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Abstract
Background: Human mobility is expected to be a critical factor in the geographic diffusion of infectious diseases, and this
assumption led to the implementation of social distancing policies during the early fight against the COVID-19 emergency
in the United States. Yet, because of substantial data gaps in the past, what still eludes our understanding are the following
questions: (1) How does mobility contribute to the spread of infection within the United States at local, regional, and national
scales? (2) How do seasonality and shifts in behavior affect mobility over time? (3) At what geographic level is mobility
homogeneous across the United States?
Objective: This study aimed to address the questions that are critical for developing accurate transmission models, predicting
the spatial propagation of disease across scales, and understanding the optimal geographical and temporal scale for the
implementation of control policies.
Methods: We analyzed high-resolution mobility data from mobile app usage from SafeGraph Inc, mapping daily connectivity
between the US counties to grasp spatial clustering and temporal stability. Integrating this into a spatially explicit transmission
model, we replicated SARS-CoV-2’s first wave invasion, assessing mobility’s spatiotemporal impact on disease predictions.
Results: Analysis from 2019 to 2021 showed that mobility patterns remained stable, except for a decline in April 2020 due to
lockdowns, which reduced daily movements from 45 million to approximately 25 million nationwide. Despite this reduction,
intercounty connectivity remained seasonally stable, largely unaffected during the early COVID-19 phase, with a median
Spearman coefficient of 0.62 (SD 0.01) between daily connectivity and gravity networks.
We identified 104 geographic clusters of US counties with strong internal mobility connectivity and weaker links to coun-
ties outside these clusters. These clusters were stable over time, largely overlapping state boundaries (normalized mutual
information=0.82) and demonstrating high temporal stability (normalized mutual information=0.95). Our findings suggest that
intercounty connectivity is relatively static and homogeneous at the substate level. Furthermore, while county-level, daily
mobility data best captures disease invasion, static mobility data aggregated to the cluster level also effectively models spatial
diffusion.
Conclusions: Our work demonstrates that intercounty mobility was negligibly affected outside the lockdown period in
April 2020, explaining the broad spatial distribution of COVID-19 outbreaks in the United States during the early phase
of the pandemic. Such geographically dispersed outbreaks place a significant strain on national public health resources and
necessitate complex metapopulation modeling approaches for predicting disease dynamics and control design. We thus inform
the design of such metapopulation models to balance high disease predictability with low data requirements.
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Introduction
Human mobility plays a crucial role in the spread of
respiratory diseases [1]. The combination of regional travel
and local commuting represents the spatial connectivity
between locations, serving as the main driver in the geo-
graphic diffusion of infectious diseases. Characterizing the
spatial dynamics of pathogen transmission is, therefore,
intricately tied to unraveling human mobility patterns. Such
a task has proven to be challenging due to the inherent
complexity and privacy-related limitations on collecting
mobility data [2]. Over the past few decades, researchers
have extensively relied on mobility data obtained from census
records, surveys, transportation statistics, commuting data,
and international air traffic data. Such datasets have widely
contributed to a better understanding of human mobility
patterns and their impact on the epidemic spread [3-6], but
can be limited in their resolution or scale. More recently, this
gap has been filled by the use of mobile phone data [7,8],
primarily based on phone records, but no such data have been
available in the United States.

The global health crisis triggered by COVID-19 has
underscored the critical need for swift access to mobility
to help mitigate the spread of the virus. The urgency of
the situation prompted an unprecedented sharing of data by
private companies worldwide, through legally and ethically
compliant agreements. These data were based on mobile
location–based app usage and thus provided incomparable
access to high-resolution, large-scale, and near-real-time
mobility data that have expanded human mobility science
[9] and computational epidemiology [10,11]. The availability
of these data has especially represented a shift in the US
public health and it has been used to inform epidemic models
and reveal the impact of mitigation strategies on behavior
[12-16]. Although the association between mobility patterns
and COVID-19 transmission in the United States has been
extensively explored, for example, in studies by Pei et al [14],
Badr et al [16], Xiong et al [17], Tokey [18], Zheng et al [19],
and Gao et al [20], no studies have been devoted to assessing
when the underlying mobility network needs to be embedded
into models to characterize epidemic spread.

