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Abstract
Background: Infectious diseases (IDs) have a significant detrimental impact on global health. Timely and accurate ID
forecasting can result in more informed implementation of control measures and prevention policies.
Objective: To meet the operational decision-making needs of real-world circumstances, we aimed to build a standardized,
reliable, and trustworthy ID forecasting pipeline and visualization dashboard that is generalizable across a wide range of
modeling techniques, IDs, and global locations.
Methods: We forecasted 6 diverse, zoonotic diseases (brucellosis, campylobacteriosis, Middle East respiratory syndrome, Q
fever, tick-borne encephalitis, and tularemia) across 4 continents and 8 countries. We included a wide range of statistical,
machine learning, and deep learning models (n=9) and trained them on a multitude of features (average n=2326) within the
One Health landscape, including demography, landscape, climate, and socioeconomic factors. The pipeline and dashboard
were created in consideration of crucial operational metrics—prediction accuracy, computational efficiency, spatiotemporal
generalizability, uncertainty quantification, and interpretability—which are essential to strategic data-driven decisions.
Results: While no single best model was suitable for all disease, region, and country combinations, our ensemble technique
selects the best-performing model for each given scenario to achieve the closest prediction. For new or emerging diseases in
a region, the ensemble model can predict how the disease may behave in the new region using a pretrained model from a
similar region with a history of that disease. The data visualization dashboard provides a clean interface of important analytical
metrics, such as ID temporal patterns, forecasts, prediction uncertainties, and model feature importance across all geographic
locations and disease combinations.
Conclusions: As the need for real-time, operational ID forecasting capabilities increases, this standardized and automated
platform for data collection, analysis, and reporting is a major step forward in enabling evidence-based public health decisions
and policies for the prevention and mitigation of future ID outbreaks.
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Introduction
The frequency and magnitude of infectious disease (ID)
events have seen a drastic incline in the past few deca-
des, mainly attributed to climate change, urbanization, and
globalization [1]. These events often involve the emergence
of novel infectious agents or the re-emergence of a previously
known pathogen. Timely and accurate prediction of such ID
events is crucial for decision makers to decrease associated
mortality, morbidity, and economic losses [2]. However, the
complex and unpredictable nature of pathogen ecology makes
forecasting the spatiotemporal dynamics of IDs a challenging
task [3].

Digital information related to ID events is being generated
and shared faster than ever before. Additionally, information
associated with disease occurrence, such as meteorology,
socioeconomics, demographics, land use, agriculture, social
media, and internet trends, is often readily available [4].
To keep up with this unprecedented amount of data being
generated, machine learning (ML)– and deep learning (DL)–
based algorithms are being adopted by the research commun-
ity. These methods have shown to be better at detecting
cryptic patterns arising from interactions between multiple
features, which are difficult, often impossible at times, to
uncover with conventional prediction methods [5].

The time-series models have been previously used for
forecasting ID events including brucellosis [6], Middle East
respiratory syndrome [7], campylobacteriosis [8], and Q
fever [5]. However, over the last decade, especially after
the COVID-19 pandemic outbreak, considerable progress has
been made in the field of ID surveillance, as the disease
diagnosis, reporting, and intelligence-sharing infrastructure
continue to grow on a global scale [9]. Dixion et al [5]
compared the performance of various forecasting approaches
across several diseases and countries and found that tree-
based techniques had better predictive performance com-
pared to statistical and DL techniques. Integrating diverse
large-scale epidemiological data from multiple sources has
further enhanced the accuracy and utility of disease prediction
models [10]. Ensemble forecasting techniques, which merge
predictions from multiple models, offer notable advantages
over single-model approaches [11]. For example, Reich et
al [12] used real-time multimodel ensembles for seasonal
influenza in the United States, while Ma et al [13] demon-
strated the effectiveness of integrating internet search data
along with ensemble forecasting techniques to jointly forecast
COVID-19 and influenza-like illnesses, underscoring the
value of diverse data sources in public health forecasting.

Despite several advantages, ML and DL techniques do
come with a number of limitations, making them less
desirable in the real-world operational setting. We conducted

a scoping systematic review to determine the status and
advances made in the field of ID prediction using ML and
DL, which were published elsewhere [9]. One of our focuses
in this systematic review was to identify if and how research-
ers were incorporating the necessary methods required to
eventually enable the operational deployment of their ID
forecasting models. Through this work, we identified multiple
shortcomings in published modeling techniques that could
hinder their ability to support operational biopreparedness and
decision-making. Even though most of the studies focused
on increasing the prediction accuracy of their models, which
is critical for operational deployment, they did not address
other important decision-making metrics such as computa-
tional efficiency, uncertainty quantification, interpretability,
and generalizability. Modern ML and DL techniques are
performance-driven, that is, they aim to generate better
predictive or classification accuracy by minimizing errors
[14]. As a result, other metrics that are crucial for opera-
tional decision-making are often overlooked by the scientific
community. First, as the structural and functional complex-
ities of the forecasting models evolve, the computational
resources required to train such models also grow consider-
ably. In addition, these complexities result in an expanded
number of model hyperparameters that can be individually
tuned using numerous possible techniques. This ever-increas-
ing complexity gives rise to an even larger problem space
with highly variable results. Second, since most of these
techniques are nonparametric in nature, model uncertainties
are not inherently estimated. Hence, model uncertainties are
often overlooked even though these estimates are crucial for
systematic and transparent decision-making [15]. Third, ML
and DL models are considered black boxes, meaning that
their internal logic and inner workings are mostly hidden
from the end user [9]. Consequently, verifying and under-
standing the rationale behind the model forecasts are difficult
and often neglected. With the above considerations in
mind, we developed an ID forecasting pipeline that holisti-
cally focuses on these often neglected yet essential perform-
ance metrics required for operational decision support. By
incorporating this pipeline into an interactive dashboard, we
created a capability that allows users to easily visualize the
ID forecasting results for use in operational planning and
decision-making.

