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Abstract

Background: Epidemics and outbreaks present arduous challenges, requiring both individual and communal efforts. The
significant medical, emotional, and financial burden associated with epidemics creates feelings of distrust, fear, and loss of control,
making vulnerable populations prone to exploitation and manipulation through misinformation, rumors, and conspiracies. The
use of social media sites has increased in the last decade. As a result, significant amounts of public data can be leveraged for
biosurveillance. Social media sites can also provide a platform to quickly and efficiently reach a sizable percentage of the
population; therefore, they have a potential role in various aspects of epidemic mitigation.

Objective: This systematic literature review aimed to provide a methodical overview of the integration of social media in 3
epidemic-related contexts: epidemic monitoring, misinformation detection, and the relationship with mental health. The aim is
to understand how social media has been used efficiently in these contexts, and which gaps need further research efforts.

Methods: Three research questions, related to epidemic monitoring, misinformation, and mental health, were conceptualized
for this review. In the first PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) stage, 13,522
publications were collected from several digital libraries (PubMed, IEEE Xplore, ScienceDirect, SpringerLink, MDPI, ACM,
and ACL) and gray literature sources (arXiv and ProQuest), spanning from 2010 to 2022. A total of 242 (1.79%) papers were
selected for inclusion and were synthesized to identify themes, methods, epidemics studied, and social media sites used.

Results: Five main themes were identified in the literature, as follows: epidemic forecasting and surveillance, public opinion
understanding, fake news identification and characterization, mental health assessment, and association of social media use with
psychological outcomes. Social media data were found to be an efficient tool to gauge public response, monitor discourse, identify
misleading and fake news, and estimate the mental health toll of epidemics. Findings uncovered a need for more robust applications
of lessons learned from epidemic “postmortem documentation.” A vast gap exists between retrospective analysis of epidemic
management and result integration in prospective studies.

Conclusions: Harnessing the full potential of social media in epidemic-related tasks requires streamlining the results of epidemic
forecasting, public opinion understanding, and misinformation detection, all while keeping abreast of potential mental health
implications. Proactive prevention has thus become vital for epidemic curtailment and containment.

(JMIR Public Health Surveill 2025;11:e55642) doi: 10.2196/55642
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Introduction

Background
The global community braved the COVID-19 crisis, with
multiple emerging variants, more than 6 million deaths, and
764 million cases being registered [1]. COVID-19 was dubbed
“an individual and collective traumatic event,” and has “directly
or indirectly affected every individual in the world” [2]. Four
years later, the world is still grappling with the emotional and
socioeconomic aftermath of this crisis [3].

However, COVID-19 has not been the first crisis of its kind to
affect global public health. Multiple epidemics have spanned
the last 2 decades, causing varying degrees of instability and
disease burden [4]. An epidemic is defined as “the occurrence
in a community or region of cases of an illness, specific
health-related behavior, or other health-related events clearly
in excess of normal expectancy” [5]. When an epidemic “occurs
worldwide or over a very wide area, crosses international
boundaries, and affects a large number of people,” it qualifies
as a pandemic [5].

Epidemics are often linked to major feelings of uncertainty and
loss. The 2014 Ebola outbreak caused rampant fear behaviors
in West Africa [6]. The SARS outbreak has created a range of
psychiatric conditions, including posttraumatic stress disorder,
depressive disorders, and other anxiety spectrum disorders, such
as panic, agoraphobia, and social phobia [7]. COVID-19 was
associated with major stigma and psychological pressure, further
aggravating feelings of guilt, shame, regret, sadness, self-pity,
anger, internalized emotions, overwhelmed feelings, negative
self-talk, unrealistic expectations, and perceived sense of failure
[2]. During epidemics and outbreaks, mistrust of governments
and health workers, misinformation, rumors, and conspiracies
[8] present challenges to containment and can have a negative
impact on mitigation efforts [9-11]. The particular vulnerability
surrounding epidemics could render social media users highly
suggestible and at risk for fake news acceptance and
dissemination [12]. The substantial financial and medical burden
imposed by outbreaks and epidemics, in addition to the
substantial challenges arising in their progression and aftermath,
further complicates the mental health toll they take on the
affected population and on vulnerable communities [13].

The control strategies put in place in public health crises to
contain the spread of infection are highly dependent on the
transmission method and rate [14]. For instance, during
COVID-19, various containment measures were adopted,
including school closures, shut-downs of nonessential
businesses, bans on mass gatherings, travel restrictions, border
closures, and curfews [14]. These measures, although necessary
for mitigation, can worsen emotional states, contribute to the
exacerbation of preexisting socioeconomic inequalities in mental
health [15], and lead to unhealthy coping mechanisms, such as
problematic internet use, social media addiction, and emotional
overeating [16-18].

During epidemics, social media platforms fulfill various
functions ranging from informational support to emotional and
peer support [19]. They are often a solemn companion offering

a tool for connection, a space to grieve, and an instrument of
outrage [19]. It is not surprising that the use of social media
platforms massively increased during the COVID-19 pandemic
[20], rendering them almost essential, ubiquitous, and a catalyst
for change, for better and for worse [21].

Social media platforms offer significant amounts of data that
can be leveraged for biosurveillance and syndromic surveillance
of epidemics and outbreaks [22]. Biosurveillance provides early
warning and situational awareness of events using diverse data
streams [22]. Efforts directed at facilitating both the early
detection and forecasting of disease outbreaks have been
increasing in the past 2 decades [22]. Through the analysis of
a variety of data sources, syndromic surveillance aims to discern
individual and population health indicators before confirmed
diagnoses are made [23] using trackable or exhibited behavioral
patterns, symptoms, signs, or laboratory findings [23].

Understanding how social media shapes our experiences and
preparedness during epidemics, and characterizing the roles it
can fulfill, could allow for an improved apprehension of how
to efficiently harness this resource for prevention efforts or
alleviation of burden of disease [24].

Literature reviews have shown interest in understanding the
roles social media fulfills during times of crisis, especially in
the last decade [12,25-27]. Social media roles related to the
facilitation of public health management, prevention of
misinformation, and management of public health behavior and
response were found to be of utmost priority [24], and social
media topics related to surveillance and monitoring of public
attitudes and perceptions, as well as mental health,
misinformation, and fake news, were found to be the most
well-developed research topics [28]. These 3 particular facets
of social media’s intersection with epidemics have not been
approached in existing reviews; therefore, a gap remains for the
research questions (RQs) proposed in this systematic literature
review.

This Review
This review aimed to examine the “epidemic-social media”
relationship and delineate its various aspects, as well as identify
the methods used in harnessing social media in epidemics, with
a particular focus on monitoring and surveillance,
misinformation, and mental health. In light of the current state
of global public health, it is vital to understand how a tool as
influential as social media can shape the population’s response
in times of crisis and how it can be leveraged.

This systematic literature review outlines 3 RQs as follows: (1)
How is social media harnessed for epidemic monitoring and
management? (RQ1); (2) How is social media used for capturing
and managing misinformation during epidemics? (RQ2); and
(3) How is social media related to mental health during
epidemics? (RQ3).

The remainder of this paper is organized as follows. Methods
pertaining to the search strategy and extraction process are
detailed in the Methods section. Results of the systematic review
are synthesized in the Results section. Discussion of the major
issues and practical implications as well as identified directions
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for future research are presented in the Discussion section.
Conclusions are summarized in the Conclusion section.

