP2: OR 2.07 [95% CI: 2.03‐2.12], CCP3: 3.88 [3.78‐3.97],
and CCP4: 4.47 [4.33‐4.63]) and CIN3+ (CCP2: 2.10 [2.05‐2.14], CCP3: 3.92 [3.82‐4.02], and CCP4: 4.45 [4.31‐4.61])
compared to CCP1 (P<.001), consistent with the direction of results observed in the external cohort. The proposed triple
strategy was validated as clinically relevant, prioritizing high-risk subgroups (CCP3-4) for colposcopies and scaling human
papillomavirus screening for CCP1-2.
Conclusions: This study underscores the potential of leveraging machine learning algorithms and large-scale routine
electronic health records to enhance CCP strategies. By identifying key determinants of CIN2+/CIN3+ risk and classifying
5 distinct subgroups, our study provides a robust, data-driven foundation for the proposed triple strategy. This approach
prioritizes tailored prevention efforts for subgroups with varying risks, offering a novel and scalable tool to complement
existing cervical cancer screening guidelines. Future work should focus on independent external and prospective validation to
maximize the global impact of this strategy.
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Introduction
Cervical cancer is the fourth most common cancer among
women, with an estimated 660,000 new cases and 350,000
deaths globally in 2022 [1,2]. It is the most common cancer
in 25 countries and the leading cause of cancer death in 37
countries. Despite being largely preventable through human
papillomavirus (HPV) vaccination [3], the high incidence and
persistence of high-risk HPV (hrHPV) remain the primary
risk factors for cervical cancer [4] and related diseases
[5-7]. In November 2020, the World Health Organization
(WHO) launched a global initiative [8] to eliminate cer-
vical cancer as a public health problem, emphasizing a
triple intervention strategy: vaccinating at least 90% of girls
against HPV by age 15 years, screening 70% of women
with a high-performance test by ages 35 and 45 years,
and treating at least 90% of detected precancerous lesions
and invasive cancers. Yet, globally, an estimated 1.6 billion
(67%) of 2.3 billion women aged 20‐70 years have never
been screened for cervical cancer [9], and in China, 5-year
screening coverage among women aged 35‐49 years was only
33%. Establishing high-quality, sustainable, and acceptable
cervical cancer prevention (CCP) with broad coverage in
resource-limited regions remains a critical challenge [10-12].
While HPV-based screening has demonstrated significant
benefits [13-18], leading the WHO to recommend it as
the primary method for CCP globally [19], its adoption in
low- and middle-income countries (LMICs) is limited due to
health inequities, resource constraints, and limited access to

affordable, clinically validated HPV tests [9,20]. Addressing
these barriers requires personalized CCP strategies.

We hypothesize that data-driven CCP subgroups,
identified using machine learning, can provide valuable
insights into CCP, enabling personalized strategies to reduce
the risk of cervical intraepithelial neoplasia (CIN) and
cervical cancer. Personalized CCP strategies depend on the
unique phenotypic profile of each individual. The population,
with its varying phenotypic diversity, comprises heteroge-
neous subgroups that reflect multiple underlying behavior
patterns and causes of disease. Clinical practice guidelines
also recommend that cervical cancer screening should be
tailored to an individual’s risk profile of HPV infection
[21,22]. Therefore, the discovery of CCP subgroups could
inform and improve the development of new screening
strategies, public health policies, and clinical decision-mak-
ing, as well as contribute to trial design, despite the com-
plex causal relationships among individual risk factors [4].
To date, no study has identified CCP subgroups. The
incomplete understanding of these subgroups across large,
diverse populations, coupled with insufficient validation
through various methods, has hindered the implementation
of the triple intervention strategy. Machine learning-based
approaches allow for the phenotyping of entire populations
based on individual characteristics, enabling the predic-
tion of phenotypic clusters and disease onset [23,24].
Additionally, by defining a computational phenomap—a
mathematical construct of individual phenotypes based on
baseline measures [24]—computational methods can assess
the heterogeneous risk effects of distinct subpopulations.
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This approach accounts for the phenotypic diversity within
populations and their subsequent histopathological diagnoses.

As such, in this study, we aimed to: (1) test the hypoth-
esis that distinct CCP subgroups exhibit differential risks
of cervical precancer or cancer based on their complex
phenotypic profiles (development); (2) demonstrate internal
validity (within a dataset and across methods), as well as
external and diagnostic validity (across datasets; validation);
and (3) propose a computational phenomapping strategy with
clinical relevance and pathways to improve global access to
CCP (impact).

Methods
Data Source
Deidentified data were extracted from electronic health
records (EHRs) of the national cervical cancer screening