Methods
Overview
The graphical flowchart illustrating our forecasting pipe-
line including data ingest, preprocessing, model training,
prediction, and visualization is presented in Figure 1.
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Figure 1. Graphical flowchart illustrating the infectious disease forecasting pipeline. ARIMA: autoregressive integrated moving average; LGBM:
light gradient boosting machine; LSTM: long short-term memory; PI: prediction interval; RF: random forest; RNN: recurrent neural network;
SARIMAX: seasonal autoregressive integrated moving average with exogenous factors; XGB: extreme gradient boosting.

Case Count Data
The model outcome variable was case counts collected from
EpiArchive [16] and Food and Agriculture Organization’s
Emergency Prevention System-I [17]. We included the most
consistent, available, and interpretable disease case counts
from these sources. These data also included locations that
reported only 0 disease cases. In instances where only the
disease presence was reported without any information about
the exact number of cases, the region, or the date of occur-
rence, such disease-location combinations were excluded
from the analysis. We included all the diseases that spanned
across multiple countries or regions and had a consistent
reporting of disease events for our study period. Data were
collected at the regional-level resolution for each country
from January 2014 to December 2018, which contained case
counts at either the weekly or monthly temporal resolution.

Feature Data
We collected feature data from a variety of open sources
across the One Health landscape (Table 1). Broadly, the
features included historic case counts (case count lags up to
6 months), country census data, socioeconomic factors, health
data, agricultural trade data, landscape, and climate records.
The feature information varied in spatial and temporal
resolutions; data were typically available at monthly or yearly
resolutions and covered either the country or regional level.
A complete list of countries, regions, and the total number of
features collected for each region is presented in Multimedia
Appendix 1.

Table 1. The input feature data types, source, feature description by name, geographic location, geographic resolution, time period, and periodicity.
The table was originally published by Dixon et al [5].
Data type Individual features Geographic location Geographic resolution Time period Periodicity
Case counts [16] Incidences of select

human diseases
Countries of interest Region level 2009-2018 Daily

Political borders [18] Geopolitical borders
(country and within the
country)

Countries of interest Region level 2018 Single instance

Climate [19,20] Air temperature,
humidity,
precipitation, soil
moisture, and wind
speed

Global Gridded 0.25 °×0.25 °, 1 °×1 ° 2012‐2018 Monthly

Gross domestic product
[21]

Gross domestic
product

Global Country level Varies Yearly

Elevation [22] Digital elevation map Global 43,200×17,200 (30 arc seconds) N/Aa N/A
Mortality [23] Deaths by country,

year, sex, age group,
and cause of death

Global Country level 2009‐2018 Yearly
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Data type Individual features Geographic location Geographic resolution Time period Periodicity
Municipal waste [24] Municipal waste

generation and
treatment

Countries of interest Country level 2009‐2017 Yearly

Sociopolitical and
physical data [25]

Socioeconomic and
political attributes

Global Varies by country; 1: 10-110 m 2019 Single instance

Population [26] Population by age
intervals by location

Global Country level 2009‐2015 Every 5 years

Population density [27] Population density Global 30 arc seconds 2009‐2015 Every 5 years
Water potability and
treatment [24]

Freshwater resources,
available water,
wastewater treatment
plant capacity, surface
water

Countries of interest Country level 2009‐2017 Yearly

aN/A: not applicable.

Data Preparation and Imputation
The harvested raw data contained information at varied
spatial and temporal resolutions in different file formats.
These raw data were harmonized to create the final datasets
containing monthly case counts and input features for each
region within the country. In situations where the feature
data at the regional level were missing, the features aggre-
gated by an average at the national level were used. Any
features with more than 20% missing values across all regions
and dates were not included as a predictor variable. The
remaining missing values were imputed temporally using
spline and forward-fill techniques for monthly and yearly
feature data, respectively. Some features could not easily
be imputed temporally through these techniques but were
still sufficiently prevalent across regions to include in the
models. In these instances, the majority of the missing data
(less than 20% overall) came from only a few select regions.
For these special cases, we performed geoimputation using
the k-nearest neighbor method and restricted input to only
regional feature data within the same country. We used
distance-based weights for the features with 5 neighboring
samples for imputation. The imputation techniques were
implemented using the “pandas” and “skforecast” libraries in
Python (Python Software Foundation) [26].