Methods

Overview
This systematic review builds upon the preferred reporting items
outlined in the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) statement [29]
(Multimedia Appendix 1).

Proposed RQs
The RQs proposed in this systematic literature review examine
the epidemic-social media relationship from different
perspectives. The first RQ aims to identify potential uses of
social media in the context of epidemic management and
mitigation. The second RQ examines potential methods used
in the context of social media misinformation as it relates to
epidemics. Furthermore, the third RQ aims to discern potential
aspects of the relationship between social media and public
mental health during epidemics.

Search Strategy
A systematic literature search was undertaken at the beginning
of June 2021. A collaborative planning and task allocation
process was developed and updated at each stage of the study.
The systematic search was conducted across multiple digital

libraries—PubMed, IEEE Xplore, ACM Digital Library,
ScienceDirect, MDPI, ACL, SpringerLink, arXiv, and ProQuest.
Gray literature sources (arXiv and ProQuest) were used to
complement the search and reduce publication bias as they
provide a venue for authors to share studies with null or negative
results that might otherwise not be disseminated.

The RQs were used as a guideline to identify search keywords.
The search terms used included “social media” and “epidemics,”
with variations depending on the RQ’s objectives and the
database searched. For RQ1, the search results of the query
(“social media” AND “epidemics”) were complemented by the
results of the query (“social media” AND “epidemics” AND
“monitoring” AND “tracking”). The combination of these 2
queries allowed for result-filtering without overlimiting the
output. The query (“social media” AND “epidemics” AND
“fake news”) was used for RQ2. A combination of the queries
(“social media” AND “epidemics” AND “mental health” AND
“support system”) and (“social media” AND epidemic AND
“mental health” AND addiction) was used for RQ3.

These queries were adapted to each database based on its
settings. All searches used the parameters full-text or all
metadata in the queries. All searches covered the time range
2010 to 2022.

Table 1 details the number of publications (without duplication)
retrieved for screening from each database for each RQ.

Table 1. Output of search strategy for research questions (RQs) 1, 2, and 3.

RQ3RQ2RQ1Database

5427259IEEE Xplore

2403711180ScienceDirect

21883672189SpringerLink

1212090ACL

1795923672ACM Digital Library

70113178MDPI

051544arXiv

12726226ProQuest

21714954PubMed

Study Selection and Data Extraction Strategy
At the initial screening stage, 3 authors assessed the titles and
abstracts against the inclusion criteria. Publications included
after this screening stage were then retrieved in full-text version,
and subsequently screened in the eligibility stage. Three of the
authors read the full-text articles independently to ascertain their
relevance with regard to the search terms and the research aims.
All disagreements on the included articles were resolved by
consensus.

To organize the screening process, Rayyan [30], a web
application facilitating the collaborative review process and
screening process for systematic literature reviews, was used
by the authors to import all articles initially collected and screen
them following a “blind on” setting, where decisions and labels
of any collaborator were not visible to others. Publications with

inclusion disagreements were then identified after dropping the
“blind on” setting and resolved among authors.

The inclusion and exclusion criteria specified the aims of the
review and were agreed upon by all authors (Textbox 1). For a
publication to be selected, it needed to address the RQs and be
published within the time range. The publication was excluded
if it was not a journal paper, conference proceedings paper, or
peer-reviewed workshop or symposium paper. Long abstracts
and posters were excluded. Publications related to the HIV or
tuberculosis epidemic were excluded to preserve the
homogeneity of the review. Tuberculosis is a bacterial infection
with a high burden of disease, especially in developing countries,
while HIV is the virus responsible for AIDS [1]. Both
tuberculosis and HIV or AIDS are classified as ongoing
worldwide public health issues by the World Health
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Organization (WHO) and the Centers for Disease Control and
Prevention [1]. Given the particularities of both tuberculosis
and HIV or AIDS and the high volume of literature review

publications related to them [31], the authors agreed to consider
both beyond the scope of this review.

Textbox 1. Inclusion and exclusion criteria for the study selection process.

Inclusion criteria for studies

• Within the scope of one of the research questions

• Published between 2010 and 2022

• Relates to an epidemic or pandemic within the last 2 decades

• Includes the use of a social media site

• Is a journal, conference, or workshop paper

Exclusion criteria for studies

• Tuberculosis, HIV, or, noninfectious diseases

• Online forums or traditional media

• Book, e-book, letter to editor, magazine, abstracts, case reports, comments, reviews, or poster

In the data extraction stage, the final list of papers was analyzed
to answer the RQs and extract pertinent information. The final
stage of the PRISMA guidelines [29] was considered in this
phase. The following data were extracted from selected papers:
authors, publication year, epidemic studied, social media site
used, theme, identified method, and key findings. All the related
data were extracted independently by 2 investigators. When
necessary, differences were resolved by discussing, examining,
and negotiating with a third investigator.

Quality Assessment
The quality of the included studies in this review was appraised
using a set checklist of quality criteria. Papers that did not fulfill
at least 4 out of the 5 quality criteria were excluded. The
checklist was defined as follows:

1. Are the study objectives clearly defined?
2. Are the methods clearly defined and applied?
3. Are the methods applied successfully and correctly?
4. Are accuracy values and efficiency and confidence levels

reported?
5. Are limitations clearly reported and adequately represented?
6. Do the contributions outweigh the limitations of the study?

The quality criteria were formulated based on our understanding
of the current state of research in this field and the research gap
this systematic review is attempting to fill. The papers were

assessed for their ability to answer the RQs and enrich the
literature while fulfilling quality standards.

Bias was evaluated in this systematic literature review from 2
aspects. First, the risk of bias based on inclusion was limited
through the use of multiple reviewers. Second, publication bias
was limited by including gray literature which reports negative
and null results. To enhance the quality of this review, the
authors monitored the planned review tasks and ensured
continuous progress monitoring. Collaborative worksheets were
created to keep track of scheduled tasks and deadlines, and to
note pertinent observations. Validation of the extracted data
from selected papers was conducted by the authors and
peer-reviewing was maintained at every stage of the systematic
review process.

Results

Characteristics of the Selected Papers
The search process resulted in a total of 13,522 articles
distributed over both the main and gray databases used. After
the removal of duplicates, 13,306 (98.4%) titles remained. Of
these, 12,718 (95.58%) studies were excluded after the title and
abstract screening, as they did not fulfill the inclusion criteria.
A flow diagram of the results of literature collection, screening,
eligibility, and inclusion is presented in Figure 1.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for the selection of articles of the literature
reviewed. RQ: research question.

Of the 588 studies that were full-text screened, 351 (59.7%) did
not meet the inclusion criteria. 5 (1.4%) papers were identified
from reference lists of included papers. A total of 242 (67.9%)
studies were selected for inclusion in this review as summarized
in subsection Answers to RQs.

The papers included in the review were distributed as follows:
47.1% (114/242) were journal papers, 43.8% (106/242) were
publications of conference proceedings, 7.4% (18/242) were
workshop and symposium publications, while 1.7% (4/242)
were gray literature (Figure 2A).
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Figure 2. Distribution of selected papers by (A) type and (B) year. RQ: research question.

The publications spanned from 2010 to 2022. As can be seen
in Figure 2B, the number of publications peaked in 2020 and
continued to increase for all RQs. All the selected papers that
answeredRQ3 spanned the from 2020 to 2021. A similar
distribution was seen in papers that answeredRQ2, where
selected papers were from 2015, 2019, 2020, and 2021. RQ1,
which studies the aspects of epidemic management and
mitigation using social media, included the highest number of
papers and spanned the entire decade.

