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Abstract
Background: Noise-induced hearing loss (NIHL), one of the leading causes of hearing loss in young adults, is a major health
care problem that has negative social and economic consequences. It is commonly recognized that individual susceptibility
largely varies among individuals who are exposed to similar noise. An objective method is, therefore, needed to identify those
who are extremely sensitive to noise-exposed jobs to prevent them from developing severe NIHL.
Objective: This study aims to determine an optimal model for detecting individuals susceptible or resistant to NIHL and
further explore phenotypic traits uniquely associated with their susceptibility profiles.
Methods: Cross-sectional data on hearing loss caused by occupational noise were collected from 2015 to 2021 at shipyards
in Shanghai, China. Six methods were summarized from the literature review and applied to evaluate their classification
performance for susceptibility and resistance of participants to NIHL. A machine learning (ML)–based diagnostic model using
frequencies from 0.25 to 12 kHz was developed to determine the most reliable frequencies, considering accuracy and area
under the curve. An optimal method with the most reliable frequencies was then constructed to detect individuals who were
susceptible versus resistant to NIHL. Phenotypic characteristics such as age, exposure time, cumulative noise exposure, and
hearing thresholds (HTs) were explored to identify these groups.
Results: A total of 6276 participants (median age 41, IQR 33‐47 years; n=5372, 85.6% men) were included in the analysis.
The ML-based NIHL diagnostic model with misclassified subjects showed the best performance for identifying workers in
the NIHL-susceptible group (NIHL-SG) and NIHL-resistant group (NIHL-RG). The mean HTs at 4 and 12.5 kHz showed the
highest predictive value for detecting those in the NIHL-SG and NIHL-RG (accuracy=0.78 and area under the curve=0.81).
Individuals in the NIHL-SG selected by the optimized model were younger than those in the NIHL-RG (median 28, IQR 25‐31
years vs median 35, IQR 32‐39 years; P<.001), with a shorter duration of noise exposure (median 5, IQR 2‐8 years vs median
8, IQR 4‐12 years; P<.001) and lower cumulative noise exposure (median 90, IQR 86‐92 dBA-years vs median 92.2, IQR
89.2‐94.7 dBA-years; P<.001) but greater HTs (4 and 12.5 kHz; median 58.8, IQR 53.8‐63.8 dB HL vs median 8.8, IQR
7.5‐11.3 dB HL; P<.001).
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Conclusions: An ML-based NIHL diagnostic model with misclassified subjects using the mean HTs of 4 and 12.5 kHz was
the most reliable method for identifying individuals susceptible or resistant to NIHL. However, further studies are needed to
determine the genetic factors that govern NIHL susceptibility.
Trial Registration: Chinese Clinical Trial Registry ChiCTR-RPC-17012580; https://www.chictr.org.cn/showpro-
jEN.html?proj=21399

JMIR Public Health Surveill 2024;10:e60373; doi: 10.2196/60373
Keywords: noise-induced hearing loss; susceptible; resistance; machine learning algorithms; linear regression; extended high
frequencies; phenotypic characteristics; genetic heterogeneity

Introduction
Noise-induced hearing loss (NIHL), one of the leading
occupational health concerns worldwide, is second only to
presbycusis as a cause of hearing loss [1]. Approximately 1.3
billion people experience hearing loss due to noise exposure
[2]. The problem has been exacerbated by a rise in recrea-
tional noise exposure through prolonged use of headphones
and attendance at loud music venues, especially among
younger populations [3]. In order to strengthen prevention
and mitigate its escalating public health impact, it is important
to identify people who are very susceptible to noise damage.

Although NIHL is generally considered an acquired type
of hearing loss, a multifactorial interaction between intrin-
sic (genetic) and external (environmental) factors is likely
involved in the development of NIHL [4,5]. The genetic
contribution is supported by the fact that individuals exposed
to the same noise show great variation in their susceptibility
[6]. Some people developed a large amount of elevation in
hearing thresholds (HTs) only after a short period of noise
exposure at lower levels. They are considered susceptible
individuals, in contrast to their noise-resistant counterparts
who get little or no elevation in HTs after a long period of
noise exposure at high levels [7]. Classifying people who
are susceptible to NIHL (referred to as the NIHL-susceptible
group [NIHL-SG]) from those who are resistant (referred
to as the NIHL-resistant group [NIHL-RG]) is important
for both research and noise safety management. Genetic
comparison between the 2 groups could help to identify genes
associated with NIHL susceptibility [8]. In preventative noise
exposure management, it is obviously beneficial to minimize
future hearing loss by removing the people in the NIHL-SG
from jobs with heavy noise exposure.