Model Choice

Overview
In our analysis, we included the following models dis-
cussed in detail below: statistical time-series models (ie,
autoregressive integrated moving average [ARIMA], seasonal
autoregressive integrated moving average with exogenous
factors [SARIMAX], and Prophet), tree-based models (ie,
random forest [RF], extreme gradient boosting [XGB], and
light gradient boosting machine [LBGM]), and DL models
(recurrent neural network [RNN], long short-term memory
[LSTM], and transformer).

Statistical Time-Series Models
The ARIMA model is a traditional statistical technique
used in time-series forecasting. These models use a linear,
regression-type equation, in which the predictors are lags

of the dependent variable or lags of the forecast errors.
The SARIMAX is an extension of ARIMA that takes
seasonal trends into account within time-series data. Because
SARIMAX can also accommodate exogenous features, it is
often preferable to traditional ARIMA. However, SARIMAX
models may fail to converge if those exogenous features are
highly correlated. To overcome this issue, the least absolute
shrinkage and selection operator (LASSO) regression was
used for feature selection and dimensionality reduction. These
LASSO-selected features were later used as input variables
for SARIMAX. The modeling techniques were implemented
using “statsmodels” and “sklearn” libraries in Python [28,29].

Prophet is a decomposable time-series model that uses
3 main components to make its forecasts, namely, trend,
seasonality, and holidays [30]. The trend component models
the nonperiodic changes in the time series. Seasonality
models the periodic, or seasonal, changes in the time series;
this can be an important part of a disease forecasting model,
as many diseases have seasonal trends. The Prophet model
was implemented using the “darts” library in Python [31].

Tree-Based ML Models
Tree-based models make predictions by creating decision
trees that divide the feature space using a series of binary
decision thresholds. The RF is an extension of the decision
tree method that uses an ensemble of decision trees to
increase performance and reduce the risk of overfitting the
training data. The XGB is an implementation of a decision
tree that uses stochastic gradient boosting to sequentially
improve prediction during training. Because of this method-
ology, XGB achieves superior accuracy in prediction tasks.
LGBM is similar to XGB; however, it also applies a novel
sampling method and feature bundling process that allows
the method to get comparable performance to XGB but uses
far less memory and trains much faster. These modeling
techniques were implemented using “skforecast” library in
Python [32].

DL Models
The RNN is built on DL architecture with a hidden state
that memorizes sequential data. This added process provides
the model with an understanding of temporal information in
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a time-series sequence. The LSTM is an extension of RNN
with additional parameters that incorporate different scales of
temporal information, which allow the model to effectively
use both long- and short-term temporal data in its prediction.
Hence, these models are routinely used in disease forecasting
tasks.

Transformers [33] are another form of DL architecture
that has been recently outperforming other models in many
applications of ML. These models leverage a structure known
as “attention,” which allows them to model dependence
in both short and long temporal lags. Unfortunately, these
models are especially slow to train and often require very
large amounts of data and computational power. The DL
techniques were implemented as an encoder-record architec-
ture using “darts” library in Python.

Model Training and Prediction
The model training involved hyperparameter tuning and
model fitting, whereas model testing involved generating
1-step ahead forecasts (ie, monthly) and their prediction
intervals (PIs). When creating predictions, all feature data
and disease case counts up until the time of prediction were
included in the model. The model training included hyper-
parameter tuning using a 5-fold time-series cross-validation
split and model fitting. First, the models were trained using
2014‐2016 data and tested on 2017 data. Subsequently, the
model was retrained using 2014‐2017 data and tested on 2018
data in a sliding window manner. A detailed description of
model-specific hyperparameters and their search space used
for model training is presented in Multimedia Appendix 1.

Model Evaluation
The forecasting models were evaluated in two ways: (1)
F1-score to evaluate the ability of a model to predict the
presence or absence of a disease in each region (ie, did the
region report 1 or more cases during the testing period) and
(2) mean absolute error (MAE) for the subset of predictions
where the disease was detected in a region (case counts
greater than 0). The multimetric approach was adopted
because of the high frequency of time-location pairs that had
no disease present. Without separating these results, the MAE
metric was largely driven by the results of the high-frequency
disease and regions. Finally, we created ensemble models by
selecting the best-performing technique based on the MAE
of the testing dataset. Other metrics such as precision, recall,
negative predictive value, true negatives, false positives, false
negatives, and true positives were also estimated but not
considered when building our ensemble model.

Uncertainty Quantification and
Interpretability
The 95% PIs for our forecasted values were estimated to
account for forecasting uncertainties. For statistical mod-
els (ARIMA, SARIMAX, and Prophet), PIs were read-
ily obtained along with the model forecasts as a natural
consequence of the model construction. However, PIs were
not directly available for ML and DL techniques. Hence,
we used Python packages that retroactively produced PIs

using alternate techniques. The PIs for tree-based models
(RF, XGB, and LGBM) were estimated by a bootstrap-
ping technique using “skforecast” library, whereas for DL
models (RNN, LSTM, and transformer), PIs were calcula-
ted by a nonparametric method known as quantile regres-
sion using the “Darts” library [31,32]. For each model
forecast, we estimated the coverage probability of the 95%
PIs (ie, instances where the PIs surrounded the true value)
as a measure of calibration assessment for the prediction
uncertainties.