Furthermore, the effects of control measures such as social
distancing and travel restrictions as well as the most suitable
geographical and temporal granularity for implementing these
measures still lack clarity. This gap in understanding the
characteristic spatio-temporal scale of mobility not only limits
target control policies but also our ability to model transmis-
sion dynamics effectively. To date, mobility data have been
integrated into epidemic models without due consideration
for the optimal geographical (eg, municipalities, regions, and
states) and temporal resolution (eg, day, week, and month)
required to accurately capture epidemic spread. The level

of granularity used in these models has consistently been
dictated by a priori assessments from data providers [21,22].

To address these gaps, this study made 3 key con-
tributions. First, for characterizing spatiotemporal scales,
we systematically analyzed human mobility patterns across
the United States using high-resolution mobile app–based
location data to characterize intercounty connectivity at
different spatial and temporal scales before and after the
COVID-19 pandemic. Second, for quantifying mobility’s
impact on the geographic spread of disease, we integrated
these mobility data into spatially explicit transmission models
to assess its role in the geographic diffusion of SARS-CoV-2
during the first wave. Finally, for evaluating the predictive
power across scales, we analyzed how the predictive ability
of epidemic models changes with varying resolutions of
mobility data, identifying the spatial and temporal scales of
intercounty connectivity that significantly influence disease
dynamics. This analysis allowed us also to explore the
trade-offs between using fine-grained mobility data and
aggregated data at coarser scales.

While our approach yields valuable insights into human
behavior and disease dynamics and makes a theoretical
contribution to the field, we acknowledge its limitations—
most notably the simplifications in the disease model, such
as assuming homogeneous mixing within counties. However,
our focus was on understanding heterogeneity at scales
larger than counties, as most public health data are typically
available at the county level. This approach represents a
significant step toward understanding the role of mobility in
geographical disease diffusion and optimizing the integration
of mobility data into epidemic models to better inform public
health policies.

Methods
Study Design and Population
This study investigated the role of human mobility at various
temporal and spatial scales in the spread of COVID-19 across
the US counties, using mobility and disease incidence data.
First, we examined human displacements and the resulting
intercounty connectivity patterns in the United States based
on the daily number of visits between census blocks. We
also analyzed disease incidence during the early phases of
the COVID-19 pandemic, from January 2019 to July 2020,
and used an inference framework to estimate underreporting
based on the number of new deaths. In the second step,
we developed a metapopulation model to simulate disease
transmission, incorporating intercounty mobility patterns and
epidemiological data, adjusted for underreporting. The study
focused on US counties with populations greater than 10,000
to minimize biases in mobility and incidence data.
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Data Collection

Characterizing Intercounty Connectivity With
Mobility Data
We used data from SafeGraph [23] (now Advan Patterns
[Advan Inc]), a platform gathering mobility data from
location-based mobile app usage. Specifically, we used the
daily Social Distancing dataset provided by SafeGraph (refer
to Multimedia Appendix 1 for dataset details). This dataset
includes information on the number of mobile devices with
a home from a census block group visiting another census
block group or staying in the originating one for at least a
minute. The data covered the period from January 2019 to
April 2021 on a daily basis. These data were aggregated to

the US county level to ensure consistency in geographic scale
for disease surveillance and public health decision-making.
A correction factor addresses spatial and temporal variations
(Multimedia Appendix 1).