program in China. In summary, our study included eligible
women aged 25‐65 years who participated in the cervical
cancer screening. Data from Fujian Province (2014‐2023)
were used to establish a discovery cohort to train the models.
Additionally, EHR data from 5 other regions—Shenzhen
City, Foshan City, Hubei Province, Gansu Province, and
Guizhou Province—were employed as an external cohort
to validate the generalizability of the models across diverse
populations. Details on the study design, as illustrated in
Figure 1, are available in Appendix S1 in Multimedia
Appendix 1.
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Figure 1. Study design. (A) We explored the data-driven cervical cancer prevention (CCP) subgroups by applying unsupervised machine learning
to a deeply phenotyped, population-based discovery cohort. In this population-based, external, and diagnostic validation study, we aimed to use
different machine learning methods to test our hypothesis (B) that individuals within distinct CCP subgroups exhibit differential risks of cervical
precancer or cancer based on their complex phenotypic profiles. After identifying CCP subgroups, we extracted CCP-specific risks of outcomes of
interest (C) conditionally on all predefined and algorithmically selected features through weighted logistic regression analyses providing average
odds ratio (OR) estimates. Additionally, we stratified individuals based on their key features to conduct subgroup analyses. Finally, we trained a
supervised machine learning model and developed pathways (D) to classify individuals using features most consistently linked to CCP subgroups
before evaluating its diagnostic validity and usability on an external cohort. Pathologically abnormal diagnoses consisted of CIN1, CIN2, CIN3, and
carcinoma. UMAP: uniform manifold approximation and projection; CCP: cervical cancer prevention; LCA: latent class analysis; NILM: negative for
intraepithelial lesion or malignancy; CIN1: cervical intraepithelial neoplasia grade 1; CIN2: cervical intraepithelial neoplasia grade 2; CIN3: cervical
intraepithelial neoplasia grade 3; CIN2+: cervical intraepithelial neoplasia grade 2 or worse; CIN3+: cervical intraepithelial neoplasia grade 3 or
worse; OR: odds ratio; XGBoost: eXtreme gradient boosting; SCREENing: clinical Subgroups for CeRvical cancEr prEvention using computational
phenomaps and machine learning; hrHPV: high-risk human papillomavirus; HPV: human papillomavirus.

Ethical Considerations
This study was approved by the Ethics Committee of
Fujian Maternal and Child Health Hospital (2023KY141). No
additional informed consent was required for this analysis.
All participant data were deidentified prior to analysis.
No images of identifiable individuals are included in the
manuscript or supplementary materials.
Data Preprocessing
In line with the consensus that detecting and treating CIN2
or CIN3 [25,26], key premalignant cervical conditions, can
prevent progression to invasive cervical cancer, our primary
and secondary outcomes were CIN2+ and CIN3+, respec-
tively. These outcomes were confirmed by histopathology and
align with those commonly used in previous studies [26-29].
We selected features based on prior research [22,30-34]

and input from clinical, biostatistical, and epidemiological
experts. These included demographic characteristics, cervical
cancer screening history, HPV infection status, and medi-
cal examination results. Details on data preprocessing are
provided in Appendix S1 in Multimedia Appendix 1.
Unsupervised Machine Learning
We calculated phenotypic distances between individuals
using Gower’s distance [35], a dissimilarity metric suita-
ble for mixed continuous and categorical data. To visual-
ize phenotypic variation in the population, we employed
uniform manifold approximation and projection (UMAP) [36]
to construct a phenomap. This approach enhances interpret-
ability by presenting the distributions of individuals within
a multidimensional phenotypic space, capturing the full
range of baseline phenotypes. To identify and categorize
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the underlying CCP subgroups in which individuals exhibit
phenotypic similarity, we employed and compared 3 methods
to capture and validate CCP diversity: k-means [37], latent
class analysis [38], and UMAP [39]. The final number of
CCP subgroups was determined by reaching a consensus
across all 3 approaches. Further details are provided in
Appendix S1 in Multimedia Appendix 1.
Risk Estimates and an Algorithm to
Identify Subgroups
To further explore the association between CCP subgroups
and outcomes of interest, we calculated CCP-specific risk
estimates (odds ratios, ORs) [40] and 95% CIs using inverse
probability weights [41]. Additionally, we trained an eXtreme
gradient boosting (XGBoost) algorithm [42] to predict 5 CCP
subgroups with differential risks of outcomes, as described
in our previous work [23]. Briefly, the model was trained
and calibrated using an isotonic regression algorithm, and
internally validated in the discovery cohort. The SHapley
Additive exPlanations (SHAP) method was employed to
identify each feature’s relative contribution [23,43] and
enhance the model’s explainability. Model performance was
evaluated using OVR AUROC (one-versus-rest area under
the receiver operating characteristics curve, extended for
multiple classes), Brier score, and calibration curves as
primary metrics. In external validation, the model’s diagnos-
tic validity was assessed by comparing CCP-specific ORs
between datasets to evaluate cross-cluster and cross-dataset
risk differences. Further details are provided in Appendix S1
in Multimedia Appendix 1.
Developing Pathways to Improve Impact
We named our computational phenomapping strategy
SCREENing (clinical Subgroups for CeRvical cancEr
prEvention using computational pheNomaps and machine
learnING). To assess real-world usability and effectiveness,

we consulted 11 clinical experts and 3 epidemiologists on
its clinical relevance, justification, result interpretability, and
potential impact on screening strategies and public health
policymaking.
Statistical Analysis
Given the importance of menopause in women, we specifi-
cally examined CCP-specific risks across age using spline
analyses, with interaction tests to assess whether age modified
these risks. Subgroup analyses were also performed by
stratifying women based on key features. Details are provided
in Appendix S1 in Multimedia Appendix 1. We followed the
Guidelines for Developing and Reporting Machine Learn-
ing Predictive Models in Biomedical Research [44] and the
Transparent Reporting of a multivariable prediction model
for Individual Prognosis or Diagnosis statement [45]. Data
management was performed using the lulab.utils R package
[46]. All analyses [47] were conducted using Python (version
3.11.6), SAS Enterprise Guide (version 7.1), and R (version
4.3.2; R Foundation for Statistical Computing).