Social Media Platforms Used
Several social media platforms were used in the literature
selected for this systematic review. X (formerly Twitter) is one
of the most widely used platforms for sharing “microblogs.”
These short messages are called tweets and can take up to 280
characters. In contrast, Weibo, is a popular platform to share
and discuss individual information and life activities as well as
celebrity news in China. As can be seen in Figure 3, X followed
by Weibo seems to be the platform of choice for most works
aiming to study epidemic monitoring and mitigation through
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social media (RQ1) and epidemic-related misinformation on
social media (RQ2). For epidemic and social media–related
mental health aspects, most works seem to take a generalist
approach rather than a platform-specific one. Compared with

other social media sites, such as Facebook and Instagram, which
predominantly include heterogeneous posts, X offers a more
concise “microblog” format.

Figure 3. Number of selected publications using each social media platform included in the systematic literature review. RQ: research question.

Epidemics Studied
The selected literature discussed multiple epidemics (Figures
4 and 5), including vital hemorrhagic fevers and influenza-like
illness (ILI).

Dengue fever and Zika fever are mosquito-borne diseases caused
by the dengue virus and Zika virus, respectively, and spread by
several species of female mosquitoes of the Aedes genus [1].
The disease is now endemic in more than 100 countries with
potential risk in other areas [1,32]. The WHO declared the Zika
outbreak of 2016 and the Ebola outbreak in 2019 as public
health emergencies of international concern (PHEICs) [1].

ILI is a nonspecific respiratory illness characterized by fever,
fatigue, cough, and other symptoms. Cases of ILI can be caused
either by influenza strains or by other viruses, such as
coronaviruses. Influenza remains a global and year-round

disease burden and causes illnesses that range in severity and
sometimes lead to hospitalization and death. Seasonal influenza
epidemics are mainly caused by influenza A and B viruses [1].
The influenza A virus subtype strain H1N1, commonly referred
to as the swine flu, disproportionately affects children and
younger people. H1N1 was declared a PHEIC in 2009 and then
designated a pandemic [1]. Coronaviruses include SARS, MERS
(Middle East respiratory syndrome), which can be contracted
through direct or indirect contact with infected animals [1], as
well as COVID-19 caused by the SARS-CoV-2 virus. The latter
was designated a PHEIC and a pandemic by the WHO. As of
April 26, 2023, the official death toll from COVID-19 reached
6,915,268 [1].

The highest number of selected publications for all RQs related
to COVID-19, followed by influenza (Figure 4). This trend is
due, in part, to the volume of the COVID-19 research output
[33].

JMIR Public Health Surveill 2025 | vol. 11 | e55642 | p. 7https://publichealth.jmir.org/2025/1/e55642
(page number not for citation purposes)

Asaad et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Number of selected publications pertaining to each epidemic included in the systematic literature review. MERS: Middle East respiratory
virus; RQ: research question.

Figure 5. Timeline of the epidemics and pandemics spanning the last decade and included in the systematic literature review. SARS is pre-2009 and
dengue fever has caused multiple outbreaks. Both are not illustrated in the timeline but are included in the systematic literature review. DRC: Democratic
Republic of the Congo; MERS: Middle East respiratory syndrome.

Answers to RQs

Overview
A thematic analysis of the selected literature was conducted
with the aim of identifying the main themes of each RQ. Themes
were identified following the objectives of the paper and its
results. For each theme, papers were organized by method,
social media platform used, and the epidemic studied. Methods
were grouped categorically. For instance, content analysis
includes automated, linguistic, thematic, qualitative, or
quantitative analysis, while dictionary-based classification
entails a lexicon-based classification. Machine learning (ML)
classification includes conventional ML models, while deep
learning (DL) entails methods based on artificial neural networks

with representation learning. Although it must be acknowledged
that overlaps exist, the categorization used in this paper is based
on the most distinctive and predominant use or theoretical
approach of each method. This categorization is meant to
facilitate a structured analysis and discussion of the literature
by grouping papers according to their primary methodological
approach, thus allowing a clearer comparison and contrast of
their contributions, strengths, and limitations.
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RQ1. Social Media for Epidemic Monitoring and
Management

Overview

Social media platforms offer significant amounts of data, which
can be potentially useful in biosurveillance and syndromic
surveillance of epidemics and outbreaks.

Two main themes were identified in the selected papers that
addressed how social media could be used in epidemic
management, namely, (1) epidemic surveillance and forecasting,
and (2) public opinion understanding.

Epidemic Surveillance and Forecasting

Several works proposed a dictionary-based classification of X
for the surveillance of COVID-19 [34,35], dengue fever [36,37],
Ebola [38,39], H1N1 [40,41], influenza [42-50], Zika [51,52],
MERS [53], and a combination of epidemics [53-55]. Similar
epidemic surveillance applications using dictionary-based
classification were conducted using data from Weibo for Ebola
[56] and influenza [57,58], Reddit for Zika [59], and Facebook
for MERS and other epidemics [53].

Reported results indicated that epidemic surveillance can be
achieved using varying strategies. For instance, social
distancing–related tweets can be grouped into categories, such
as implementation, purpose, social disruption, and adaptation,
and used to quantify the spatiotemporal prevalence and evolution
of COVID-19 social distancing on X [34]. Similarly, official
social media channels of information and health organizations,
such as the Centers for Disease Control and Prevention, WHO,
and National Institutes of Health (NIH) can be monitored, and
their X data can be classified to recognize “alarming” news and
“concerning” news [35]. Dengue fever reported surveillance
strategies to include systems aggregating social media data with
weather and flood information [36], and using volume, location,
time, and public perception as spatiotemporal dimensions [37].

Results also reported keyword-based data extraction and
classification as a strategy for the creation of an Ebola
monitoring platforming in China using Weibo data [56] and in
Africa using X data [39], and for multiple epidemics [53-55].

Regression analysis was reported to be used for tracking and
forecasting influenza [46,47,49,57] and Zika [52], and the
Markov switching model was used for real-time early-stage
influenza detection with emotion factors for epidemic and
nonepidemic segmentation [58]. Statistical analysis was used
to study the relationship between human activities collected
from Sina Weibo and morbidity patterns and at-risk areas during
COVID-19 in China [60].

Correlation analysis reported that X, in addition to other sources,
could not provide an Ebola alert more than a week before the
WHO and that X’s message volume was correlated more with
news article volume than with the number of Ebola cases [38].

Additional dictionary-based surveillance methods include
quantitative analysis, filtering, and normalization of X data for
H1N1 [40,41] and Zika [51]; mathematical modeling of
influenza trends using geo-tagged X streams [42]; time series
for X symptom reporting matching ILI [43]; keyword analysis

for Zika risk assessment [59,61] as well as influenza risk
surveillance [44] and condition aggravation [45], and upcoming
influenza spike detection [50], sentiment analysis [48].

Different methodologies using conventional ML were reported
to be used for dengue-related event monitoring [62] and lazy
associative classification [63]; influenza detection [64-66];
influenza activity monitoring [67]; seasonal influenza trend
prediction [68,69]; ILI prevalence prediction [70] and awareness
or infection classification [71]; location-specific influenza state
detection [58,72,73]; avian influenza outbreak detection [74];
disease-related category classification [75-77] for Ebola, MERS,
and dengue fever; guideline-related category classification for
ILIs [78]; supervised text classification [79]; topic classification
for symptomatic manifestation and prevention of
mosquito-borne diseases [80]; infectious disease analytics
[81,82] and COVID-19 case forecasting [83], and X-enabled
contact tracing [84] and early detection [85].