We quantified monthly intercounty connectivity by
normalizing visits from an origin county to destination
counties and calculated average daily visits for all county
pairs from January 2019 to March 2021. We then normalized
the results so that the sum of probabilities for each county
equals 1. The resulting time-evolving network reflected daily
coupling probabilities. Figure 1A shows the connectivity
network for March 2020. Figure S2 in Multimedia Appendix
1 compares monthly and daily datasets.

Figure 1. Data sources and epidemic context. (A) Mobility data. The figure shows the spatial connectivity network between US counties in March
2020. The map shows only links with the top 1% of coupling probability (pij>.0038). (B-C) Public health data. (B) The map shows the time of
arrival by county, defined as the time when the total number of cases (observed+unreported) in counties that reached at least 10 cases. Black-colored
counties are counties that have been infected before March 15, 2020. (C) Black dots show the corrected number of infected counties over time
nationally. Gray dots show the observed number of infected counties over time nationally. The orange solid line shows the daily number of new
confirmed cases nationally, while the orange dotted line shows the real number of cases nationally accounting for underreporting.

A C

B

Characterizing Early Phase of COVID-19 in the
United States With Public Health Data
The first confirmed case of COVID-19 in the United States
emerged in Washington state on January 21, 2020, quickly
leading to local transmission. Guidelines promoting social
distancing and discouraging gatherings were issued on March
16, 2020. While many European countries enacted nation-
wide restrictions, the United States implemented localized
measures at varying times. Lockdowns peaked in the
United States in April 2020, with over 40 states enforcing

stay-at-home or shelter in-place orders [24]. Despite these
efforts, COVID-19 continued to spread, with most US
counties reporting cases by June 2020. As cases surged again
in October 2020, recommendations for social distancing were
made to keep epidemic activity in check.

The COVID-19 disease incidence data were derived from
the Centers for Disease Control and Prevention (CDC) data
[24]. We used daily reports of new cases and the timing
of their arrival in each US county, defined as the day
when at least 10 cases were recorded in that area. Daily
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new-reported cases and time of arrivals were adjusted for
potential underreporting at the county level, estimated using
global data on COVID-19 cases and fatalities, as outlined in a
study by Russell et al [25] (Figures 1B and 1C).
Statistical Analysis

Describing Temporal and Spatial Variability in
the Mobility Network
We examined the monthly network structure to evaluate the
temporal mobility patterns, quantifying each county’s degree
(number of connections to other counties). We also defined
link persistence as the probability links with nonzero mobility
in a month of 2019 that remained in the same month of 2020
and 2021. We also fit a gravity model to the intercounty
connectivity network for each month. Community detection
analysis using the stochastic InfoMap algorithm developed by
Rosvall et al identifies regions with more frequent internal
movements [26]. We used a bootstrap resampling method to
account for stochasticity (refer to Multimedia Appendix 1
for details). Urban and rural classifications are based on the
National Center for Health Statistics Urban-Rural Classifica-
tion Scheme. All network analyses were performed using
Python’s NetworkX library [27], which is widely used for the
creation, manipulation, and study of the structure, dynamics,
and functions of complex networks. Gravity model fitting was
conducted using the scikit-mobility library, a Python package
designed for mobility data analysis [28].

Incorporating Human Mobility Into Infectious
Disease Models
We used a stochastic non-Markovian transmission model with
a metapopulation structure at the US county level [21]. The
model accounts for disease transmission proportional to (1)
infected residents not moving, (2) infected visitors coming
from other counties, and (3) returning residents previously
infected in other counties. The resulting force of infection in
the county i is defined as follows:

λi = λii + ∑i ≠ jλ jiv + ∑i ≠ jλi jr
λii = βpii2 IiNi

λjiv = βpiip ji I jNi ; λi jr = βpi j I jN j
where pij is the coupling probability extracted from the
intercounty connectivity network. The effective population,
and effective number of infections are, respectively, defined
as follows:

Ni = piiNi + i ≠ jpjiNj

Ii = piiIi + i ≠ jpjiIj
We considered the susceptible-exposed-infectious-recovered
epidemic dynamics specific to COVID-19. The epidemics
parameters were described by Pullano et al [29].