Results
Characteristics of Cohorts
The study included 551,934 women (median age 49 years
[42,48]; 10% infected with hrHPV, 1.2% with HPV-16, and
0.6% with HPV-18) in the discovery cohort (Table 1) and
47,130 women (median age 37 years [32,45]; 16.6% with
hrHPV, 3.9% with HPV-16, and 1.4% with HPV-18) in the
external cohort (Table S3 in Multimedia Appendix 1). In
the discovery cohort, 9932 were pathologically diagnosed
with cervical abnormalities, including 533 with carcinoma.
In contrast, the external cohort showed a higher prevalence of
cervical abnormalities at 11.1% (5251).

Table 1. Characteristics by cervical cancer prevention (CCP) subgroups in the discovery cohort. Categorical features are summarized as numbers
(percentages), and continuous features as median (Q1, Q3), as appropriate.

Characteristics
CCP0a

(n=542,002)
CCP1
(n=2242)

CCP2
(n=3770)

CCP3
(n=2278)

CCP4
(n=1642)

Total
(n=551,934)

Age (years), median (Q1, Q3) 48.00 (42.00,
54.00)

48.00 (42.00,
54.00)

48.00 (43.00,
55.00)

51.00 (44.00,
57.00)

48.00 (43.00,
54.00)

49.00 (42.00,
54.00)

Race/ethnicity, n (%)
  Han 534,023 (98.53) 2214 (98.75) 3707 (98.33) 2236 (98.16) 1607 (97.87) 543,787 (98.52)
  Others 4528 (0.84) 15 (0.67) 30 (0.80) 29 (1.27) 20 (1.22) 4622 (0.84)
  Missing 3451 (0.64) 13 (0.58) 33 (0.88) 13 (0.57) 15 (0.91) 3525 (0.64)
History of cervical cancer screening, n (%)
  Missing 234 (0.04) 0 (0.00) 2 (0.05) 0 (0.00) 0 (0.00) 236 (0.04)
  No 411,029 (75.84) 0 (0.00) 3768 (99.95) 2278 (100.00) 1642 (100.00) 418,717 (75.86)
  Yes 130,739 (24.12) 2242 (100.00) 0 (0.00) 0 (0.00) 0 (0.00) 132,981 (24.09)
Time of previous screening, n (%)
  Missing 785 (0.14) 13 (0.58) 2 (0.05) 0 (0.00) 0 (0.00) 800 (0.14)
  No previous screening 411,029 (75.84) 0 (0.00) 3768 (99.95) 2278 (100.00) 1642 (100.00) 418,717 (75.86)
  Within 3 years from now 65,519 (12.09) 1091 (48.66) 0 (0.00) 0 (0.00) 0 (0.00) 66,610 (12.07)
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Characteristics
CCP0a

(n=542,002)
CCP1
(n=2242)

CCP2
(n=3770)

CCP3
(n=2278)

CCP4
(n=1642)

Total
(n=551,934)

  More than 3 years ago 64,669 (11.93) 1138 (50.76) 0 (0.00) 0 (0.00) 0 (0.00) 65,807 (11.92)
Gynecological examination, n (%)
  Missing 2180 (0.40) 1 (0.04) 1 (0.03) 0 (0.00) 0 (0.00) 2182 (0.40)
  Normal 417,921 (77.11) 1508 (67.26) 3763 (99.81) 1568 (68.83) 0 (0.00) 424,760 (76.96)
  Abnormal 121,901 (22.49) 733 (32.69) 6 (0.16) 710 (31.17) 1642 (100.00) 124,992 (22.65)
Positive for high-risk HPVb, c, n (%)
  No 496,234 (91.56) 99 (4.42) 206 (5.46) 27 (1.19) 67 (4.08) 496,633 (89.98)
  Yes 45,768 (8.44) 2143 (95.58) 3564 (94.54) 2251 (98.81) 1575 (95.92) 55,301 (10.02)
Positive for low-risk HPVd, n (%)
  No 534,313 (98.58) 2035 (90.77) 3664 (97.19) 1813 (79.59) 1602 (97.56) 543,427 (98.46)
  Yes 7689 (1.42) 207 (9.23) 106 (2.81) 465 (20.41) 40 (2.44) 8507 (1.54)
Positive for possible high-risk HPVe, n (%)
  No 537,999 (99.26) 2130 (95.00) 3686 (97.77) 1987 (87.23) 1617 (98.48) 547,419 (99.18)
  Yes 4003 (0.74) 112 (5.00) 84 (2.23) 291 (12.77) 25 (1.52) 4515 (0.82)
Number of HPV infections 0.00 (0.00,

0.00)
1.00 (1.00, 2.00) 1.00 (1.00, 1.00) 2.00 (2.00, 3.00) 1.00 (1.00, 1.00) 0.00 (0.00,