Conventional ML models used for epidemic surveillance and
monitoring include support vector machine (SVM), naive Bayes
(NB), and logistic regression (LR).

Several DL techniques were applied for epidemic monitoring
[86-90]; fine-tuning of semisupervised model with unlabeled
COVID-19 dataset [91]; disease-infected individual detection
in tweets using bidirectional encoder representations from
transformers (BERT)–based model and disease-infection region
identification using spatial analysis [92]; classification of Zika-
and Ebola-related tweets [93], COVID-19 related tweets [94],
and influenza-related information [95,96]; H1N1 outbreak
forecasting and individual-level disease progressing using
semisupervised multilayer perceptron and a online stochastic
training algorithm [97]; and correlation of X reports on H1N1
infectious disease control using gray wolf optimizer and least
square method [98]. Results reported that mathematical
modeling can be used to understand the influence of X on the
spread of H1N1 [98,99] and information entropy to quantify
the impact of social network information [100].

Results showed that social network theory and social network
analysis can be used for the prediction of infected groups and
early detection of contagious outbreaks in social media
[101-104], and that topic modeling techniques, such as latent
Dirichlet allocation (LDA) can be used for epidemic intelligence
[105-110] to detect major epidemic-related events [111], monitor
information spread [112], and rank epidemic-related tweets
[113].

Understanding Public Opinion

Several methods were used in the selected literature to extract
and analyze public opinions expressed on social media. These
methods were based on content analysis of social media data,
linguistic analysis, qualitative analysis, lexicon-based analysis,
sentiment analysis, valence aware dictionary and sentiment
reasoner–based sentiment analysis, topic modeling, conventional
ML models, and DL models.

Social media content analysis was used to analyze public
discourse around H1N1- [114] and Zika-related risks [61],
inspect social media coverage related to influenza vaccinations
[115] and COVID-19 vaccinations [116-127], measure public
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health concerns [128], identify stances toward policies, such as
social distancing and face masks [129], identify emotional
composition of online discourse before and after COVID-19
[130], and inspect the presence and escalation of negative
sentiments toward China [131]. Latent semantic analysis and
LDA were used to mine opinions on X related to the hashtag
#IndiaFightsCorona [132]. Topic detection and sentiment
analysis were performed for opinion mining, concern
exploration, and public opinion analysis in the context of
epidemics [133-142], and for pattern analysis [143-145]. Social
media content analysis was also used for tracking information
spread [146], narratives and information voids [147], monitoring
engagement [148-152] and emotional response [153-161],
requests for medical assistance [162], health behavior changes
[163], governmental response [164,165], and physicians’
opinions [166].

Public reaction tracking and investigation were performed using
SVM and NB for topic and sentiment analysis [127,167-175];
SVM, NB, and random forest (RF) for social media content
classification (eg, caution, advice, notifications, donations, etc)
[176]; crisis analysis [177,178]; clustering for topic extraction
[179]; and LR for prevention category tweet classification [180].
ML was used to analyze public discourse against masks [181],
extract insights on policy response [182], and understand
expressions of help-seeking during COVID-19 [183].

BERT-based models were used for public sentiment assessment
of data related to COVID-19 available in X [184-186].
Multilingual COVID-19 emotion prediction was performed
using a fine-tuned BERT “BERTmoticon” [187], while bias
and user opinion were identified using a GPT [188]. A language
model for Arabic Moroccan dialect was used for topic modeling,
emotion recognition, and polarity analysis [189]. long short-term
memory (LSTM), BERT, and enhanced language representation
with informative entities were used to analyze the evolution of
sentiments in the face of the public health crisis due to
COVID-19 [190]. Bi-LSTM with an attention mechanism was
used for sentiment analysis of COVID-19–related tweets [191].
Term-frequency analysis was adopted to build an emerging
topic graph [192], while the k-means algorithm, LR, SVM, and
NB were used to identify COVID-19–related topics [193]. An
extra tree and convolutional neural network-based ensemble
model was reported to have outperformed conventional ML
models in a sentiment classification task [194]. French
COVID-19 tweet classification was performed using FlauBERT
[195], while opinion monitoring was achieved using a
combination of LSTM and global vectors for word

representations [196]. Convolutional neural network was used
for COVID-19 personal health mention detection [197].

Findings of analyses performed in the context of Ebola, Zika,
and influenza revealed that social media posts from health
organizations were highly effective when incorporating visuals
and that public response was more affected by these
communications when they acknowledged the concerns and
fear of the community [198]. In the context of Ebola, findings
highlighted that online blame was directed toward the affected
populations as well as figures with whom social media users
had preexisting political frustrations [199].

Analysis of X discussions in relation to COVID-19 revealed
the presence of negative sentiments and an association between
the words “coronavirus” and “China” [200]; a gradual increase
in calls for social distancing, quarantining, and working from
home among social media users [201]; a growing number of
anger expressions directed at individuals refusing sanitary
protocols; and the frequent use of the words “family,” “life,”
“health,” and “death” [201]. Analysis of X hashtags also
revealed categories, such as quarantine, panic buying, school
closures, lockdowns, frustration, and hope [201], as well as
mentions of mental health issues and gratitude for essential
workers [201]. Other categories and themes identified or used
for manual annotation of topics discussed on social media
include resource provision, employment and strategies [87],
statistics, prevention, hygiene, diagnosis, politics, world news
[202], conspiracy, economy, mortality, origin, and outbreak
[203].

Findings also indicated increased levels of connectivity and
agency coordination during the early-stage response to
COVID-19 [87]. Disregarding COVID-19–imposed sanitary
and government recommendations was potentially linked to
uncertainty in times of crisis, overwhelm by “noise” presented
on social media, and varying socioeconomic factors [204].

Results revealed that social media analytics were an efficient
approach to capture the attitudes and perceptions of the public
during COVID-19 as mentioned in studies by Yigitcanlar et al
[205] and Xia et al [206]. Fear and collectivism were identified
as predictors of people’s preventive intention in the context of
COVID-19 [207]. “Sadness” appeared to spike after the WHO
declared COVID-19 as a pandemic, while “anger” and “disgust”
spiked after the death toll surpassed the hundred thousand in
the United States [187].

Tables 2 and 3 summarize the methods, epidemics, and social
media used in studies pertaining to epidemic forecasting and
prediction and understanding of public opinion.
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Table 2. Summary of methodologies used in studies addressing the first part of research question 1 (epidemic surveillance and forecasting).