Feature importance, based on Shapley Additive Explana-
tion (SHAP) values for the best-performing models, was used
as a generalized approach to interpretability for tree-based
and DL models [34]. SARIMAX was the only statistical
model that allowed for feature input and interpretability,
which was provided by coefficient estimates from the model.
However, the SARIMAX model was unable to incorporate
the large number of features available for each region. To
address this limitation, a feature selection approach was
applied using LASSO regression to reduce the model’s input
variables.

The historic case count data are important and most
frequently used predictive features in the ID prediction
domain [9]. In our analysis, we used case count lags up
to 6 months. To estimate the relative importance of these
case count lags compared to other features, we calculated 2
metrics, namely, the feature ratio and mean reciprocal rank
(MRR). A threshold of the top 10 features, as deemed by
the models, was set to estimate the feature ratio and MRR.
The feature ratio was the total number of lag case count
features divided by the total number of features (up to the
top 10 features). The MRR, on the other hand, also considers
the position of the first relevant item in the ranked list, that
is, case count lags. The MRR was defined as the mean of
reciprocal ranks of case count lags across all features. The
values range from 0 to 1, with a higher score signifying the
greater relative feature importance rank of case count lags
compared to other features for obtaining model forecasts.
Spatial Generalizability Using Transfer
Learning
We used the transfer learning framework to test the mod-
els for their ability to produce accurate forecasts in regions
that were fairly new to the disease. These regions were
strategically picked by maximizing the global coverage and
following the stratified random sampling framework. First,
only the country-disease combinations where case count data
were available were selected. This process also included the
regions that reported 0 disease cases during our study period.
Next, one region within the selected countries was randomly
picked and denoted as the target region. Then, we selected a
similar region to the target region to train the transfer learning
models based on (1) the target and similar region being part
of the same country and (2) the target and similar region
containing comparable case counts over the last 6 months.
The similar region pretrained model was then used to forecast
the disease case counts of the target region, and performance
was assessed.
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Ethical Considerations
Data used in this study are open source and do not identify
individual information, either directly or indirectly. There-
fore, this research was exempted from ethical review.

Results
Overview
The summary statistics of the disease-location combinations
aggregated at the country level are presented in Table 2,

whereas a detailed breakdown of this summary for both test
and train split is shown in Multimedia Appendix 1.

Table 2. Median (IQR) regional case counts per country and disease for the entire dataset from January 2014 to December 2018.
Disease Country

Australia,
median (IQR)

Germany,
median (IQR)

Israel,
median
(IQR)

Japan,
median
(IQR)

Norway,
median (IQR)

Saudi Arabia,
median (IQR)

Sweden,
median
(IQR)

United States,
median (IQR)

Brucellosis 3 (0-29) 11 (0-42) 30 (0-1072) 0 (0-3) 0 (0-2) —a 1 (0-2) 4 (0-25)
Campylobacteriosis 7904 (0-43,205) 148,616

( 50,644-197,61
6)

998 (0-7666) — 306 (0-1456) — 1103
(0-10,815)

1159
(0-25,327)

MERSb 0 (0-0) — — 0 (0-0) — 3 (0-71) — —
Q fever 55 (0-974) 28 (0-769) 46 (0-103) 0 (0-1) — — — 5 (0-26)
Tick-borne
encephalitis

— 15 (0-897) — 0 (0-2) — — — —

Tularemia — — 0 (0-0) 0 (0-1) 15 (0-69) — — 4 (0-89)
aNot available.
bMERS: Middle East respiratory syndrome.

There were 757 disease-region combinations ran through 9
different models in this study. As the first step, we calculated
F1-scores to determine the ability of the forecasting models to
detect the presence or absence of a disease in a given region
(Table 3). Overall, tree-based models (ie, XGB, RF, and
LGBM) and Prophet consistently had better and comparable
F1-scores across the diseases. The DL models (ie, RNN,
transformer, and LSTM) had significantly lower F1-scores.
Patterns were consistent across all diseases in each region.
The additional evaluation metrics for model and disease
combination including precision, recall, negative predictive
value, true negatives, false positives, false negatives, and true
positives are presented in Multimedia Appendix 1.
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Next, we assessed the performance of each model for the
subset of regions, where the total case counts were greater
than 0 (ie, the disease was present) based on MAE. The

model with the lowest MAE was inconsistent across diseases
(Table 4).