The classification of people susceptible to NIHL has
been the aim of many studies. However, there was no
clear scientific consensus for such classification to pinpoint
susceptibility. Some have classified the NIHL-SG as those
with HTs in the upper 10% or 20% at 3, 4, or 6 kHz; those
with HTs in the lower 10% or 20% defined the NIHL-
RG [9-11]. Others have used linear regression and quad-
ratic regression models, considering the HTs residual values
as classification indicators [12,13]. Interestingly, machine
learning (ML) has been used to predict audiometric classifica-
tions, with misclassified subjects grouped into the NIHL-SG
or NIHL-RG [8]. One limitation of prior studies is that they
primarily focused on the degree of HT elevation, neglecting
other risk factors such as age, gender, health, and noise

exposure intensity. Although people who were identified with
a high risk of NIHL in those studies were all those who
had large amounts of NIHL, they were also those who had
larger cumulative noise exposure (CNE). Other limitations
in the field of NIHL include small sample sizes or inade-
quate population representation. Thus, the optimal method for
reliably identifying the NIHL-SG and NIHL-RG remains a
significant challenge.

NIHL typically shows a “notched” audiogram with
the worst thresholds around 3‐6 kHz. Most prior stud-
ies attempting to distinguish susceptible versus resistant
individuals have relied solely on this frequency region [9-11].
However, recent evidence suggests that monitoring hearing
loss at extended high frequencies (EHFs) from 9‐20 kHz may
reveal noise-related impairment earlier or deteriorate more
rapidly than at conventional clinical test frequencies [14-17].
Few studies have leveraged EHFs to classify NIHL suscept-
ibility. ML techniques enable the modeling of nonlinear
relationships between multiple factors and HTs measured
across a wide range of frequencies, making it possible to
identify the most reliable frequencies [18]. Identifying the
most reliable frequencies through ML could enhance the early
detection accuracy of those vulnerable to occupational noise
exposures.

Thus, this study aimed to determine an optimal model and
reliable audiometric frequencies for identifying the NIHL-SG
and NIHL-RG. Afterward, the clinical profiles of these 2
groups were compared to identify risk factors.

Methods
Study Setting
This cross-sectional study was conducted from June 2015
to June 2021 at 2 shipyards in Shanghai, China. The study
recruited employees who underwent annual occupational
health examinations due to exposure to high noise levels
from activities such as sanding, welding, metalworking, and
cutting. Over 99% of the recruited employees were from
Eastern China and predominantly of Han ethnicity. During
the annual examinations, the employees completed a detailed
questionnaire that collected demographic information, noise
exposure history, job type, smoking and alcohol habits,
history of serious illnesses (including hereditary and drug-
related hearing loss), use of hearing protection devices, and
exposure to other harmful chemicals.

JMIR PUBLIC HEALTH AND SURVEILLANCE Li et al

https://publichealth.jmir.org/2024/1/e60373 JMIR Public Health Surveill 2024 | vol. 10 | e60373 | p. 2
(page number not for citation purposes)

https://doi.org/10.2196/60373
https://publichealth.jmir.org/2024/1/e60373


Data Collection and Study Procedure
Of the 9669 participants who completed the questionnaire,
6276 individuals were included in the final analysis after
applying the exclusion criteria of preexisting hearing loss
(≥25 dB HL at 0.5‐6 kHz) on their preemployment audio-
gram, career length with industrial noise exposure <1 year,
otologic diseases, history of hereditary deafness and abnormal
middle ear impedance, toxic substances exposure, and other
invalid information.

Figure 1 briefly outlines the study procedure. We first
summarize previously published methods for classifying the
NIHL-SG and NIHL-RG. Then, each method was applied

to our dataset to assess classification performance. The
optimal classification method was identified by comparing
the classified group assignments to known characteristics
associated with NIHL, that is, a form of face validity where
the assigned category measures what it purports to meas-
ure. An ML diagnostic model was constructed to determine
the predictive value of various frequencies or combinations
of audiometric frequencies. Finally, the optimal method,
with the participants of this research and the most relia-
ble frequencies, was used to form the NIHL-SG and NIHL-
RG. Demographic and clinical features of each group were
analyzed to identify traits uniquely associated with suscepti-
bility profiles.

Figure 1. Flowchart of the study. Adaboost: adaptive boosting; AUC: area under the curve; HTs: hearing thresholds; ML: machine learning; MLP:
multilayer perceptron; NIHL: noise-induced hearing loss; PTA: pure tone audiometry; RF: random forest; SVM: support vector machine.