0.00)
Positive for HPV-16, n (%)
  No 538,375 (99.33) 1684 (75.11) 2745 (72.81) 1494 (65.58) 1199 (73.02) 545,497 (98.83)
  Yes 3627 (0.67) 558 (24.89) 1025 (27.19) 784 (34.42) 443 (26.98) 6437 (1.17)
Positive for HPV-18, n (%)
  No 539,716 (99.58) 2002 (89.30) 3442 (91.30) 1887 (82.84) 1508 (91.84) 548,555 (99.39)
  Yes 2286 (0.42) 240 (10.70) 328 (8.70) 391 (17.16) 134 (8.16) 3379 (0.61)
Positive for HPV-31, n (%)
  No 540,143 (99.66) 2138 (95.36) 3662 (97.14) 2063 (90.56) 1588 (96.71) 549,594 (99.58)
  Yes 1859 (0.34) 104 (4.64) 108 (2.86) 215 (9.44) 54 (3.29) 2340 (0.42)
Positive for HPV-33, n (%)
  No 539,290 (99.50) 2096 (93.49) 3608 (95.70) 1978 (86.83) 1562 (95.13) 548,534 (99.38)
  Yes 2712 (0.50) 146 (6.51) 162 (4.30) 300 (13.17) 80 (4.87) 3400 (0.62)
Positive for HPV-35, n (%)
  No 540,820 (99.78) 2197 (97.99) 3708 (98.36) 2160 (94.82) 1622 (98.78) 550,507 (99.74)
  Yes 1182 (0.22) 45 (2.01) 62 (1.64) 118 (5.18) 20 (1.22) 1427 (0.26)
Positive for HPV-39, n (%)
  No 537,675 (99.20) 2092 (93.31) 3638 (96.50) 2021 (88.72) 1600 (97.44) 547,026 (99.11)
  Yes 4327 (0.80) 150 (6.69) 132 (3.50) 257 (11.28) 42 (2.56) 4908 (0.89)
Positive for HPV-45, n (%)
  No 540,998 (99.81) 2205 (98.35) 3741 (99.23) 2204 (96.75) 1632 (99.39) 550,780 (99.79)
  Yes 1004 (0.19) 37 (1.65) 29 (0.77) 74 (3.25) 10 (0.61) 1154 (0.21)
Positive for HPV-51, n (%)
  No 537,654 (99.20) 2053 (91.57) 3590 (95.23) 1954 (85.78) 1565 (95.31) 546,816 (99.07)
  Yes 4348 (0.80) 189 (8.43) 180 (4.77) 324 (14.22) 77 (4.69) 5118 (0.93)
Positive for HPV-52, n (%)
  No 525,904 (97.03) 1622 (72.35) 3019 (80.08) 1396 (61.28) 1276 (77.71) 533,217 (96.61)
  Yes 16,098 (2.97) 620 (27.65) 751 (19.92) 882 (38.72) 366 (22.29) 18,717 (3.39)
Positive for HPV-56, n (%)
  No 539,439 (99.53) 2133 (95.14) 3682 (97.67) 2076 (91.13) 1610 (98.05) 548,940 (99.46)
  Yes 2563 (0.47) 109 (4.86) 88 (2.33) 202 (8.87) 32 (1.95) 2994 (0.54)
Positive for HPV-58, n (%)
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Characteristics
CCP0a

(n=542,002)
CCP1
(n=2242)

CCP2
(n=3770)

CCP3
(n=2278)

CCP4
(n=1642)

Total
(n=551,934)

  No 534,764 (98.66) 1877 (83.72) 3297 (87.45) 1691 (74.23) 1413 (86.05) 543,042 (98.39)
  Yes 7238 (1.34) 365 (16.28) 473 (12.55) 587 (25.77) 229 (13.95) 8892 (1.61)
Positive for HPV-59, n (%)
  No 540,034 (99.64) 2180 (97.23) 3710 (98.41) 2124 (93.24) 1620 (98.66) 549,668 (99.59)
  Yes 1968 (0.36) 62 (2.77) 60 (1.59) 154 (6.76) 22 (1.34) 2266 (0.41)
Positive for HPV-66, n (%)
  No 540,640 (99.75) 2186 (97.50) 3720 (98.67) 2180 (95.70) 1614 (98.29) 550,340 (99.71)
  Yes 1362 (0.25) 56 (2.50) 50 (1.33) 98 (4.30) 28 (1.71) 1594 (0.29)
Positive for HPV-68, n (%)
  No 538,250 (99.31) 2124 (94.74) 3654 (96.92) 2018 (88.59) 1604 (97.69) 547,650 (99.22)
  Yes 3752 (0.69) 118 (5.26) 116 (3.08) 260 (11.41) 38 (2.31) 4284 (0.78)
Positive for HPV-11, n (%)
  No 541,435 (99.90) 2218 (98.93) 3764 (99.84) 2235 (98.11) 1631 (99.33) 551,283 (99.88)
  Yes 567 (0.10) 24 (1.07) 6 (0.16) 43 (1.89) 11 (0.67) 651 (0.12)
Positive for HPV-42, n (%)
  No 540,587 (99.74) 2199 (98.08) 3745 (99.34) 2175 (95.48) 1639 (99.82) 550,345 (99.71)
  Yes 1415 (0.26) 43 (1.92) 25 (0.66) 103 (4.52) 3 (0.18) 1589 (0.29)
Positive for HPV-43, n (%)
  No 541,315 (99.87) 2212 (98.66) 3759 (99.71) 2210 (97.01) 1641 (99.94) 551,137 (99.86)
  Yes 687 (0.13) 30 (1.34) 11 (0.29) 68 (2.99) 1 (0.06) 797 (0.14)
Positive for HPV-44, n (%)
  No 540,505 (99.72) 2212 (98.66) 3753 (99.55) 2201 (96.62) 1636 (99.63) 550,307 (99.71)
  Yes 1497 (0.28) 30 (1.34) 17 (0.45) 77 (3.38) 6 (0.37) 1627 (0.29)
Positive for HPV-6, n (%)
  No 540,748 (99.77) 2207 (98.44) 3748 (99.42) 2199 (96.53) 1635 (99.57) 550,537 (99.75)
  Yes 1254 (0.23) 35 (1.56) 22 (0.58) 79 (3.47) 7 (0.43) 1397 (0.25)
Positive for HPV-81, n (%)
  No 539,354 (99.51) 2178 (97.15) 3747 (99.39) 2136 (93.77) 1632 (99.39) 549,047 (99.48)
  Yes 2648 (0.49) 64 (2.85) 23 (0.61) 142 (6.23) 10 (0.61) 2887 (0.52)
Positive for HPV-53, n (%)
  No 538,445 (99.34) 2139 (95.41) 3689 (97.85) 2015 (88.45) 1617 (98.48) 547,905 (99.27)
  Yes 3557 (0.66) 103 (4.59) 81 (2.15) 263 (11.55) 25 (1.52) 4029 (0.73)
Cervical cytology examination, n (%)
  NILMf 42,746 (7.89) 489 (21.81) 721 (19.12) 438 (19.23) 345 (21.01) 44,739 (8.11)
  No examination due to

negative for high-risk
HPV

487,235 (89.90) 3 (0.13) 7 (0.19) 0 (0.00) 0 (0.00) 487,245 (88.28)