Table 4. MAEa (95% CI) for each disease aggregated across all locations where the disease was present in 2017 and 2018.
Disease Model

ARIM
Ab,
MAE
(95%
CI)

LGB
Mc,
MAE
(95%
CI)

LST
Md,
MAE
(95%
CI)

Prophet, MAE
(95% CI)

RFe, MAE
(95% CI)

RNNf, MAE
(95% CI)

SARIMAXg,
MAE (95% CI)

Transformer,
MAE (95%
CI)

XGBh, MAE
(95% CI)

Brucellosis

0.8
(0.5‐
1.1)

0.8
(0.5‐
1.1)

0.84
(0.5‐
1.14) 0.9 (0.5‐1.2) 0.8 (0.5‐1.1) 0.9 (0.5‐1.2) 1.1 (0.7‐1.6) 0.8 (0.5‐1.6) 0.8 (0.4‐1.1)

Campylobacterios
is

237.9
(1.1‐
474.9)

43.8
(35.3
‐
52.3)

45.2
(36.3
‐
54.12
)

43.4 (34.9‐
51.8)

39.8 (32.3‐
47.2)

46.6 (37.7‐
55.5)

243.7 (74.9‐
412.6)

50.9 (40.3‐
61.6)

43.1 (34.2‐
52.1)

Q fever

28.9
(25.4‐
83.1)

1.5
(0.9‐
2.1)

1.18
(0.8‐
1.6) 1.4 (0.9‐1.9) 1.5 (0.8‐2.1) 1.3 (0.9‐1.8) 1.9 (1.2‐2.7) 1.4 (0.9‐2.0) 1.2 (0.9‐1.5)

Tick-borne
encephalitis

2.0
(0.6‐
3.3)

2.4
(0.7‐
4.1)

2.61
(0.7‐
4.53) 1.3 (0.5‐2.2) 2.4 (0.6‐4.1) 2.6 (0.7‐4.6) 1.6 (0.6‐2.6) 2.9 (0.7‐5.2) 2.4 (0.6‐4.1)

Tularemia

0.6
(0.4‐
0.7)

0.6
(0.5‐
0.7)

0.58
(0.5‐
0.71) 0.6 (0.5‐0.7) 0.6 (0.5‐0.7) 0.6 (0.4‐0.7) 0.7 (0.5‐0.9) 0.6 (0.5‐0.7) 0.6 (0.5‐0.7)

aMAE: mean absolute error.
bARIMA: autoregressive integrated moving average.
cLGBM: light gradient boosting machine.
dLSTM: long short-term memory.
eRF: random forest.
fRNN: recurrent neural network.
gSARIMAX: seasonal autoregressive integrated moving average with exogenous factors.
hXGB: extreme gradient boosting.

The MAE of the best-performing model for each disease
across all locations (with case counts greater than 0) is
presented in Table 5, which we define as our “ensemble”
model. Using this technique and when averaging across all
regions, prediction years, and diseases, we observed that the
ensemble model had the lowest MAE compared to other
models (Table 6). While the difference does not appear to

be a large amount, the difference is considerable, and the
magnitude is visually minimized by the large error in the
ARIMA and SARIMAX models. All the models included in
our study had similar MAE except for ARIMA and SARI-
MAX since they had a few outlier predictions that skewed
their MAE.

Table 5. Ensemble (best performing) models for each disease averaged across all regions where the disease was present in 2017 and 2018.
Disease Best model MAEa (95% CI)
Brucellosis LGBMb 0.8 (0.5‐1.1)
Campylobacteriosis RFc 39.8 (32.3‐47.2)
Q fever LSTMd 1.2 (0.8‐1.6)
Tick-borne encephalitis Prophet 1.4 (0.5‐2.2)
Tularemia ARIMAe 0.6 (0.4‐0.7)

aMAE: mean absolute error.
bLGBM: light gradient boosting machine.
cRF: random forest.
dLSTM: long short-term memory.
eARIMA: autoregressive integrated moving average.
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Table 6. MAEa (95% CIs) for each model aggregated across all diseases and regions where the disease was present in 2017 and 2018.
Model MAE (95% CI)
ARIMAb 115.2 (5.2‐225.2)
Ensemble 8.7 (6.5‐23.9)
LGBMc 20.8 (16.5‐25.1)
LSTMd 21.4 (16.9‐25.9)
Prophet 20.6 (16.3‐24.9)
RFe 19.0 (15.2‐22.8)
RNNf 22.1 (17.6‐26.7)
SARIMAXg 113.1 (34.6‐191.6)
Transformer 24.2 (18.8‐29.5)
XGBh 20.5 (16.0‐25.0)

aMAE: mean absolute error.
bARIMA: autoregressive integrated moving average.
cLGBM: light gradient boosting machine.
dLSTM: long short-term memory.
eRF: random forest.
fRNN: recurrent neural network.
gSARIMAX: seasonal autoregressive integrated moving average with exogenous factors.
hXGB: extreme gradient boosting.

The average training time, which included hyperparameter
tuning and model fitting, along with prediction time (ie, the
time to generate 1-step ahead forecasts and their PIs) for each
model averaged across all diseases, regions, and periods are
presented in Figure 2. The LGBM followed by ARIMA were

the most time-efficient models. Although RF and XGB had
a training time comparable with other models, their average
prediction time was considerably higher mainly because of
the increased amount of time required by them to generate
95% PIs using the bootstrapping technique.

Figure 2. (A) Average hyperparameter tuning and model fitting time and (B) average training and prediction time for each model averaged across all
diseases, locations, and periods. ARIMA: autoregressive integrated moving average; LGBM: light gradient boosting machine; LSTM: long short-term
memory; RF: random forest; RNN: recurrent neural network; SARIMAX: seasonal autoregressive integrated moving average with exogenous factors;
XGB: extreme gradient boosting.