Ethical Considerations
This study was reviewed and approved by the institutional
ethics review board at Shanghai Sixth People’s Hospital

affiliated with Shanghai Jiao Tong University (2017‐136)
and was registered in the Chinese Clinical Trial Registry
under the identifier ChiCTR-RPC-17012580. The aims and
procedures of the study were explained, and written informed
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consent was obtained from each participant prior to the study.
The original informed consent allows for secondary analysis
without additional consent. The study data were deidentified
to safeguard the privacy of the participants. Compensation
was not provided for participants in this research.

Audiological Evaluation and Noise
Exposure Estimation
The hearing evaluation was performed by a qualified medical
assistant. An otoscopy inspection was carried out to rule out
blockage of the external ear. Tympanometry was tested with a
TympStar tympanometer (Grason-Stadler) to ensure normal
middle ear impedance, which was indicated by a type A
tympanogram (peak between −100 and +100 daPa).

Industrial noise levels were assessed using an
ASV5910-R digital recorder (Aihua Instruments) across
different work areas, adhering to the national standard of
China [19]. Evaluation of noise exposure used the CNE
formula:

CNE=Leq-8h+10*log(T)

Here, Leq-8h signifies the equivalent continuous sound level
for 8 hours and T denotes the exposure time [20]. Detailed
information is presented in Multimedia Appendix 1.

Review of Published Methods
An initial literature search was conducted on PubMed and
Web of Science, yielding 597 records related to NIHL.
After a comprehensive examination of the details, 6 eligible
studies were finally grouped into 1 of 3 models based on
the approach. Detailed information is presented in Multimedia
Appendix 1.
Determining the Optimal Method to
Create the NIHL-SG and NIHL-RG
The 6 methods of the 3 models were independently applied
to the study data according to the original inclusion
and exclusion criteria, subgroup definitions, and frequency
thresholds specified. This replication of all prior published
methods ensured a valid like-for-like assessment. The
predicted NIHL-SG and NIHL-RG from each model were
then characterized in terms of demographics, noise exposure
histories, and audiometric profiles. Based on general trends,
susceptible individuals were generally younger, had lower
CNE, shorter exposure duration, and elevated HTs compared
to their resistant counterparts. The agreement between each
model’s classifications and these known NIHL-susceptible
traits was analyzed. Consistency with characteristic risk
factors like significantly younger age and higher noise doses
in the predicted SG indicated accurate classification (ie, good
face validity) of risk. Conversely, inconsistencies with these
known risk factors in the predicted groups were interpre-
ted as poorer predictive validity (ie, poor face validity).
Using statistical tests of differences, the model exhibiting the
strongest concordance with established susceptible character-
istics was deemed the optimal approach.

Determining a Reliable Test Frequency
for NIHL
A total of 4 ML algorithms (adaptive boosting, multilayer
perceptron, random forest, and support vector machine)
[21-24] were applied using HTs at different frequencies (4
and 12.5 kHz) and combinations of frequencies (4 with 12.5
kHz; 4, 6, and 12.5 kHz; 4, 10, and 12.5 kHz; 4, 6, 10,
and 12.5 kHz; and 3, 4, 6, 10, and 12.5 kHz) as predictive
inputs to develop an NIHL diagnostic model. A total of 5
demographic and lifestyle variables known to be significant
for the risk of NIHL were also included as inputs to the ML
programs—age [7], gender [25], CNE [26], smoking status
[27], and alcohol consumption [28]. All models constructed
by each algorithm were validated using 10-fold cross-valida-
tion. In each cross-validation iteration, 9 subsets were used as
training data while the remaining 1 subset served as test data.
This process was repeated 10 times to calculate the average
accuracy and area under the curve (AUC) of each model. The
single frequency and frequency combinations that exhibited
the highest testing accuracy and AUC were determined to be
the most reliable of NIHL susceptibility.
Clinical Characteristics of the NIHL-SG
and NIHL-RG
We first constructed an optimized model using the most
reliable frequencies and methods. This model was then
applied to the full dataset to predict the identification of
individuals in the NIHL-SG or NIHL-RG. The characteris-
tics of the individuals in the predicted NIHL-SG and NIHL-
RG were then compared. Parameters evaluated included
demographics (gender ratio and age), noise exposure histories
(duration and intensity of noise exposure), lifestyle habits
(proportions reporting smoking and alcohol use), and PTA
for various frequencies. Linear regression lines were fitted
between hearing loss and exposure time, with the intercept
forced to 0.
Statistical Analysis
Continuous data with a skewed distribution were reported as
median and IQR values and analyzed using the Mann-Whit-
ney test between groups. Categorical data were presented as
counts and percentages and were compared using the Pearson
chi-square test. ML algorithms were implemented using R
software (version 4.02; R Core Team). Statistical analyses
were conducted using SPSS 27.0 software (IBM) and Prism
8.3 (GraphPad Software Inc). Statistical significance was
defined as P<.05.