The detailed mathematical framework, model calibration,
and implementation details can be found in Multimedia
Appendix 1. The model and inference framework were
developed in C++ to optimize performance and efficiency,
particularly when working with large-scale data.

Inference Framework and Goodness of Fit
To calibrate the epidemic pathway, we used the cumulative
number of infected US counties (Figure 1C). Calibration
covered March 14 to July 15, 2020, when all counties
reported infections. Parameter estimates βpre−LD (March
15‐31) and βpost−LD (March 31-May 15) were derived using
maximum likelihood, assuming a Poisson distribution for
reported cases.

We assessed model performance by comparing the
modeled invasion probability pi,inv(t) with the observed
early phase COVID-19 spatial invasion. pi,inv(t) denotes the
probability for a county i reporting at least 10 infected cases
on day t in the simulation. The goodness of fit is defined as
follows:

G(t) = i Iilog pi, inv(t) + 1 − Ii log 1 − pi, inv(t)
Ii=1 if the county i reported at least 10 infected cases at the
day t; Ii=0 otherwise.

Comparing Models Across Geographical
Scales
In designing the metapopulation structure at different spatial
scales, we aimed to better understand the role of mobi-
lity heterogeneity that matters in disease diffusion. Beyond
this primary goal, this approach also highlighted the data
requirements necessary for accurate modeling at different
spatial scales. Specifically, it explored the implications of
using mobility data at a coarser regional scale (eg, cluster or
state), assuming higher-resolution flow data are unavailable.

For a given spatial scale R (eg, cluster and state), we
randomized the mobility links among counties within a region
R, preserving the number of links. Coupling probabilities for
connected counties within each region R are equal to the
average coupling probability of the links within that region, as
follows:

pijR = ∑l, k ∈ RplkN
with i,j, ∈, and R, while coupling probabilities across regions
are not changed.
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Ethical Considerations
This study used publicly available, deidentified, and
aggregated data from SafeGraph (now Advan Patterns) and
the CDC. SafeGraph ensures user privacy by implement-
ing differential privacy techniques, which involve adding
Laplacian noise to anonymize data at the Census Block
level. In addition, SafeGraph excluded connections associated
with census block groups containing data from fewer than 2
devices. Ethical review for this study was sought from the
Institutional Review Board at Georgetown University and the
study was approved on October 14, 2020 (STUDY00003041).

Results
Analyzing the US county connectivity via mobility data
revealed temporal and geographical stability, identifying the
key scale driving COVID-19’s initial spread. Our findings
addressed public health needs and determined the optimal
scale for metapopulation model design.
Temporal Stability of the Intercounty
Connectivity Network
From January 2019 to March 2021, mobility remained
relatively stable, except for a significant drop in April 2020
coinciding with lockdown measures, reducing daily visits
from 45 million to around 25 million nationwide (Figure
2A). The mobility shock extended throughout the month,
encompassing a transitional period (Figures 2A and 2B).

Analysis of the intercounty connectivity network’s temporal
evolution revealed a consistent seasonal pattern in degree
distribution and link persistence. Only April 2020 showed
local variations, with a 23% reduction in degree (from 1144
to 877) compared with 2019 and a 20% reduction in link
persistence (from 0.70 to 0.56) compared to previous months
in 2020. Surprisingly, no variation occurred in November
2020, despite strong social distancing recommendations
preceding the winter surge of SARS-CoV-2. The reduction in
rural-urban connections was particularly pronounced, with a
22% decrease (from 0.75 to 0.58). The decrease stabilized in
May and beyond. Notably, urban-urban connections exhibited
greater resilience over time when compared with connec-
tions involving rural areas. We hypothesized that rural-rural
connections were systematically less persistent due to the
inherently less stable nature of these links. Factors such as
lower population density, reduced economic activity, and less
frequent interconnectivity in rural areas contributed to this
instability. Furthermore, while coupling probabilities stayed
consistent over the study period (Figure 1C), the probability
of staying in the home location exhibited larger variability
(Multimedia Appendix 1).