Feature Importance
For the tree-based models (ie, LGBM, RF, and XGB), we
selected up to 10 top features based on SHAP values that
the model deemed important and calculated feature ratio
and MRR to show how lag case count may be impacting
our predictive performance (Figure 3). Overall, the feature
ratios were low (<0.4) when aggregated across countries and
diseases, suggesting that non–lag case count features were
more important for forecasting compared to case lag data.

Campylobacteriosis and tick-borne encephalitis had higher
MRR compared to other diseases, indicating that lag case
count features were ranked relatively higher among the top 10
features for these diseases. However, the low feature ratio and
MRR for many diseases highlight how the additional feature
variables can be valuable in disease forecasting, especially
for less prevalent diseases. A complete breakdown of feature
ratios and MRRs for each country-disease combination is
presented in Multimedia Appendix 1.

JMIR PUBLIC HEALTH AND SURVEILLANCE Keshavamurthy et al

https://publichealth.jmir.org/2025/1/e59971 JMIR Public Health Surveill 2025 | vol. 11 | e59971 | p. 9
(page number not for citation purposes)

https://publichealth.jmir.org/2025/1/e59971


Figure 3. Relative importance of case count lags to produce forecasts for tree-based models quantified as feature ratios and mean reciprocal ranks
of the most important features (up to the top 10) aggregated across countries (top row) and diseases (bottom row). Higher scores signify the greater
relative importance of case count lags compared to other features for obtaining model forecasts. LGBM: light gradient boosting machine; MERS:
Middle East respiratory syndrome; RF: random forest; XGB: extreme gradient boosting.

The coverage probability of the forecasting models repre-
sented by the percent coverage of the true observations
by 95% PIs is presented in Table 7. The LGBM had a
94.4% (n=14,707) coverage, indicating that the PIs were well
calibrated, even better than traditional statistical models like

ARIMA and SARIMAX. On the other hand, the DL models
had less than 10% coverage, highlighting the fact that these
models were not thoroughly calibrated. This observation was
true when the coverage percentage was broken down across
disease and country combinations in Multimedia Appendix 1.

Table 7. Coverage percentage of the 95% prediction intervals of the forecasting modelsa.
Model Coverage, n (%)
ARIMAb 14,582 (93.6)
LGBMc 14,707 (94.4)
LSTMd 1277 (8.2)
Prophet 13,086 (84)
RFe 13,756 (88.3)
RNNf 1246 (8)
SARIMAXg 13,959 (89.6)
Transformer 1262 (8.1)
XGBh 13,491 (86.6)

aThe ideal coverage percentage is 95%.
bARIMA: autoregressive integrated moving average.
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cLGBM: light gradient boosting machine.
dLSTM: long short-term memory.
eRF: random forest.
fRNN: recurrent neural network.
gSARIMAX: seasonal autoregressive integrated moving average with exogenous factors.
hXGB: extreme gradient boosting.

Results Visualization
We created an interactable dashboard to visualize the
predictions made by forecasting models (Figure 4). The
information presented in the user interface includes a time
series of actual and predicted values with 95% PI, model
performance metrics, and feature importance values for each
disease and country or region. In Figure 5, campylobacteriosis

in Schleswig-Holstein, Germany, for the year 2018 using the
LGBM model is presented as an example, showing uncer-
tainty quantification by PIs and feature importance as mean
SHAP values. The lagging case count feature for the past
6 periods was the most important feature for the model,
but variables related to global health spending and monetary
export value of cattle also ranked high in feature importance.

Figure 4. Dashboard in prediction view with values based on case counts scaled by population. LGBM: light gradient boosting machine; MAE: mean
absolute error; ML: machine learning.
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Figure 5. Dashboard with disease (“campy”=campylobacteriosis) and region (Schleswig-Holstein, Germany) selected in prediction view, which
includes model performance statistics in summary and model feature importance list. Pop-out box provides a detailed explanation of the clicked and
highlighted feature. LGBM: light gradient boosting machine; MAE: mean absolute error; ML: machine learning.

Spatial Generalizability Using Transfer
Learning
The spatial generalizability for the forecasting models was
tested based on the performance of the pretrained ensemble
model from the location with a comparable disease pattern
(ie, similar region) to forecast the disease case counts of the
selected region (ie, target region). The model tested (ensem-
ble or best model) varied by location and included statisti-
cal (ARIMA: n=3) and tree-based models (LGBM: n=2 and
XGB: n=1). In most cases, the MAE of a similar region
was close to and often lower than the MAE of the target
region (Table 8). However, campylobacteriosis forecasting in

Kalmar, Sweden, was an exception, where the model MAE
increased from 5.01 to 16.98 when Västmanland feature
data were used for training. It is important to note that
these are pairwise comparisons of a single metric calculated
across a single region and do not include confidence bounds
to determine if any differences are statistically significant.
However, given that over half of the disease-region models
produced an equal or lower MAE when testing in a new
region, if a power analysis was conducted assuming a binary
outcome and a continued trend, no amount of data would be
sufficient to show that the transfer learning results would be
significantly worse.