Results
Demographics and Hearing
Characteristics of Participants
The basic characteristics of the 6276 participants are shown
in Table 1. The median (IQR) age was 41 (33‐47) years and
the median (IQR) of CNE was 93.2 (89.2‐97.7) dBA-years.
There were 2382 (38%) participants who currently smoked
and 2275 (36.2%) who currently drank alcohol. The median
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(IQR) of PTAs was 16.7 (12.5‐21.7) dB at 0.5‐2 kHz, 22.5
(15‐40) dB at 3 kHz, 30 (17.5‐50) dB at 4 kHz, 25 (15‐42.5)

dB at 6 kHz, 30 (17.5‐50) dB at 10 kHz, 47.5 (27.5‐67.5) dB
at 12.5 kHz, and 40 (25‐55) dB at 4 and 12.5 kHz combined.

Table 1. Demographic characteristics and audiometric data of the participants (N=6276).
Variables Participants
Sex, n (%)
  Male 5372 (85.6)
  Female 904 (14.4)
Age (years), median (IQR) 41 (33‐47)
Exposure time (years), median (IQR) 7 (4‐11)
CNEa (dBA-year), median (IQR) 93.2 (89.2‐97.7)
Smoking, n (%)
  Currently 2382 (38)
  Never 3894 (62)
Drinking, n (%)
  Currently 2275 (36.2)
  Never 4001 (63.8)
PTAb (dB HL, kHz), median (IQR)
  0.5‐2 16.7 (12.5‐21.7)
  3 22.5 (15.0‐40.0)
  4 30.0 (17.5‐50.0)
  6 25.0 (15.0‐42.5)
  10 30.0 (17.5‐50.0)
  12.5 47.5 (27.5‐67.5)
  4 and 6 28.8 (17.5‐45.0)
  4 and 12.5 40.0 (25.0‐55.0)
  4, 6, and 12.5 35.0 (22.5‐49.2)
  4, 10, and 12.5 36.7 (23.3‐52.5)
  4, 6, 10, and 12.5 33.8 (21.9‐48.8)
  3, 4, 6, 10, and 12.5 32.0 (21.0‐46.5)

aCNE: cumulative noise exposure.
bPTA: pure tone audiometry.

Validation of Previous Screening Models
Detailed information is presented in Multimedia Appendix 1.
Validation of Model 1 With Extreme
Thresholds at 3, 4, and 6 kHz
In method 1, a total of 3276 individuals met the inclusion and
exclusion criteria. The mean age of the NIHL-SG (n=655)

was about 7 years older than the NIHL-RG (n=655; Figure S1
in Multimedia Appendix 1, Table 2; median 38, IQR 32-44
years vs median 31, IQR 27‐36.8 years; P<.001). PTA values
at 4 and 6 kHz were significantly greater in the NIHL-SG
than the NIHL-RG (Figure S1 in Multimedia Appendix 1,
Table 2; median 55, IQR 47.5‐62.5 dB vs median 10, IQR
7.5‐12.5 dB; P<.001).

Table 2. Information on published methods for classifying people susceptible or resistant to noise-induced hearing loss (NIHL), along with the
validation results of each method using our dataset.

Participants
HTsa adjusted by
other factors

Screening
guideline Validation results of our dataset

Group
Age (years),
median (IQR)

Noise
exposure
duration
(years),
median (IQR)

CNEb (dBA-
years), median
(IQR)

PTAc (dB),
median (IQR)

Method 1 [9]
Exclusion criteria are
(1) history of
meningitis, (2)

Workers were
divided into 9
categories: years

Selected the 20%
most susceptible
and the 20% most

• NIHL
-SGd • 38 (32‐

44)
• 10 (7‐

14)
• 93.4 (91‐

96.2)
• 55

(47.5‐
62.5) at
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Participants
HTsa adjusted by
other factors

Screening
guideline Validation results of our dataset

Group
Age (years),
median (IQR)

Noise
exposure
duration
(years),
median (IQR)

CNEb (dBA-
years), median
(IQR)