ReferencesMethod, epidemic studied, and social media used

Dictionary-based classification

COVID-19

[34,35]X (formerly Twitter)

[60]Sina Weibo

Dengue fever

[36,37]X

Ebola

[38,39]X

[56]Weibo

H1N1 or swine flu

[40,41]X

Influenza or flu

[42-50]X

[57,58]Sina Weibo, Tancent Weibo

Zika

[51,52]X

[59]Reddit

MERSa

[53]X

[53]Facebook

Multiple epidemics

[53-55]X

[53]Facebook

MLb classification

Dengue fever

[62,63]X

Influenza or flu

[64-73]X

[58,73]Sina Weibo, Tancent Weibo

[68]Facebook

H1N1 or swine flu

[78]X

H5N1 or avian influenza

[74]X

MERS

[75-77]X

Ebola

[93]X

Zika

[93]X

COVID-19
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ReferencesMethod, epidemic studied, and social media used

[83-85]X

Multiple epidemics

[75-77,79-82]X

DLc classification

COVID-19

[35,86,88-91,94]X

Ebola

[93]X

Zika

[93]X

Influenza or flu

[95]X

Multiple epidemics

[92]X

Mathematical modeling

COVID-19

[100]WeChat

H1N1 or swine flu

[97-99]X

Social network analysis

COVID-19

[101,102]X

Influenza or flu

[104]Facebook

Multiple epidemics

[103]X

Topic modeling

COVID-19

[88,102,105,106]X

Dengue fever

[111]X

Ebola

[112]X

Influenza or flu

[107]X

[108]Weibo

Zika

[109]X

Multiple epidemics

[113]X

aMERS: Middle East respiratory syndrome.
bML: machine learning.
cDL: deep learning.
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Table 3. Summary of methodologies used in studies addressing the second part of research question 1 (understanding public opinion).

ReferencesMethod, epidemic studied and social media used

Content analysis

COVID-19

[87,123,126,141,144,146,148,151,156,157,159,160,200,201]X

[202]Instagram

[155,157,204]Reddit

[122]TikTok

[151,162]Weibo

[126,149]Facebook

Ebola

[198,199]X

[199]Facebook

[198]Instagram

Zika

[61]Reddit

Influenza or flu

[115]X

[115]Facebook

H1N1 or swine flu

[115]X

[115]Facebook

Dictionary-based classification

COVID-19

[128,129,147,153,158,165,166,203,205,206]X

[147]Facebook

[147]Instagram

[147]Reddit

[129]Weibo

H1N1 or swine flu

[114]X

MLa classification

COVID-19

[127,132,164-167,177-179,181]X

[176]Weibo

[182]Facebook

[182]Instagram

Zika

[180]X

DLb classification

COVID-19

[118-120,130,184-189,191,194-197]X

[190]Weibo
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ReferencesMethod, epidemic studied and social media used

Topic modeling

COVID-19

[116,133-135,138,143,154,163,189,192,193]X

[139]Reddit

[136,137]Weibo

[183]Zhihu

Social network analysis

COVID-19

[117,121,124,125,140,142,145,150,152]X

[161]Facebook

aML: machine learning.
bDL: deep learning.

RQ2. Social Media for Misinformation Management
During Epidemics

Overview

Misinformation, or “fake news,” has become a social
phenomenon and has received increased attention in the past
few years. Although the term, “fake news” has been around
since the 1890s [208], the emergence and exponential rise in
popularity of social media platforms has brought the term to
the “front page.” Fake news can fall into multiple categories
depending on the intent and form it takes [208]. For instance,
fake news can be false information and rumor fabrication (eg,
celebrity gossip), hoaxes (eg, doomsday 2012), conspiracy
theories (Q-Anon), and satire (eg, The Onion). The intent can
range from deception for the purposes of monetary or personal
gain to satirizing real news.

One main theme was identified in the selected papers that
addressed how social media could be used in misinformation
management during epidemics, namely, misinformation
detection and characterization. Three subsequent subthemes
were identified based on the scope of selected literature, namely:
fake news identification, fake news characterization, and
information distortion and conspiracy theories.

Misinformation Detection and Characterization

Overview

The selected literature focused on the inspection of news or
claims shared on social media, with the aim of classifying them
based on trustworthiness. Several methods were used to analyze
social media content and detect misleading information, such
as expert annotation, DL models, and social network analysis.
While some papers focused on technical approaches to the
detection of fake news, other studies tried to identify various
characteristics related to the source or propagation of fake news.

Fake News Identification

Several works performed fake news identification using DL
models [209-211] with conventional ML models for comparison
or as baselines. A modified 3-layer-each LSTM and gated
recurrent unit were used along with 6 conventional ML

classification models (decision trees, LR, k-nearest neighbors,
RF, SVM, and NB) on a “Covid-19 fake news Twitter dataset”
[212] to identify fake news [210]. Findings reported that the
best test results were obtained by LSTM (2 layers), with an
accuracy of 98.6%, a precision of 98.55%, a recall of 98.6%,
and an F1-score of 98.5% [210]. Similarly, a multilayer
perceptron, LR, decision trees, RF, NB, SVM, and gradient
boosting were used for COVID-19 fake news detection in tweets
and concluded that RF outperformed other models with an
accuracy of 78%, a recall of 100%, a precision of 85%, and an
F1-score of 83% [211]. Expert annotated tweets were used to
evaluate the performance of a BERT-based misinformation
detection system [213]. Findings suggest that knowledge about
the domain vocabulary helps domain-adapted models in
predicting the correct stance, as it did for retrieval.

Detecting misleading and fake news was also performed by
several studies using methods based on pretrained transformer
models, bi-LSTM networks, artificial neural networks,
convolutional neural networks, deep transfer learning [214-220],
and using hybrid methodologies [221-227].

A semisupervised probabilistic graphical model that aimed to
jointly learn the interactions between user trustworthiness,
content reliability, and post credibility for influenza posts’
credibility analysis outperformed baseline models (RF and
Bayesian network) with an accuracy of 71.7% on data from
Sina Weibo [209]. LR was performed on a small dataset of
Facebook comments to detect fake news [228]. Several ML
models, including gradient boosting classifier, LR, RF classifier,
and decision tree classification were used in multiple works for
fake news classification on social media [229-233].

Other works seeking to curtail the misinformation of
COVID-19–related news and support reliable information
dissemination used manual analysis through fact-checkers as
well as consensus to verify the veracity and correctness of
selected tweets and social media posts [234,235]. This is
illustrated in a use case analyzing Facebook and X content in
both English and Amharic [234] and an Ebola study [235].
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Fake News Characterization

A manual annotation of tweet sources following 5 categories
(academic, government, media, health professional, and public)
allowed for the creation of a gold standard dataset for training
a LR model based on 6 million Arabic tweets related to
infectious viruses, such as MERS and COVID-19 [236]. Rumor
detection using a top-down strategy consisting of extracting
posts associated with previously identified rumors reported an
84.03% accuracy for the LR classifier [236]. Higher precision
was obtained at the expense of higher runtime using ML models
[232]. Similarly, topic modeling based on the k-means algorithm
was used to identify sources of COVID-19–related rumors [193].
An entropy-based method was used to investigate the potential
control of COVID-19 rumors [237] and content analysis was
used to evaluate rumor dissemination and official responses
during COVID-19 [238].

Semantic correlations between textual content and attached
images were mined using a pretrained convolutional neural
network to learn image representations and use them to enhance
textual representations and train a fake news detector [239].

Content analysis showed that fake news from multiple sources
could be classified using a taxonomy of health and
non–health-related types and reported that the response of the
public health system was debilitated by the propagation of fake
news [240]. Roots of misinformation were categorized as
politically related, false medical information, celebrity and pop
culture related, religious belief related, and fraud and criminality
related [241]. A comparison of fake news sources between
China, Iran, and the United States showed that fake science is
the main “root” of misinformation in China, while
counterexpertise, that is, the rejection of mainstream academic
expertise, politically motivated and governmentally sourced
misinformation is the most prevalent source of fake news in the
United States. In Iran, discourse about COVID-19 was found
to be politically manipulated by the government, while official
religious figures hindered the dissemination of accurate
information [241]. Statistical analysis found bias of sentiment
in fake news, as well as biases of gender of the user and media
use with respect to real news [242].