Despite occasional local fluctuations, the intercounty
connectivity network demonstrated temporal stability and
high predictability through a gravity fit model (Figures
S7-S9 in Multimedia Appendix 1). The Spearman coefficient
between the original and modeled intercounty connectivity
network remained constant over time, with a median of 0.62
(SD 0.02).

Figure 2. Temporal stability in intercounty mobility. (A) The monthly degree distribution of the intercounty network is shown as a violin plot with
95% CIs. It demonstrates significant variability while remaining consistent across months. (B) The persistence probability of links is illustrated,
denoting the likelihood that a connection existing in 2019 remains present in 2020 and 2021. The plot provides a breakdown for different link
types: urban-urban (UU), urban-rural (UR), rural-urban (RU), and rural-rural (RR) links. (C) Distribution of coupling probabilities in the connectivity
network by month. We highlighted in dark red: April, 2020 (LD) that represents the peak time of number of US states in lockdown, and November,
2020 (SD) that represents the period when social distancing recommendations were in place. LD: lockdown; RR: rural-rural; RU: rural-urban; SD:
social distancing; UR: urban-rural; UU: urban-urban.

A B C
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Spatial Stability of the Intercounty
Connectivity Network
To identify the geographic scale at which mobility is highly
connected, we detected clusters of counties that were more
connected via mobility within the cluster than outside the
clusters, we used a network community detection algorithm.
Our hypothesis was that this partitioning of the United States
would be at a geographic scale larger than 3143 US coun-
ties but smaller than 50 US states or 10 Health and Human
Services (HHS) regions. Indeed, we found that based on
human mobility, the United States can be partitioned into
around 100 regions that split most US states into multiple

clusters (Figure 3). We also found that these clusters were
highly and spatially contiguous and respected state boun-
daries (with a similarity measured by normalized mutual
information as 0.82). Furthermore, these regions demonstra-
ted stability over time (normalized mutual information=0.95)
despite the perturbations of the early phases of the COVID-19
pandemic (Figure 3B and in Figures S9-S10 in Multimedia
Appendix 1). Thus, we identified a persistent geographic
partitioning of the United States in which clusters were more
connected within than between, and hypothesized that the
relevance of mobility to the spatial diffusion of infectious
diseases occured at a mesoscale.

Figure 3. Analysis of spatial stability. (A) Geographical subdivisions at the county and state levels within the United States, as well as the division
into Health and Human Services regions, used for health administration purposes. (B) We partition the intercounty mobility network so that each
cluster of counties is more strongly connected to each other via mobility than to counties in other clusters. We find highly consistent portioning based
on mobility networks from April 2019, April 2020 (during the mandated lockdown period of the early COVID-19 pandemic), and July 2020 (after the
lockdown period of the early COVID-19 pandemic). Clusters are colored to delineate cluster boundaries and do not represent any other information.
Counties colored in gray have populations of fewer than 11,000 inhabitants and are excluded from the analysis. HHS: Health and Human Services.

US HHS regionsUS statesUS countiesA

B Clusters, April 2019 Clusters, July 2020Clusters, April 2020

Implications for Metapopulation Disease
Models
After examining the stability of mobility patterns over
time and space, we evaluated how spatiotemporal scales
of mobility affect disease modeling in a metapopulation
framework by integrating connectivity networks into a model
simulating the initial SARS-CoV-2 spread in the United
States. We investigated the influence of geographic scale by
homogenizing networks at different spatial levels, maintain-
ing the county resolution. In addition, to gauge the impact
of temporal scale, we provided the model with either
a time-evolving or static connectivity network represent-
ing mobility patterns since March 2020, considering the
network’s temporal stability. Goodness of fit was assessed
by comparing predicted and observed disease arrival times in
counties.