PTAc (dB),
median (IQR)

aminoglycoside
treatment, (3)
acoustic trauma, (4)
the hearing gap
between the right and
the left ear <40 dB,
(5) previous noise
exposure <5 years,
(6) female, (7) the
duration of exposure
to noise >([age ×
0.666]–20 years)

of exposure
ranges: <15, 15‐
25, and >25
years; noise
exposure levels:
≤85, 86-91, and
≥92 dBA

resistant
participants based
on the mean HTs
for the left ear at 4
and 6 kHz from
each category

• NIHL
-RGe • 31 (27‐

36.8)
• 7 (4‐

12)
• 91.4

(87.4‐
94.4)

4 and 6
kHz

• 10 (7.5‐
12.5) at
4 and 6
kHz

Method 2 [10]
Exclusion criteria are
(1) history of head
injury, otological
disease, and other
diseases that could
affect hearing; (2)
treatment with
ototoxic drugs; (3)
potentially harmful
noise exposure; and
(4) not using hearing
protectors

Workers were
divided into 9
categories: age-
ranges:<35, 35‐
50, and >50
years; noise
exposure
categories:<85,
86‐91, and >92
dBA

Selected the 10%
most susceptible
and the 10% most
resistant
participants based
on the left ear’s
mean HTs at 3 kHz
from each category

• NIHL
-SG

• NIHL
-RG

• 48
(41.25‐
51.8)

• 42 (36‐
51)

• 16 (15‐
20)

• 16 (15‐
18)

• 96.3 (94‐
104.5)

• 96.2
(93.2‐
98.2)

• 65 (60‐
70) at 3
kHz

• 10 (5‐
10) at 3
kHz

Method 3 [11]
Exclusion criteria are
(1) noise exposure <1
year, (2) history of
middle ear diseases,
(3) hearing
impairment, (4) air-
bone gap in pure-tone
audiometry, (5) the
difference between
HTs in the right and
the left ear at 4 and 6
kHz <40 dB

N/Af Standardized HTs
for the left ear of
all participants
were plotted on the
Cartesian
coordinate system
(axis X – HT at 4
kHz and axis Y –
HT at 6 kHz) and
10% of participants
(points) were cut
off at each extreme
as the most
susceptible or
resistant
individuals

• NIHL
-SG

• NIHL
-RG

• 47 (40‐
52)

• 31 (26‐
36)

• 9 (6‐
12)

• 5 (3‐
10)

• 95.9
(92.2‐
103.7)

• 91 (87.4‐
93.4)

• 70 (65‐
75) at 4
and 6
kHz

• 7.5 (5‐
10) at 4
and 6
kHz

Method 4 [13]
Inclusion criteria are
(1) CNE >80 dBA
and (2) work
experience at noisy
environment

N/A Used simple linear
regression of
bilateral HTs at 3,
4, and 6 kHz
versus CNE,
assigning those
with the 10% worst
residuals and 10%
best residuals
(measured minus
predicted) to the
most resistant and
susceptible
individuals

• NIHL
-SG

• NIHL
-RG

• 46 (40‐
50)

• 35
(28.5‐
41.5)

• 8 (5‐
12)
7 (4‐
11)

• 93.2
(90.2‐
98)

• 95.9
(92.5‐
100.7)

• 64.2
(58.3‐
70) at 3,
4, and 6
kHz

• 18.8
(11.3‐
27.5) at
3, 4, and
6 kHz
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Participants
HTsa adjusted by
other factors

Screening
guideline Validation results of our dataset

Group
Age (years),
median (IQR)

Noise
exposure
duration
(years),
median (IQR)

CNEb (dBA-
years), median
(IQR)

PTAc (dB),
median (IQR)

Method 5 [12]
Inclusion criteria are
(1) work experience
at the mill under a
noisy environment >1
year; (2) no work
experience in other
factories with noise;
(3) no history of
drug-related, genetic,
or age-related hearing
impairments, head
wounds, or other ear
diseases

N/A Established a
quadratic model
between the CNE
and estimated HTs
at 3, 4, and 6 kHz.
Classified 20% in
the lowest quintile
of residuals as
NIHL-resistant,
and individuals in
the highest quintile
of residuals as
NIHL-susceptible

• NIHL
-SG

• NIHL
-RG

• 49 (44‐
53)

• 40 (33‐
48.1)

• 9 (6‐
13)

• 9 (5‐
13)

• 101.1
(96.6‐
103.7)

• 100.7
(97.7‐
104.2)

• 61.7
(55.8‐
67.5) at
3, 4, and
6 kHz

• 15
(11.7‐
18.3) at
3, 4, and
6 kHz

Method 6 [8]
Exclusion criteria are
(1) career length <1
year, (2) otologic
diseases or family
history of deafness,
(3) abnormal
impedance, (4) toxic
substances exposure,
and (5) invalid
information

Adjustments at
the algorithmic
level

Used age, sex,
CNE, smoking,
and alcohol
drinking status as
input variables, to
predict hearing
outcomes. The
selection for the
extreme individu-
als was restricted
to the misclassified
subjects by all
algorithms. The
NIHL-SG and
NIHL-RG were
comprised of 150
individuals with
the largest
probability values
in each misclassi-
fied category
provided by MLg
algorithms.