Bot detection using BERT was performed as a potential strategy
to improve fake news detection [243]. Findings imply that the
ratio of real news to fake news is very similar between human
accounts and bot accounts, and bot detection could not improve
the performance of the fake news detection model [243].

Findings of an information mutation study using A Lite BERT
reported that misinformation propagation could potentially be
exacerbated by user commentary and found a positive
association between information mutation and spreading
outcome [244].

The findings of a propagation analysis showed that false claims
propagate faster than partially false claims and that tweets
containing misinformation are more often concerned with
discrediting other information on social media [245].

An investigation leveraging neural networks and quantitative
content analysis that aimed to reveal the conditions that lead
audiences to accept and disseminate a fake claim as it relates
to the Zika virus showed that Zika tweets, including threat cues
and protection cues, are positively associated with the likelihood
of sharing fake news [246]. In addition, findings of a descriptive
analysis showed that the quality of news sources varies
considerably with regard to information on COVID-19 [247],
Results of a computational analysis indicated that the COVID-19
infodemic is highly characteristic of community structure,
shaped by ideological orientation, typology of fake news, and
geographic areas of reference [248]. Data from X indicated that
content could be labeled according to political affiliation, media
source, and type of source (political, satire, mainstream media,
science, conspiracy or junk science, clickbait, and fake or hoax)
[248].

Information Distortion and Conspiracy Theories

Information distortion in X cascades was found to be linked to
oversimplification, distortion of logical links, omission of facts,
and a shift in the medical topic to political and business disputes
[249]. Risk amplification by information dramatization appeared
to be linked to controversial topics as well as social and cultural
influences [250].

Manual content and semantic analysis and topic modeling
(LDA) techniques of tweet content were conducted through an
examination of key term distribution, context, and medical
terminology verification [249]. In a COVID-19 5G conspiracy
use case, LDA and social network analysis were used to identify
several topics from dataset of tweets [251] related to “5G
conspiracy” and “5G threat” and discuss topics, including 5G
towers, radiation effects, network, and radiation [252,253].
Emerging COVID-19–related conspiracy theories were detected
by estimating narrative networks with an underlying graphical
model and using a collection of data from Reddit subreddits
and 4Chan threads related to the pandemic [254]. Findings
identified multiple central conspiracy theories illustrated by
examples, such as incorporating the COVID-19 conspiracy into
Q-Anon conspiracy, #scamdemic and #plandemic [255], 5G as
the cause of COVID-19 [252,253], antivax conspiracy, Bill
Gates, #filmyourhospital conspiracy [256], and Pizzagate
conspiracy [254]. Table 4 summarizes the methods, epidemics,
and social media used in studies pertaining to misinformation
management and detection.
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Table 4. Summary of methods used in papers addressing research question 2–misinformation identification and characterization.

ReferencesMethod, epidemic studied, and social media used

MLa classification

COVID-19

[193,210,211,221-227,229-232]X

[228,230]Facebook

[233]Sina Weibo

Multiple epidemics

[236]X

DLb classification

COVID-19

[210,213-218,220-227,239]X

[156]Facebook

[217]Instagram

[219,239]Weibo

Topic modeling

COVID-19

[237,249,252,255]X

Social network analysis

COVID-19

[248,252,253,256]X

[254]Reddit, 4Chan

Probabilistic graph modeling

Influenza

[209]Weibo

Manual content analysis

COVID-19

[234,241,248,249]X

[234,241,247]Facebook

[241,250]Weibo

[241]Instagram

Ebola

[235]X

Quantitative content analysis

COVID-19

[213,242,245]X

[250]Weibo

Zika

[246]X

aML: machine learning.
bDL: deep learning.
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RQ3. Social Media’s Relationship With Mental Health
During Epidemics

Overview

During the implementation of restrictive measures requiring
limited social contact, social media can become one of the few
methods to safely engage with others, rendering it the sole
support system of vulnerable populations. Mental health
deterioration can manifest in expressions shared on the internet
and be used to gauge the toll epidemics and subsequent
containment strategies could potentially take on individuals.

Two main themes were identified in the selected papers
addressing how social media can be integrated in aspects of
public mental health management during epidemics, namely,
(1) social media as a tool to gauge the mental health toll of
epidemics, and (2) impact of social media consumption during
epidemics on mental health.

Mental Health Assessment Using Social Media

Assessment of mental health state was performed using
conventional ML [257-259], DL [260-262], and topic modeling
techniques [263,264]. Psychological profiles of Weibo users
were predicted using ML and online ecological recognition with
emotional measures and cognitive indicators, such as anxiety,

depression, Oxford happiness, social risk judgment, and life
satisfaction [257]. LSTM was used to estimate the rate of
depression in the population during the COVID-19 pandemic
using Reddit data [260]. Topic modeling, expert intervention,
and X data were used to evaluate the possible effects of critical
factors related to COVID-19 on the mental well-being of the
population in a psychological vulnerability study [263].

Findings revealed that negative emotional indicators of
psychological traits increased in anxiety and depression after
COVID-19 was declared an epidemic or pandemic [257,262],
while life satisfaction and happiness decreased [257]. A 53%
average increase in depression rate of Reddit users was noted
in selected months after the pandemic [260], and negative
psychological vulnerability manifested in negative emotions
toward social distancing and hospitalization [263]. Financial
burden was found to increase the odds of depressive nonsuicidal
thoughts for individuals who suffered job loss during COVID-19
[264]. Results indicated the beginning of recovery following
the immediate mental health impact of the COVID-19 pandemic
[259].

Table 5 summarizes the methods, epidemics, and social media
used in studies pertaining to the use of social media as a tool to
gauge the mental health toll of epidemics.

Table 5. Summary of methods used in papers addressing the first part of research question 3 (mental health assessment using social media).

ReferencesSocial media usedMethod and epidemic studied

MLa classification

COVID-19

[257]Weibo

[258,259]X

[259]Reddit

DLb classification

COVID-19

[260,261]Reddit

[262]X

Topic modeling

COVID-19

[263,264]X

[264]Reddit

aML: machine learning.
bDL: deep learning.

Association of Social Media Consumption and Mental Health

Multiple papers conducted cross-sectional studies and statistical
analysis to investigate the association between social media
consumption and mental health complications during epidemics,
particularly during COVID-19. Several studies relied on
regression analysis, online surveys, the Generalized Anxiety
Disorder Scale, and the Patient Health Questionnaire.

Findings revealed that frequent Sina Weibo use was associated
with higher anxiety, depression, and a combination of both

[265], and compulsive WeChat use was associated with social
media fatigue, emotional stress, and social anxiety [266].
Frequent use of WeChat during COVID-19 was also associated
with depression and secondary trauma and was found to be a
significant predictor of both [19], while close contact with
individuals with COVID-19, along with spending ≥2 hours daily
on COVID-19–related news on WeChat was associated with
probable anxiety and depression in community-based adults
[267]. The association between social media consumption and
anxiety and depression was found to be statistically significant
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[265,268,269] and positively associated with emotional
overeating and anxiety in individuals with neuroticism [18].

The association between the mental health of students receiving
higher education and social media use during COVID-19
confinement was analyzed, and results indicated that students
in the 18 to 24 years age group, who were not in a relationship
and who had lower academic results, presented the highest levels
of addiction to social media [16]. Significant positive
associations were found between relatedness, need, frustration,
and social media addiction, as well as between social media
addiction, depressive symptoms, and loneliness [17]. Excessive
social media use was also found to fully mediate the relationship
between COVID-19–related life concerns and schizotypal traits
[270].