Figure 4A shows that a county-level metapopulation
model using empirical connectivity networks accurately
predicts early COVID-19 diffusion, outperforming a Erdős–
Rényi random network. Indeed, the empirical mobility

network had a stronger goodness of fit throughout the
early phase of the pandemic. This emphasized the crucial
role of human mobility in the spatial spread of the ini-
tial SARS-CoV-2 wave and underscored the importance of
mobility data for modeling SARS-CoV-2 spread. In addi-
tion, predictions based on static and time-varying mobility
networks were comparable, suggesting that static data were
sufficient to accurately capture epidemic spatial heterogene-
ity. Following the initial invasion phase in March, transmis-
sion became more widespread, reducing the importance of
spatial connections. At this stage, random networks and
county-level networks yielded similar performance, indicat-
ing that local epidemic growth outweighed the influence
of importations and exportations. Figure 4B shows that
county-level mobility data predicted spatial diffusion better
than data at larger scales, such as US HHS regions, states,
and clusters (as defined in Figure 3). All larger-scale data
performed similarly to a random network, indicating they lack
the granularity needed to capture diverse mobility patterns
effectively. Sensitivity analyses on the definition of the time
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of arrivals and its impact on the goodness of fit are reported in
Multimedia Appendix 1, more precisely in Figure S14B.

Figure 4. Implications of temporal and spatial scale of mobility data for the prediction with metapopulation disease models. (A) The goodness of
fit (median and 95% CI) for the time of arrivals for metapopulation models at a county level, informed by a time-evolving intercounty connectivity
network, a static intercounty connectivity network, and a random intercounty network. (B) Solid lines show the goodness of the fit (median and 95%
CI) for metapopulation models informed with state-, cluster-, and Health and Human Services–level static mobility network. HHS: Health and Human
Services.

B
A

Discussion
Principal Results
Our findings revealed significant insights into the dynam-
ics of human mobility and their implications for infectious
disease modeling. In contrast to findings from other countries
(eg, France [29], India [30], Germany [31], and Spain [32]),
we observed that despite the implementation of local social
distancing measures and lockdowns, intercounty connectivity
remained largely unperturbed, leading to rapid geographic
diffusion of SARS-CoV-2. Mobility patterns experienced
only marginal changes before and after the early-stage
COVID-19 pandemic. The most notable disruption occurred
during the first lockdown period in April 2020, when mobility
sharply declined. Although a temporary reduction in mobility
was observed, it proved to be short-lived as mobility patterns
quickly returned to prerestriction levels. Importantly, this
decline in mobility did not alter the underlying intercounty
connectivity structure, potentially diminishing the overall
effectiveness of the implemented travel restrictions. Even
when mobility is limited—resulting in low-strength edges
between locations—these connections can still facilitate the
spread of disease, introducing pathogens into new areas [33].
This underscores the challenge of relying solely on travel
restrictions as a mitigation strategy, as they may fail to disrupt
the pathways that enable disease transmission, particularly
when the connectivity network remains intact. Such insights

emphasize the need for more nuanced approaches that
address the persistence of network structures during public
health interventions. Notably, even during periods of social
distancing recommendations, the mobility network remains
relatively stable. Assuming the lockdown represents the most
extreme form of mobility disruption, the temporal stability
findings suggest that global human mobility demonstrates
resilience against short-term changes.

We also assessed the spatial stability of the intercounty
connectivity network by detecting spatial communities based
on mobility patterns. Our results indicate that mobility-
driven clusters align closely with state boundaries, reflect-
ing the influence of administrative and geographical factors
on human movement, accordingly with Steinegger et al
[31]. These clusters exhibited remarkable stability over
time, reinforcing the idea that spatial mobility patterns are
deeply ingrained and relatively resistant to abrupt changes.
The fact that mobility patterns are highly correlated with
state boundaries suggests that state-level structures could
be effective for designing target public health interventions
based on travel reductions. Our findings underscore the
importance of considering mobility patterns when design-
ing interventions, resource allocation, and disease control
strategies.