• NIHL
-SG

• NIHL
-RG

• 32 (30‐
34)

• 48 (45‐
51)

• 6 (3‐
10)

• 9 (5‐
12)

• 91.5
(88.3‐
94.7)

• 96.2
(92.2‐
101.7)

• 33.8
(29‐43)
at 3, 4,
6, 10,
and 12.5
kHz

• 21
(16.9‐
23.6) at
3, 4, 6,
10, and
12.5
kHz

aHT: hearing threshold.
bCNE: cumulative noise exposure.
cPTA: pure tone audiometry.
dNIHL-SG: noise-induced hearing loss susceptible group.
eNIHL-RG: noise-induced hearing loss resistant group.
fN/A: not applicable.
gML: machine learning.

For method 2 analysis, only 681 individuals were included.
The individuals classified as NIHL-SG on average were about
6 years older than those in NIHL-RG (Figure S1 in Multime-
dia Appendix 1, Table 2; median 48, IQR 41.25‐51.8 years
vs median 42, IQR 36‐51 years; P=.006). They also showed a
greater PTA at 3 kHz (Figure S1 in Multimedia Appendix 1,
Table 2; median 65, IQR 60‐70 dB vs median 10, IQR 5‐10
dB; P<.001).

For method 3, a total of 5290 individuals were included
in the analysis. The NIHL-SG (n=529) was significantly

older (almost 20 years on average; Figure S1 in Multime-
dia Appendix 1, Table 2; median 47, IQR 40‐52 years vs
median 31, IQR 26‐36 years; P<.001) and had notably poorer
hearing than the NIHL-RG (n=529; Figure S1 in Multimedia
Appendix 1, Table 2; median 70, IQR 65‐75 dB vs median
7.5, IQR 5‐10 dB; P<.001).

All individuals in the NIHL-SG selected by model 1
were older, had longer exposure time, and had higher CNE
than those in NIHL-RG which is inconsistent with known
characteristics (ie, poor validity). Several issues related to
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the analysis are of concern. There is no uniform criterion
to define the age range or noise intensity range for dif-
ferent categories. Additionally, it is unclear how many or
what percent of individuals should be selected to form the
NIHL-SG and NIHL-RG. The ability of model 1 to identify
individuals in the NIHL-SG and NIHL-RG is limited due to
the potential influence of manual sorting.
Validation of Model 2—Linear Regression
CNE Versus Mean HTs
The 5460 individuals with CNE levels above 80 dBA were
included in the analysis of method 4. The bilateral HTs
at 3, 4, and 6 kHz versus CNE were significantly correla-
ted (R2=0.102; P<.001). The NIHL-SG had slightly longer
exposure times (Figure S2 in Multimedia Appendix 1, Table
2; median 8, IQR 5-12 years vs median 7, IQR 4‐11 years;
P=.01) and higher HTs at 3, 4, and 6 kHz (Figure S2 in
Multimedia Appendix 1, Table 2; median 64.2, IQR 58.3‐70
dB vs median 18.8, IQR 11.3‐27.5 dB; P<.001) compared to
the NIHL-RG.

For method 5, a total of 2315 individuals met the inclusion
and exclusion criteria. Quadratic regression of bilateral HTs
at 3, 4, and 6 kHz versus CNE was significantly corre-
lated (r2=0.078; P<.001). The NIHL-SG demonstrated a
greater average hearing loss of nearly 47 dB at 3, 4, and 6
kHz compared to the NIHL-RG (Figure S2 in Multimedia
Appendix 1, Table 2; median 61.7, IQR 55.8-67.5 dB vs
median 15, IQR 11.7‐18.3 dB; P<.001); however, this may be
related to the fact that the individuals in the NIHL-SG were
significantly older than the NIHL-RG (Figure S2 in Multime-
dia Appendix 1, Table 2; median 49, IQR 44‐53 years vs
median 40, IQR 33‐48.1 years; P<.001).