  ASC-USg 7577 (1.40) 808 (36.04) 1185 (31.43) 721 (31.65) 531 (32.34) 10822 (1.96)
  LSILh 2245 (0.41) 488 (21.77) 772 (20.48) 546 (23.97) 286 (17.42) 4337 (0.79)
  AGCi 99 (0.02) 18 (0.80) 29 (0.77) 13 (0.57) 30 (1.83) 189 (0.03)
  Missing but positive for

high-risk HPV
779 (0.14) 99 (4.42) 231 (6.13) 159 (6.98) 81 (4.93) 1349 (0.24)

  ASC-Hj 902 (0.17) 147 (6.56) 363 (9.63) 163 (7.16) 145 (8.83) 1720 (0.31)
  AGC-FNk 7 (0.00) 4 (0.18) 9 (0.24) 3 (0.13) 6 (0.37) 29 (0.01)
  HSILl 411 (0.08) 185 (8.25) 443 (11.75) 233 (10.23) 215 (13.09) 1487 (0.27)
  Carcinoma 1 (0.00) 1 (0.04) 10 (0.27) 2 (0.09) 3 (0.18) 17 (0.00)
Histopathological diagnosis, n (%)
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Characteristics
CCP0a

(n=542,002)
CCP1
(n=2242)

CCP2
(n=3770)

CCP3
(n=2278)

CCP4
(n=1642)

Total
(n=551,934)

  NILM 542,002
(100.00)

0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 542,002 (98.20)

  CIN1m 0 (0.00) 1542 (68.78) 2456 (65.15) 1445 (63.43) 948 (57.73) 6391 (1.16)
  CIN2n 0 (0.00) 22 (0.98) 29 (0.77) 15 (0.66) 16 (0.97) 82 (0.01)
  CIN2/3o 0 (0.00) 551 (24.58) 1113 (29.52) 716 (31.43) 485 (29.54) 2865 (0.52)
  CIN3p 0 (0.00) 16 (0.71) 19 (0.50) 13 (0.57) 13 (0.79) 61 (0.01)
  Carcinoma 0 (0.00) 111 (4.95) 153 (4.06) 89 (3.91) 180 (10.96) 533 (0.10)

aCCP: cervical cancer prevention.
bHPV: human papillomavirus.
chigh-risk HPV: HPV-16/18/31/33/35/39/45/51/52/56/58/59/66/68.
dlow-risk HPV: HPV-11/40/42/43/44/6/61/72/81.
epossible high-risk HPV: HPV-53/70/73/82/83.
fNILM: negative for intraepithelial lesion or malignancy.
gASC-US: atypical squamous cells of undetermined significance.
hLSIL: low-grade squamous intraepithelial lesion.
iAGC: atypical glandular cells.
jASC-H: atypical squamous cells, cannot exclude high-grade squamous intraepithelial lesion.
kAGC-FN: AGC-favor neoplastic.
lHSIL: high-grade squamous intraepithelial lesion.
mCIN1: cervical intraepithelial neoplasia grade 1.
nCIN2: cervical intraepithelial neoplasia grade 2.
oCIN2/3 is reflective of CIN2 or CIN3, i.e., HSIL; carcinoma consists of AIS (adenocarcinoma in situ) and cancer.
pCIN3: cervical intraepithelial neoplasia grade 3.

Data-Driven Subgroups
The discovery cohort was extensively phenotyped based
on 31 features (Figure 2). Visual assessment of the risk
phenomaps revealed that nearly all 6 features were heter-
ogeneously distributed in the phenomic space to varying
degrees, indicating distinct phenotypic neighborhoods. In the
discovery cohort, the CCP subgroups identified across 3
algorithms and all metrics were stable (Figure 3A and Table
S4 in Multimedia Appendix 1), with the optimal number
of clusters being 4 in the subpopulation of 9932 women
with cervical abnormalities. The distribution of cervical
abnormalities across subgroups is presented in Figure 3B.
Additionally, women with normal screening results were
treated as another CCP subgroup (Table 1). Following a