Appropriate guidance of adolescents in the use of social
networking sites was found to have a potential impact on the
mitigation of negative emotions during the COVID-19 pandemic
[271].

On the positive side, social media use was found to be rewarding
for Wuhan’s residents through information sharing and
emotional and peer support [19]. Social media breaks were
reported to have the potential to promote well-being during the
COVID-19 pandemic [19]. In addition, positive mental health
and mindfulness appeared to serve as protective factors, and
positive mental health was found to be a mediator between the
COVID-19 burden and addictive social media use [272].

Table 6 summarizes the methods, epidemics, and social media
used in studies pertaining to the association of social media use
with mental health issues during epidemics.

Table 6. Summary of methods used in papers addressing the second part of research question 3 (association of social media consumption with mental
health).

ReferencesMethod, epidemic studied, and social media used

Statistical analysis

COVID-19

[19,266]WeChat

[265]Sina Weibo

[16-18,267-273]Social media in general

Discussion

Principal Findings
This systematic literature review conceptualized 3 RQs to
investigate if, when, and how social media can be harnessed for
successful epidemic management and mitigation, effective
curtailment of fake news propagation, and a refined
understanding of social media’s relationship with mental health
during epidemics. It presented a systematic categorization and
summary of methods, social media sites, and epidemics
broached in the 242 selected works and identified potential
research directions and practical implications related to the RQs.

Papers selected pertaining to RQ1 comprised the highest number
of papers and included publications from all years of the decade,
illustrating continuous and ongoing efforts by the scientific
community to harness social media’s potential for improved
containment measures during epidemics.

COVID-19 was found to be the epidemic most studied in
selected papers. This is due to the rapid increase of
COVID-19–related publications since the first year of the
pandemic. The frequency of publication and the volume of the
academic output contributed to the creation of the COVID-19
Open Research Dataset [33]. A similar rising trend was seen in
RQ2. This can be explained by the emergence of the “fake
news” phenomena on social media and its particular increase
in times of crisis. The selected publications answering RQ3
were published from 2020 to 2022. Papers that pertained to
RQ3 were much lesser in number than those that pertained to
RQ1 and RQ2. Given the mental health aspect of this particular
RQ, a potential inference can be made suggesting a very recent

interest in mental health as it relates to social media and
epidemics. X was found to be the most used social media site
in the selected literature, potentially suggesting its attractiveness
to works conducting linguistic analysis and classification tasks.
This can also be due to the differences in the popularity of social
media sites by geographic location and key demographics. The
availability of application programming interfaces to crawl data
is also a major factor in choosing specific social media platforms
as data sources.

General Discussion
The systematic literature review presented in this paper differs
from existing reviews and aims to cover a different gap in the
literature. Existing works have taken an interest in a broader
range of crises, including noninfectious diseases and health risk
behaviors [12], disasters in general [25], and new and
reemerging infectious diseases [26]. Focus was directed toward
effectively targeting vulnerable populations to test interventions
and improve health outcomes [12], collective behavior [25],
and generalized perspectives on emergency situations [27].
Differences other than scope include data sources, time range,
and volume of literature. The review presented in this paper
covered a broader time range, included gray literature, and
reviewed a sizable volume of research papers.

The review’s findings indicated that social media was found to
be an effective way to understand the public’s reactions and
engagement during epidemics [205]. Monitoring topics of
discussion during epidemics allowed for insights on whether
aspects of epidemic management needed improvement, whether
the public agrees with government decisions, and which
emotions are linked to the onset of epidemics and mitigation
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protocols [198,204-206]. Analysis of opinions related to aspects,
such as COVID-19 vaccinations were proposed and could be
used to give feedback to governments and health organizations
to implement better suited protocols [116,122,124-126] for
mitigation, and to identify topics of misinformation, and
therefore offer clarifications or conduct further awareness efforts
to combat rumors and conspiracies [254]. Results also indicated
that social media can be used in case forecasting [83], X-enabled
contact tracing [84], early detection [85], tracking adherence to
preventive guidelines, such as wearing masks and social
distancing [205,206], and monitoring symptomatic
self-expressions of infection [80]. Misinformation detection on
social media was performed as a classification task, manually
using experts and fact checkers, and using artificial intelligence
techniques; however, presented several challenges.
Misinformation often used language styles of academics and
health professionals to deceive the public [236] and propagated
faster when it included higher levels of threat due to the
collective stress reaction it generated [246]. “Troll” accounts
were found to play the second most prominent role is
misinformation spread and present a “substantial cause for
concern” [248]. Other challenges of misinformation detection
related to limitations of studies due to the use of small batches
of data [252], false positives [228], and a “politicization” of
neutral health emergency crises [235].

Although epidemics were found to cause negative emotions and
mental health issues [260,262,263], many expressions of positive
emotions were noted [257], reflecting group cohesiveness rather
than pure personal emotions. Group threats contributed to the
manifestation of more beneficial behaviors and social solidarity
[269]. Viewing heroic acts, speeches from experts, and
knowledge of the disease and prevention methods were
associated with more positive effects and less expressions of
depression [269]. Media content, including useful information
for self-protection was found to be potentially helpful to people
during epidemics and may enhance active coping, prevention
behaviors, and instill a sense of control [269]. The use of social
media during epidemics, although linked with manifestations
of anxiety and depression, appeared to benefit Wuhan residents
and was perceived as an important activity during lockdown
[19]. Balancing social media use to obtain ample informational
as well as emotional and peer support, while avoiding the
potential mental health toll, is a difficult task for users,
especially without the availability of alternative and easily
accessible sources of health information [19].

Using social media data for mental health assessment has its
challenges and limitations. It can add a population or
demographic bias to results, given that some social media sites
are predominantly used by younger people or are more or less
popular depending on the country [257,263]. Depending on the
social media site (eg, Reddit), the user pool skews younger, and
thus could be more prone to depression [260]. Moreover, some
analyses are based on a weekly basis, with a relatively large
granularity, which has certain influences on reflecting the
changing trend of social mentality in a timely manner [257].
The qualitative nature of the results obtained and interpreted
by domain experts limits the generalization of the findings and
requires more corroborating results. Consequently, findings

may need additional data to be strengthened [260,263]. As for
works pertaining to the association of social media consumption
with psychological outcomes, a causal link has not been
established due to the cross-sectional nature of the contributions.
Studies reflected a single point in time for participants, therefore,
further longitudinal studies are necessary. In addition, the
surveys were conducted on the web, and consequently,
respondent bias is possible [265]. The recruitment of all
participants from the same country and from one social media
platform can introduce bias to studies [266,268], in addition to
potential gender biases and sample representativeness [18,19],
and recall bias related to self-reporting [269]. The results could
not exclude the possibility of residual confounding caused by
unmeasured factors.