Table 8. The mean absolute error (MAE) values representing spatial generalizability of transfer learning modelsa.
Disease Country Target region

(cases in the past 6
months)

Ensemble model Similar region
(cases in the past 6
months)

MAE of
baseline forecast

MAE of
transfer learning
forecast

Brucellosis Israel Jerusalem (34) LGBMb Akko (32) 5.41 2.3
Campylobacteriosis Sweden Kalmar (122) XGBc Västmanland (124) 5.01 16.98
MERSd Saudi Arabia Bisha (0) ARIMAe Eastern Province (0) 0.03 0.02
Q fever Australia New South Wales

(37)
ARIMA Queensland (48) 2.85 2.00

 

JMIR PUBLIC HEALTH AND SURVEILLANCE Keshavamurthy et al

https://publichealth.jmir.org/2025/1/e59971 JMIR Public Health Surveill 2025 | vol. 11 | e59971 | p. 12
(page number not for citation purposes)

https://publichealth.jmir.org/2025/1/e59971


 
Disease Country Target region

(cases in the past 6
months)

Ensemble model Similar region
(cases in the past 6
months)

MAE of
baseline forecast

MAE of
transfer learning
forecast

Tick-borne encephalitis Germany Saxony-Anhalt
(3)

ARIMA Brandenburg (3) 0.20 0.25

Tularemia Japan Ibaraki (0) LGBM Saga (0) 0.00 0.00
aFor baseline forecasts, the models were trained and tested on target regions. For transfer learning forecasts, the models were trained on similar
regions and tested on target regions.
bLGBM: light gradient boosting machine.
cXGB: extreme gradient boosting.
dMERS: Middle East respiratory syndrome.
eARIMA: autoregressive integrated moving average.

Discussion
Principal Findings
As ML and DL techniques gain popularity in the ID
forecasting domain, they are being extensively used across
a wide range of pathogens with diverse ecology, geo-
graphic, and temporal scales. However, there is limited
consensus among the forecasting community regarding the
application and reporting of these results in a manner that
lends themselves useful for operational decision-making
in real-world circumstances [9]. In this study, we present
a universal pipeline for analyzing data, generalizing the
results, and automating reporting. We also address crucial
operational metrics such as forecasting accuracy, computa-
tional efficiency, spatiotemporal generalizability, uncertainty
quantification, and interpretability, which are essential in
an operational scenario. This generalized and automated
analytic pipeline is a major step toward addressing opera-
tional demands in the ID forecasting domain and to better
inform public health and veterinary policies. We included 6
IDs with diverse transmission dynamics spanning 8 coun-
tries and 213 regions. Additionally, we trained our models
using a broad range of data from demographic, geographic,
climatic, and socioeconomic factors within the One Health
landscape. This comprehensive approach enables our analysis
to capture the intricate interplay of variables that drive
infectious disease presence and transmission, more closely
reflecting the complex realities observed in the real world.
Model Performance
We assessed forecasting model accuracies by their ability
to detect the presence of a disease based on F1-scores and
by their ability to accurately forecast case counts when
present using MAE. This 2-step approach prevented the
inflation of model accuracy by the regions that did not
encounter disease presence during our study period. Though
we did not find a single best model suitable for all disease,
region, and country combinations, the tree-based models were
consistently better than all other models at detecting both
disease presence and actual case counts with better F1-scores
and MAE values, respectively. Our ensemble technique,
which selects the best-performing model for each disease-
location pair, demonstrates superior forecasting performance

by reducing prediction noise compared to single-model
approaches, aligning with previous research [35-37]. While
ideal ensemble methods would dynamically update to identify
the best model at each time stamp, this demands exten-
sive data, computational resources, and continuous valida-
tion. To address these challenges, we opted for a simpler
approach by selecting the best model based on MAE for
the testing dataset, minimizing resource and data require-
ments. However, ensemble techniques still require substantial
computational power and analytic pipelines, posing chal-
lenges for low- and middle-income countries with limited
resources. Investments in infrastructure, skill development,
and data-sharing initiatives are crucial to fully leverage ML
and DL techniques for ID forecasting in such settings.
Computational Efficiency
The computation time required for ID forecasting can broadly
be split into model training and model prediction time.
In our analysis, much of the training time was spent on
hyperparameter tuning. Autoregressive and tree-based models
took less time to tune than DL models. On the other hand,
tree-based models (ie, RF and XGB) took considerably longer
to produce predictions compared to the other models. This
increase in time was mainly because of the time required to
compute bootstrap PIs. The LGBM was an exception, as it
used the least computational time for both training and testing
compared to all the other models. Since our forecasting
pipeline performed stepwise forecasting for each month with
models retrained only once a year, more time was spent on
predicting rather than model training. Hence, when building
a forecasting pipeline where the models are retrained once
a year and predictions are made every month, it is computa-
tionally optimal to choose models with lower prediction time
rather than training time.