detailed analysis of each subgroup’s features, we labeled the
5 identified subgroups as follows: (0) healthy, (1) early onset,
(2) screening-targeted, (3) late onset, and (4) carcinoma-spe-
cific. CCP1 had the highest prevalence of CIN1, while CCP4
had the highest prevalence of carcinoma (Figure 3C). Most
features were able to discriminate well between the sub-
groups. In the external cohort, the subgroups were consis-
tent (Table S3 in Multimedia Appendix 1), though CCP1
was not identified due to missing information on previous
screenings. The distribution of subgroups was similar across
the discovery and external cohorts, with CCP0 being the most
common subgroup and CCP4 having the highest prevalence
of carcinoma.
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Figure 2. Manifold representations of the phenotypic architecture of 9932 individuals pathologically diagnosed with cervical abnormality from the
discovery cohort (N=551,934). A total of 9932 individuals are embedded in the phenotypic space based on dissimilarity metrics (Gower’s distance)
derived from 31 included phenotypic features; thus, phenotypically similar women tend to be topologically closer. In the subfigures, each dot
represents an individual, with coloring based on the value of features. Since the dimensionality reduction is nonlinear, axes have been omitted,
and only the comparisons between distances are meaningful. Pathologically abnormal diagnoses consisted of CIN1, CIN2, CIN3, and carcinoma.
14 high-risk HPV: HPV-16/18/31/33/35/39/45/51/52/56/58/59/66/68; low-risk HPV: HPV-11/40/42/43/44/6/61/72/81; possible high-risk HPV: HPV-
53/70/73/82/83.
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Figure 3. Determination of the 5 CCP subgroups with differential risks of CIN2+/CIN3+. (A) Elbow plot to determine the optimal number of
clusters. Across 3 algorithms (k-means, LCA, and UMAP), identified CCP subgroups were stable, with the optimal number of clusters being 4 in
9932 women pathologically diagnosed with cervical abnormality. Women with normal screening test findings were considered as one independent
CCP subgroup free of cervical cancer (Table 1). (B) Relative prevalence of pathologically abnormal diagnoses across CCP subgroups. For each
pathologically abnormal diagnosis, the highest prevalence was designated as 100%, and the prevalence in each of the other CCP subgroups was
relative to that prevalence (0‐100). (C) Characteristics of CCP subgroups. (D) CCP-specific risk estimates of CIN2+/CIN3+ compared with the CCP1
subgroup. Adjusted ORs (dots) and 95% CIs (error bars) are presented. The dashed line marks an OR of 1.00; lower limits of 95% CIs with values
greater than 1.00 indicate significantly increased risk. (E) The CCP-specific risks of CIN2+/CIN3+ across age compared with the CCP1 subgroup.
Age was transformed into a restricted cubic spline function for the analyses. P value was based on 2-sided Chi-squared test on the interaction between
age and CCP subgroups. A P value of <.05 suggests that age modifies the association between CCP subgroups and CIN2+/CIN3+. Light-colored
bands represent 95% CIs. (F) Subgroup analyses of CCP-specific risk estimates of CIN2+/CIN3+ compared with the CCP1 subgroup. Adjusted
ORs (dots) and 95% CIs (error bars) are presented. The dashed line marks an OR of 1.00; lower limits of 95% CIs with values greater than
1.00 indicate significantly increased risk. Empty subfigures suggest insufficient samples for the analysis. AIC: Akaike information criterion; BIC:
Bayesian information criterion; SABIC: sample size-adjusted BIC; CCP: cervical cancer prevention; CIN1: cervical intraepithelial neoplasia grade 1;
CIN2: cervical intraepithelial neoplasia grade 2; CIN3: cervical intraepithelial neoplasia grade 3; CIN2+: cervical intraepithelial neoplasia grade 2 or
worse; CIN3+: cervical intraepithelial neoplasia grade 3 or worse; OR: odds ratio; hrHPV: high-risk human papillomavirus.

Risk Estimates and Diagnostic Validity
In the diagnostic validity analysis of the discovery cohort
(Figure 3D), women in CCP2-4 exhibited a significantly
increased risk of both CIN2+ (CCP2: OR 2.07, 95% CI
[2.03‐2.12]; CCP3: 3.88 [3.78‐3.97]; CCP4: 4.47 [4.33‐4.63])
and CIN3+ (2.10 [2.05‐2.14]; 3.92 [3.82‐4.02]; 4.45 [4.31‐
4.61]) compared to CCP1. Risk analysis across age groups
showed that the risks for CIN2+/CIN3+ were evident in the
age ranges of 34‐47 and 60‐65 in CCP2, 26‐61 in CCP3, and
35‐60 in CCP4, respectively (Figure 3E). Interaction analyses
between age and subgroups revealed that the risks of CIN2+/
CIN3+ increased with age in the 34‐39 and 60‐65 age ranges
in CCP2, in the 35-43/44 age range in CCP4. Conversely, the

risks decreased with age in CCP2 within the 40‐47 age range
and in CCP4 within the 45‐60 age range (all P for interaction
<.001). Subgroup analyses indicated that the risks for CIN2+/
CIN3+ were present across nearly all subgroups, categorized
by age, race, gynecological examination, screening history,
hrHPV infection, and number of infections (Figure 3F and
Table S5 in Multimedia Appendix 1).

SHAP analysis identified the top 10 key features
for prediction, including the number of infections, screen-
ing history, gynecological examination, hrHPV infection,
cervical cytology, time since previous screening, HPV-16/18
infection, age, and possible hrHPV infection (Figure 4A). The
final XGBoost model demonstrated excellent discrimination
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(OVR AUROC 0.995 [0.994‐0.996]), with CCP0 showing
the lowest AUROC of 0.987 [0.985‐0.989], and strong
calibration (Brier score 0.021 [0.020‐0.022]) (Figure 4B–C
and Table S6 in Multimedia Appendix 1). For the exter-
nal diagnostic validity of the identified subgroups, women
in CCP2-4 showed differential and increased risk for both
CIN2+ (CCP2: 5.54 [3.27‐8.86]; CCP3&4: 26.56 [24.44‐
28.88]) and CIN3+ (7.53 [3.90‐13.18]; 29.47 [26.46‐32.86])
compared to CCP0. The cross-cluster risk differences were
consistent across the discovery and external cohorts. To

illustrate the model’s explainability, Figure 4D presents the
SHAP plot for a woman in the CCP4 subgroup, who had no
previous screening and tested positive for HPV-16 and CIN1
based on cervical cytology. Given this information, our model
predicted an elevated risk of CCP4. Additionally, a screenshot
of our browser-accessible tool based on the model developed
in this study, to clarify how the model can be easily accessed
via a browser in clinical settings, is shown in Figure S1 in
Multimedia Appendix 1.