Although model 2 showed that HTs were correlated with
CNE, lower R2 values indicate that these models have not
precisely identified individuals highly susceptible or resistant
to NIHL.

Validation of Model 3 With ML
The ML model achieved an average accuracy of 0.74 and
an average AUC of 0.80. Workers in the NIHL-SG (n=150)
were younger than those in the NIHL-RG (n=150; Figure S3
in Multimedia Appendix 1, Table 2; median 32, IQR 30‐34
years vs median 48, IQR 45‐51 years; P<.001); received
lower noise exposure levels (Figure S3 in Multimedia
Appendix 1, Table 2; median 91.5, IQR 88.3-94.7 dBA-years
vs median 96.2, IQR 92.2‐101.7 dBA-years; P<.001); had
shorter noise durations (Figure S3 in Multimedia Appendix 1,
Table 2; median 6, IQR 3‐10 years vs median 9, IQR 5‐12
years; P<.001) but greater HTs (Figure S3 in Multimedia
Appendix 1, Table 2; median 33.8, IQR 29‐43 dB vs median
21, IQR 16.9‐23.6 dB; P<.001) than those in the NIHL-RG.

The misclassified subjects selected by the ML diagnostic
model for the NIHL-SG and NIHL-RG were consistent with
their expected clinical characteristics (ie, strong face validity).
The ML model also maintained a high level of accuracy when
taking into account NIHL-SG and NIHL-RG.
Determining a Reliable Test Frequency
for NIHL
Table 3 shows the mean accuracy and mean AUC obtained
with the ML diagnostic models when various frequencies
were used. Optimal performance was demonstrated by all
4 algorithms when 4 kHz combined with 12.5 kHz were
used to detect NIHL; with these 2 frequencies, the max-
imum accuracy was 0.78 (adaptive boosting=0.79, multi-
layer perceptron=0.79, random forest=0.77, and support
vector machine=0.78) and the AUC was 0.81 (adaptive
boosting=0.83, multilayer perceptron=0.83, and random
forest=0.7). When 4, 6 plus 12.5 kHz were used, the AUC
was also high (0.81), but accuracy declined to 0.76. There-
fore, we concluded that 4 and 12.5 kHz identified by the
ML diagnostic model were the most reliable combination of
frequencies to predict the NIHL.

Table 3. The mean accuracy and AUCa of machine learning–based diagnostic models when various frequencies or frequency combinations were
used.
Frequencies AUC, mean (SD) Accuracy, mean (SD)
Average 4 and 12.5 kHz 0.81 (0.02) 0.78 (0.02)
Average 4, 6, and 12.5 kHz 0.81 (0.02) 0.76 (0.01)
Average 4, 10, and 12.5 kHz 0.79 (0.02) 0.76 (0.02)
Average 4, 6, 10, and 12.5 kHz 0.80 (0.01) 0.75 (0.01)
Average 3, 4, 6, 10, and 12.5 kHz 0.80 (0.02) 0.74 (0.02)
Average 4 kHz 0.77 (0.03) 0.72 (0.03)
Average 12.5 kHz 0.77 (0.02) 0.76 (0.01)

aAUC: area under the curve.

Clinical Characteristics of NIHL-SG and
NIHL-RG Individuals
In some cases, the ML model placed individuals in the
NIHL-SG or NIHL-RG contradicting the predicted PTA
and their risk factors possibly due to genetic heterogene-
ity. Individuals who were correctly predicted by ML were
used as a control group for further analysis of NIHL-SG

and NIHL-RG. When using algorithms that do not involve
probability values, such as Adaboost, the method of selecting
extreme individuals with mean HTs can be used to iden-
tify the clinical characteristics of these individuals, thereby
reducing potential bias caused by ML algorithms themselves.
When the first 15% of individuals with the highest HTs from
a susceptible portion of the NIHL-SG (n=79) were selected,
the HTs at the susceptible frequencies exceeded the mean of
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the matched control group by more than 2 SDs. Using similar
methods, the mean HTs in the NIHL-RG (n=139) were 2 SDs
below the mean of the matched control group.

The characteristics of individuals in NIHL-SG and
NIHL-RG are summarized in Table 4. HTs of the NIHL-SG
were significantly higher than the RG at all frequencies (0.5‐2
kHz; P<.001; 3 kHz; P<.001; 4 kHz; P<.001; 6 kHz; P<.001;
10 kHz; P<.001; 12.5 kHz; P<.001; 4 and 12.5 kHz; P<.001).
Workers in the NIHL-SG were younger than the NIHL-RG
(Table 4, Figure 2A; P<.001). Workers in the NIHL-SG had a
shorter noise exposure duration (Table 3, Figure 2B; P<.001)
and a lower CNE level (Table 3, Figure 2C; P<.001).