The accuracy of modeling techniques can drastically differ
with the amount of time and computational resources spent
on fine-tuning the model. Here, we chose the initial hyper-
parameter values for optimization based on their relative
importance and time required for overall analysis with the
goal of achieving comparable results. It is important to
find a balance between model complexity and computational
efficiency according to the individual operational needs and
available resources.
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Uncertainty Quantification
Since the effectiveness of health policies and operational
decision-making is driven by the accuracy of forecasts, policy
makers need to know the credibility of the models in the
form of prediction uncertainties [38]. In traditional statisti-
cal techniques, such as ARIMA and SARIMAX, forecasting
uncertainties are computed based on probability theory and
a set of statistical assumptions and, therefore, are readily
available. However, generating such PIs is rather complica-
ted in ML and DL compared to traditional methods due to
additional uncertainties associated with noise distributions,
hyperparameters, overparameterization, and optimization that
should be accounted for [39]. Therefore, most of the ID
forecasting studies fail to report their model uncertainty
despite their recent popularity [9]. In our study, we used
bootstrapping and probabilistic methods to compute PIs
around our point estimates of ML and DL methods. Such
bounds are crucial to assessing future uncertainties, mak-
ing operational decisions, planning policies for a range of
possible outcomes, and comparing different forecast models
thoroughly [40]. The LGBM was the best-calibrated model
with almost 95% of true observations covered by 95% of
PIs, followed by other tree-based and statistical models. The
DL models had the least desirable coverage along with their
inferior predictive performance and narrow prediction band.
This may not be surprising, though as there is evidence in
the literature that uncertainty estimates around DL predictions
often fail to capture the true data distribution [41].

Spatiotemporal Generalizability
Overall, the predictive performance of transfer learning
models was comparable to their base models as presented
in Table 8. For example, using the Akko model to predict
case counts of brucellosis in Jerusalem created an increase
in predictive accuracy. This suggests the potential for spatial
generalizability of our ensemble, that is, an ability to predict
existing diseases in new regions with low error. However,
campylobacteriosis forecasting in Kalmar, Sweden, was an
exception, where the model MAE increased when Västman-
land feature data were used for training. Since campylobac-
teriosis tends to have higher case counts, the difference in
MAE cannot be directly comparable to the other diseases with
much lower case counts and naturally lower MAE values.
There are many possible reasons for the difference seen
in the results. For example, the similar region model may
not have contained the necessary similarities to the target
region required to enable a lower prediction error, such as
differences in regional management practices. The ensemble
model (best-performing model for disease-location pair) was
different between the test cases and included both statistical
(only case counts) and tree-based (many features) models.
More advanced transfer learning techniques that include
multiple input features to identify similarity and emphasize
model retraining by reallocating model weights between
target and similar regions could be considered to improve
spatial generalizability [2,42]. Regardless, these results are
encouraging, and a more comprehensive study is warranted.

Model Interpretability
We included interpretability for each model in the form of
feature importance, a critical metric that is often neglected
in the ID forecasting domain [9]. Interpretability provides
insight into the decision-making process of the prediction
systems, which is crucial for implementing appropriate
disease mitigation strategies. Our scoping systematic review
of ID prediction models showed that historic case counts
are the most commonly used input feature in the ID fore-
casting domain, while the other important predictors, such
as climate, demographics, socioeconomics, and geography,
are often neglected [9]. In this study, we estimated lower
feature ratio and MRR for lag case count features across
countries and diseases, indicating that the non–case count
features were equally important, if not more, compared to
case count lags. This study suggests that including data
related to the full disease ecology is critical for obtain-
ing accurate, reliable, and interpretable ID forecasts. For
example, cattle export was one of the important informative
non–case count features for forecasting campylobacteriosis
in Schleswig-Holstein, Germany. A direct causal association
between the disease and cattle exports cannot be made just by
a feature importance plot. However, campylobacteriosis is the
most commonly reported bacterial food-borne gastrointestinal
infection in the European Union that is closely associated
with the dairy industry [43]. Our results suggest that high
dairy and other agriculture activities, including cattle trading
in Schleswig-Holstein, could play an important role in the
disease prevalence in the region and, if adjusted, could result
in disease mitigation.
Data Visualization
To make the best-performing models and corresponding
predictions accessible to decision makers, we developed
an interactive data visualization dashboard. This dashboard
provides the raw data, the model predictions with accompany-
ing 95% PIs and feature importance, overall model perform-
ance, and an interactive global map. This dashboard allows a
user to visualize forecasts for up to a year into the future in
any country or region where the data exist and can be used to
inform control measures to reduce the spread of an ID within
a country or region.
Conclusions
Our study provides a generalized platform to analyze and
report ID forecasts with an emphasis on analytical accu-
racy, computational efficiency, uncertainty quantification,
interpretability, and generalizability. These 5 aspects are
crucial in determining the forecasting approach optimal for
each situation’s operational needs. While all the forecasting
techniques come with their own strengths and weaknesses,
choosing an optimal approach is usually a tradeoff between
computational efficiency, model complexity, and forecasting
accuracy. Recognizing and addressing such nuances will
facilitate the use of ID forecasts in an operational environ-
ment for better preparedness and response during an ID
emergency.
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