As shown in the context of COVID-19 pandemic in France
[34], we also demonstrated that incorporating high-resolution
human mobility data are crucial for accurately capturing the
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spatial spread of infectious diseases. Our findings indicate
that county-level, daily mobility data offer the most accurate
representation of the spatial spread of disease in the United
States. Notably, static county-level mobility data achieve
similar model performance to real-time data, suggesting
that an undisturbed representation of reality is adequate for
reproducing spatial spread. More interestingly, our explora-
tion of various spatial scales for metapopulation models
underscores the significance of aligning the model’s structure
with the inherent spatial scale of human mobility. While
county-level mobility data yield the most accurate depiction,
mobility databased clusters, US states, and HHS regions do
not capture the heterogeneity of the COVID-19 geographical
diffusion.
Limitations
While our study provides valuable insights, it is not with-
out limitations. Our work focused on the early phase of
the pandemic, during which response measures (eg, social
distancing, closures, and lack of masking) were largely
homogeneous in the United States, and pharmaceutical
measures (eg, vaccination and antivirals) were not avail-
able; thus, these findings are not generalizable to later
stages. Furthermore, we assume homogeneity within the US
counties. In addition, Safegraph mobility data, like all mobile
app–based location data, exhibit sampling biases. Ongoing
efforts to comprehend these biases are crucial for develop-
ing better correction methods [35]. An independent analysis
by Safegraph revealed the underrepresentation of older and
non-White individuals in point of interest-specific analyses,
though the panel is representative of race, education, and
income [35,36].
Comparison With Previous Work
Since the onset of the COVID-19 pandemic, mobile phone
data have played a crucial role in addressing the public
health crisis [10,11,13-15,22,29,30,34,37]. During this period,
numerous network operators and private enterprises have
made considerable efforts to swiftly share their data within
the confines of legal regulations. Consequently, research-
ers worldwide have embarked on working with this data,
monitoring human behavior caused by containment measures

and adaptive responses to the epidemic, and using it to
enhance epidemic models in order to increase their reliability
[14,15,22,29,34].

While static mobility data have predominantly been
analyzed and integrated into models over the past decades
[3,4], the current accessibility to real-time human behavior
data prompts an essential investigation into the optimal
scenarios for using this dynamic information versus rely-
ing solely on static representations of reality [38]. Equally
important is the exploration of the characteristic mobility
scale to comprehensively capture the intricate coupling
between different locations, a consideration with potential
implications for target control policies to reduce epidemic
activity, and for improving epidemic model forecasting.
Furthermore, numerous researchers have emphasized the
pressing necessity to implement standardized strategies that
facilitate rapid data access while upholding stringent data
privacy measures [2]. To address this gap in the literature, in
this study, we investigated the spatial connectivity of the US
counties during the early phase of the COVID-19 pandemic
using high-resolution real-time human mobility data obtained
from mobile phone usage.
Conclusions
While characterizing the key role of mobility in the spatial
invasion of the COVID-19 pandemic in the United States, our
study sheds light on the global stability of human mobility
patterns, and the relevant information needed to design a
reliable predictive model. This result may be specific to
countries, such as the United States, in which mobility
restrictions were not stringent, specified for intercounty
mobility, nor enforced. Metapopulation models that incorpo-
rate accurate mobility data can provide valuable insights
into disease dynamics and enhance our ability to predict
and control the spread of future infectious disease outbreaks.
Furthermore, standardized data extraction and sharing that
we introduced might help facilitate the timelines associated
with legal agreements for data sharing, which do not always
align with the rapid spread of epidemics, thus diminishing the
feasibility of timely responses to such outbreaks.
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