Figure 4. Feature importance, discrimination, calibration, explainability, and external diagnostic validity. (A) The top 20 features for prediction
of CCP subgroups with differential risks of CIN2+/CIN3+ are shown. The y-axis represents the features included in the model development (in
descending order of importance), and the x-axis indicates the mean of SHAP values. The 10 most important features were selected to train the final
parsimonious model. (B) ROC curves in the internal validation from the discovery cohort. The dark purple line represents the macro-average of
all 5 CCP subgroups. (C) Calibration curve of the alignment between predicted and observed CCP subgroups for the final model. The solid line
corresponds to the calibration curve, with the dashed line corresponding to a reference for perfect calibration (ie, perfect alignment between the
predicted and observed probabilities). (D) Explanation of the SCREENing tool (ie, the inference process of the final model with a woman in the
CCP4 subgroup). (E) In external validation, to assess cross-cluster and cross-dataset risk differences, the model was measured and compared by
diagnostic validity (CCP-specific ORs) between datasets. CCP: cervical cancer prevention; hrHPV: high-risk human papillomavirus; lrHPV: low-risk
human papillomavirus; SHAP: SHapley Additive exPlanations; AUC: area under receiver operating characteristics curve; XGBoost: eXtreme
gradient boosting.

Developed Pathways
Based on our analyses, we proposed a triple SCREENing
strategy to prioritize CCP subgroups with varying CIN2+/
CIN3+ risks: (1) top priority for colposcopy referrals to
women in CCP3-4 in resource-constrained settings, (2) higher
priority given for scaling up organized, population-based
HPV screening programs (with adequate follow-up) for

women in CCP1-2, and (3) lowest priority for CCP0 women,
with large-scale screening limited to resource-rich settings.
To assess its impact, we evaluated the real-world usability
and effectiveness of SCREENing. Sample clinicians reported
that the identified subgroups and included features were
clinically relevant for risk-based cervical cancer management,
particularly for colposcopy referrals in CCP3-4. They also
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found the strategy transparent, interpretable, and generaliz-
able across clinical settings, with the browser-accessible
model feasible and effective for indicating risk probabilities
during consultations. Sample epidemiologists highlighted the
strategy’s potential to advance screening practices, public
health policies, and trial design by enabling phenomapping,
estimating subgroup-specific risk profiles, and establishing
high-performance, cost-effective CCP for resource-limited
regions. They noted its capability for testing effectiveness and
cost-effectiveness in well-designed, prospective studies.

Discussion
This study represents one of the largest EHR analyses
to date, employing diverse machine learning methods and
robust validation approaches to classify subgroups and
predict CIN2+/CIN3+ risk. By leveraging comprehensive and
interconnected phenotypic features, our study identified 5
CCP subgroups with varying risks. CCP2–4 had significantly
higher risks of CIN2+ (CCP2: OR 2.07 [95% CI: 2.03‐2.12],
CCP3: 3.88 [3.78‐3.97], CCP4: 4.47 [4.33‐4.63]) and CIN3+
(CCP2: 2.10 [2.05‐2.14], CCP3: 3.92 [3.82‐4.02], CCP4:
4.45 [4.31‐4.61]) compared to CCP1 (P<.001), consistent
with the direction of results observed in the external cohort.
Our findings offer a robust foundation for the proposed
triple SCREENing strategy. This tailored approach prioritizes
high-risk subgroups, providing actionable insights for cervical
cancer prevention, particularly in LMICs.

To this end, various approaches, including single-cell
transcriptomic analysis [49], sequence and phylogenetic
analysis [50,51], and cluster analysis [48,52-54], have been
employed to define genetic and cellular heterogeneity [55] in
cervical cancer. These studies suggest that distinct subpo-
pulations exhibit heterogeneous risk effects, linking individ-
ual features to varying absolute cervical cancer risk. Our
5 CCP subgroups align with findings from 2 major popu-
lation-based clustering studies [56,57]. One study used a
Poisson regression–based CEM clustering algorithm [56] to
identify clusters of Indian states with similar cervical cancer
incidence patterns. However, due to its focus on approximat-
ing missing data on sexual behavior, HPV prevalence, or
cervical cancer incidence [56], the clusters were not ideal
for screening purposes. That study did not provide sufficient
details to estimate cluster-specific risks, and its reliance on
features not typically available in routine screening limited
real-world applicability. Additionally, strict model assump-
tions and the inclusion of relatively few features further
constrained its generalizability. Another study performed
hierarchical clustering of HPV-related methylation sites to
identify subgroups of patients with cervical cancer [57].
While informative for prognosis and clinical management,
the 3 clusters were not designed for cervical cancer screen-
ing. Instead, they are more suitable for guiding progno-
sis assessment, refining risk stratification, and optimizing
treatment strategies in clinical practice.