A change can be seen in the evolution of research themes over
time and through different epidemics. A sizable number of
works focused on the influenza epidemic surveillance using
lexicon-based and dictionary-based classifications, as well as
classical ML techniques. This volume of literature could
potentially be linked to the influenza prediction “wave” that
preceded, paralleled, and followed the dereliction of the “Google
flu trend” after its failure to predict major outbreaks [274].
Although various methods were used, ML and DL techniques
were most frequently used for COVID-19 surveillance.
Scientific contributions evolved with the emergence of more
epidemics. COVID-19 appeared to have benefited from the
digitization of literature as well as the development and
improvements taking place in the fields of natural language
processing, ML, DL, social network analysis, and topic
modeling. The global nature of the COVID-19 crisis generated
an influx of publications and contributions. The theme of
misinformation management has also evolved with epidemics
and with the proliferation of social media fake news, bots, troll
accounts, and widely propagated conspiracy theories. COVID-19
has been the subject of multiple controversies and conspiracies,
which encouraged scientific efforts to study potential curtailment
methods. As for the mental health aspect, all publications
pertaining to the scope of RQ3 were related to COVID-19, and
it appeared that previous epidemics were not subject to social
media association analysis. This could be due to the fear linked
to COVID-19 and the challenging nature of sanitary measures
such as global lockdowns and social distancing, which led to
an increase in social media reliance. It could also be due to the
decade’s zeitgeist which brought online mental health
discussions and awareness front and center.

Identified Issues
One of the major issues identified was the lack of preemptive
measures building on the results of previous studies and aiming
to implement social media–enabled processes in real time or
near real time. Lessons learned are not efficiently integrated in
crisis mitigation measures nor used as building blocks for
optimized proactive prevention. A synergy between government
health agencies, research communities, and the public would
allow for the success of social-media public health initiatives.
Such collaborative efforts require effective and trustworthy
interactions. This highlights an additional issue related to the
relative inefficiency of social media campaigns. Populations
need to be targeted for both informative purposes and for active
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emotional support. Understanding public opinion is useful to
gauge sentiments and reactions, and therefore it is important to
remedy the gap for applications integrating extracted opinions
in targeted epidemic management.

Because of the medical and financial burden of epidemics,
mental health concerns are often ignored by both governments
and the public. As a result, the manifestation of several mental
health–related symptoms becomes more prevalent as epidemics
progress. In the case of the Ebola outbreak in 2014, symptoms
of posttraumatic stress disorder and anxiety-depression were
more prevalent even after a year of the Ebola response [199].
When limited resources are geared for epidemic containment,
the health care system focuses majorly on emergency services.
Therefore, individuals with substance abuse and dependency
disorders may see deterioration in their mental health [13].
During community crises, event-related information is often
sought in an effort to retain a sense of control in the face of fear
and uncertainty and their psychological manifestations. When
misleading misinformation is propagated on social media,
perceptions of risk are distorted, leading to extreme public panic,
stigmatization, and marginalization [13]. Psychological
interventions and psychosocial support would have a direct
impact on the improvement of public mental health during
epidemics.

Directions for Future Research
We identified several issues and gaps in the literature related
to the RQs of this systematic literature review and suggest
potential paths for future research.

Given the recognized impact of epidemics on mental health and
the prevalent use of social media platforms during times of
crisis, it is necessary to explore the aspects of social media
leading to mental health deterioration during epidemics.
Potential factors range from increased consumption levels of
social media, social media addiction, emotional fatigue due to
overwhelm, and consumption of “sad” content. Investigating
which aspects of social media use are responsible for worsening
states of mental health and mental health disorders would allow
a targeted approach to curbing this negative impact during times
of crisis. As for health-related fake news, it is important to
understand what makes citizens prone to engaging in fake news
sharing. Specifically, features identifying both an individual’s
and a group’s susceptibility to believe and share misinformation
need to be determined and categorized. Levels of education,
geographic and demographic profiles, cultural influences, and
psychological vulnerability are potential features requiring
further investigation in their association with fake news
dissemination on social media and within communities.

Epidemics are rapidly changing phenomena requiring fast
interventions and decision-making. Although postcrisis analysis
is imperative for an improved understanding of lessons learned,
proactive epidemic management is vital and would have the
most impact on mitigation efforts. Integrating artificial
intelligence techniques into this proactive surveillance could
further optimize this process.

In addition, misinformation propagation has a significant impact
on the success of interventions given that both the components

of exaggerated fear and apathy linked to misinformation can
hinder management efforts. However, the investigation of
misinformation needs to be extended to include potential links
between misinformation and mental health deterioration.

Practical Implications
This work has several potential practical implications pertaining
to different entities.

Implications for governing entities include the development of
an efficient misinformation correction strategy to fight incorrect
information, rumors, and conspiracy theories related to
epidemics; the development of clear communication channels
for knowledge dissemination to build trust with the public; the
development of interventions to limit the impact of epidemics
on stress responses (anxiety, depression) due to distorted risk
perceptions; the bolstering of public awareness efforts on
sanitary measures and proactive protection; and the insurance
of the supply of medical staff available to treat patients, as well
as psychological support staff to assist patients and their families
in navigating the ramifications of infection and loss of loved
ones.

Implications for social media platforms include taking a
leadership position in the management of epidemic-related fake
news by implementing built-in fact-checking processes and
assisting health agencies and scientific entities in disseminating
factual information about the disease, its symptoms, its potential
risk, and efficient sanitary measures for the public to adopt.

Implications for the public include improving community
resilience during epidemics using social media groups and
assisting in combating misinformation.

Limitations
The results of this review should be considered in light of several
limitations. The data sources used in this review did not cover
all existing scientific databases, and therefore, cannot generalize
findings to the entirety of the literature. The scope of the review
focused on specific aspects of the epidemic-social media
relationship, and so does not provide a general overview.
Although the process of data extraction and analysis was
undertaken with extreme diligence, there can be potential for
bias. Despite our recognition of the inherent limitations of any
search strategy, we have ensured our commitment to the rigor
and transparency of the systematic review process.

Conclusions
Given the collective experience of epidemics, responses by
communities can often provide insight into the degree of
adherence toward preventive measures as well as mitigation
protocols. In an effort to control the spread of epidemics,
governments, public health institutions, and health care
professionals generally issue guidelines for the public through
online portals, news sources, and in the past decade, social
media. Online “chatter” can indicate the public’s response to
these guidelines, and their sentiments toward the epidemic itself
or specific topics related to it, such as vaccinations, treatments,
mortality rates, etc. Mitigation efforts require collaborative
strategies and public involvement; therefore, gaining insight
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into public opinion and response can prove vital in the success
or failure of such efforts.

It is evident that epidemic preparedness and mitigation protocols
need to be adjusted to deal with the special challenges that
accompany the technological revolution taking place, especially
in light of the considerable impact of the ongoing infodemic.
In addition, it is vital to have effective ways to exploit the full
potential of social media without risking the toll it could
potentially take on users’mental health. The systematic literature
review presented in this paper covers several key aspects of the

relationship between epidemics and social media, especially
with respect to fake news and mental health. Methods used to
answer RQs are categorized. The findings of this review could
shed light on broader implications related to data quality
concerns and privacy considerations in epidemic surveillance,
thus highlighting the lack of works proposing ethical, legal, and
technical frameworks to accompany scientific efforts. Learning
from past crises and integrating a digital and social
media-enabled infrastructure into public health protocols could
make a difference in future preparedness levels.
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Abbreviations
BERT: bidirectional encoder representations from transformers
DL: deep learning
ILI: influenza-like illness
LDA: latent Dirichlet allocation
LR: logistic regression
LSTM: long short-term memory
ML: machine learning
NB: naive Bayes
PHEIC: public health emergency of international concern
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RF: random forest
RQ: research question
SVM: support vector machine
WHO: World Health Organization
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