In contrast, our study, specifically designed for cervi-
cal cancer screening, identified complex interactions among
factors such as the number of infections, screening history,

gynecological examination, hrHPV and HPV-16/18 infec-
tions, cervical cytology, time since previous screening,
age, and possible hrHPV infection as key determinants of
the 5 CCP subgroups with varying CIN2+/CIN3+ risks.
Compared to previous studies [56,57], our design and
identified subgroups are more representative of real-world
cervical cancer screening. Leveraging the comprehensive
and interconnected phenotypic features from EHRs, our
algorithm extracted CCP-specific risk estimates, providing
a robust foundation for the proposed triple SCREENing
strategy. This strategy prioritizes subgroups with differential
CIN2+/CIN3+ risks, offering a tailored approach to CCP.
We recommend implementing SCREENing as a supplemen-
tal tool to existing guidelines [58-60], while accounting for
the unique priorities and constraints of LMICs. SCREENing
enables clinicians to perform effective, risk-based screening,
followed by adequate diagnosis, surveillance, and manage-
ment, while empowering policy makers to optimize public
health policies and resource allocation. This approach has the
potential to mitigate resource shortages in LMICs, reduce
delays in diagnosis and treatment, and enhance screening
efficiency by focusing efforts on high-risk populations,
ultimately maximizing population-level benefits. Addition-
ally, our analysis highlights the modifying effect of age on
CCP-specific CIN2+/CIN3+ risks, emphasizing the need for
greater attention to menopause and age [61] in cervical cancer
screening strategies.

Methodologically, our study advances the external
validation of machine learning algorithms for identifying
subgroups and predicting cervical precancer or cancer risk
using large-scale routine EHRs—a rarity in previous studies,
which have often been limited to small samples. Our robust,
structured framework of internal, external, and diagnostic
validation enhances the acceptability and generalizability of
unsupervised and supervised machine learning approaches in
routine CCP and is adaptable to other diseases. The identi-
fied subgroups demonstrated good accuracy and diagnostic
validity for CIN2+/CIN3+ both within and across datasets,
though performance was lower in scenarios with missing key
features. Differences in diagnostic validity across datasets
may reflect variations in HPV infection patterns and previous
screening histories, which influence the distribution of risk
factors. Our findings of 5 subgroups and the proposed
strategy are novel, offering a framework for assessing
validity in screening, follow-up surveillance, and treatment
for cervical cancer. This study signals the potential for more
effective and targeted approaches to CCP.

This study represents one of the largest EHR analyses to
date, employing multiple machine learning methods, datasets,
and validation approaches to classify subgroups and predict
CIN2+/CIN3+ risk. However, there are several limitations.
First, a major limitation of this study is that our models
were not externally validated beyond China. HPV infection
patterns and the epidemiology of cervical abnormalities differ
across countries and regions, which may impact the generaliz-
ability of our models. Given this variability, and although we
used data from 5 distinct regions within China, we strongly
recommend further validation of our models’ performance
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before applying them in settings not included in this
study. We acknowledge that externally validating the model
in additional multicenter studies worldwide is crucial for
assessing its transferability and applicability across differ-
ent clinical settings. Additionally, the tool may face chal-
lenges in fully adapting to various real-world scenarios when
implemented outside the controlled validation environment of
this study. To address these concerns, we plan to conduct
independent external and prospective validations, as well as
pilot implementation across diverse clinical settings in future
studies. These efforts will evaluate the model’s effectiveness
using a wider range of data, particularly in the context of
real-world cervical cancer prevention across regions beyond
those included in this study. We also encourage independent
researchers to validate our model in their own settings, where
feasible. While this study marks a significant step in the
development of the SCREENing tool, we acknowledge that
further research and validation are necessary to establish its
effectiveness in real-world applications.

Second, we acknowledge that the use of retrospective EHR
data may introduce biases and may not fully capture the
real-time challenges of clinical practice. These challenges
include issues such as missing data, data errors, and the
heterogeneity of EHR systems across different settings.
Although we made efforts to control for the quality of the
EHR data, it remains inherently difficult to fully address
these concerns without significant infrastructure changes, as
well as ongoing monitoring and data validation. Therefore,
we explicitly caution that the findings of this study should
be interpreted with caution. In light of this limitation, future
studies should aim to bridge the gap between retrospective
analyses and the practical challenges of data collection in

clinical settings. Third, while this study focused on routine
EHR data, we acknowledge that incorporating multi-omics
data—such as genomic, proteomic, and imaging data—could
further enhance the model’s robustness and performance,
providing valuable new insights into cervical abnormalities.
We propose this as an area for future research to better
understand the progression of cervical cancer and to offer
novel perspectives on controlling and eliminating cervical
cancer. Fourth, due to the limitations of routinely collected
EHR content, we were unable to include several key sexual
behavior features, such as the number of sexual partners and
oral contraceptive use [62], in our analyses. These factors are
known to significantly influence HPV infection and cervical
cancer risk. While the model in this study demonstrated
high performance, the absence of such data constrained our
ability to further analyze the impact of sexual behaviors
on findings, such as subgroup characterization, which could
provide valuable insights. We recommend that future studies
incorporate these data to validate our findings and offer a
more comprehensive understanding of this field.

In conclusion, this study underscores the potential of
leveraging machine learning algorithms and large-scale
routine EHRs to enhance cervical cancer prevention
strategies. By identifying key determinants of CIN2+/CIN3+
risk and classifying 5 distinct subgroups, our study pro-
vides a robust, data-driven foundation for the proposed
triple SCREENing strategy. This approach prioritizes tailored
prevention efforts for subgroups with varying risks, offering
a novel and scalable tool to complement existing cervical
cancer screening guidelines. Future work should focus on
independent external and prospective validation to maximize
the global impact of this strategy.
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