At frequencies of 4, 12.5, 0.5‐2, and 4 and 12.5 kHz, the
NIHL-SG showed more rapid growth of HL over time with
slopes of 6.16, 7.82, 2.3, and 7 dB/year. The control group
by contrast had shallower slopes of 3.52 dB/year at 4 kHz,
4.68 dB/year at 12 kHz, 1.71 dB/year at 0.5‐2 kHz, and 4.70
dB/year at 4 plus 12.5 kHz. The slopes of the NIHL-RG were
even shallower with values of 0.98 dB/year at 4 kHz, 0.58
dB/year at 12 kHz, 0.99 dB/year at 0.5‐2 kHz, and 0.78 dB/
year at 4 kHz plus 12.5 kHz (Figure 3). The slope of hearing
loss per year was greatest for the NIHL-SG followed by the
control group and the NIHL-RG (Figure 3).

Table 4. Demographic and audiometric characteristics of individuals in the NIHLa-susceptible group (NIHL-SG) and NIHL-resistant group
(NIHL-RG) classified by the optimized machine learning–based NIHL diagnostic model.b
Characteristics Susceptible group (n=79) Resistance group (n=139) P value
Sex, n (%) <.001
  Male, n (%) 68 (86.1) 126 (90.6)
  Female, n (%) 11 (13.9） 13 (9.4）
Age (year), median (IQR) 28.0 (25.0‐31.0) 35.0 (32.0‐39.0) <.001
Exposure time (year), median (IQR) 5.0 (2.0‐8.0) 8.0 (4.0‐12.0) <.001
CNEc (dBA-year), median (IQR) 90.0 (86.0‐92.0) 92.2 (89.2‐94.7) <.001
PTAd (dB HL), median (IQR)
  Average 0.5‐2 kHz 18.3 (14.2‐23.3) 10.8 (8.3‐14.2) <.001
  Average 3 kHz 35.0 (23.8‐50.0) 10.0 (7.5‐12.5) <.001
  Average 4 kHz 52.5 (37.5‐60.0) 10.0 (7.5‐12.5) <.001
  Average 6 kHz 52.5 (35.0‐55.0) 7.5 (5.0‐15.0) <.001
  Average 10 kHz 57.5 (42.5‐72.5) 7.5 (2.5‐10.0) <.001
  Average 12.5 kHz 70.0 (60.0‐80.0) 7.5 (2.5‐10.0) <.001
  Average 4 and 12.5 kHz 58.8 (53.8‐63.8) 8.8 (7.5‐11.3) <.001

aNIHL: noise-induced hearing loss.
bThe P values are from the results of the Mann-Whitney test. Statistical significance defined as P<.05.
cCNE: cumulative noise exposure.
dPTA: pure tone audiometry.

Figure 2. Demographic and audiometric characteristics of individuals in the noise-induced hearing loss (NIHL)–susceptible group (NIHL-SG) and
NIHL-resistant group (NIHL-RG) classified by the optimized machine learning–based NIHL diagnostic model. Data show the differences between
(A) NIHL-SG and NIHL-RG in age, (B) exposure time, (C) cumulative noise exposure (CNE), and (D) the mean pure tone audiometry (PTA) of
binaural 4 and 12.5 kHz. Box plots show median and IQR and error bars represent the 10% and 90% percentiles. The P values are from the results of
the Mann-Whitney test. *P<.05, **P<.01, and ***P<.001.
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Figure 3. Scatterplots were constructed at frequencies of 4 kHz, 12.5 kHz, 0.5‐2 kHz and combined 4 and 12.5 kHz showing the hearing thresholds
as a function of exposure time for each participant. The solid lines are fitting lines with an intercept of 0. HL: hearing level; RG: resistant group; SG:
susceptible group.

Discussion
Principal Findings
Among the methods for identifying individuals in the
NIHL-SG and NIHL-RG, the ML-based NIHL diagnostic
model with misclassified subjects was found to be the optimal
method based on various characteristics believed to define
these groups (ie, face validity). The accuracy of the ML
diagnostic model for distinguishing the NIHL-SG from the
NIHL-RG was highest when using 4 plus 12.5 kHz, suggest-
ing that the mean HTs of these 2 frequencies could be an
especially useful method to detect early onset hearing loss;
however, this would require clinicians to routinely include
testing at the EHFs rather than simply relying on the clinical
audiogram.

Creating a standardized and effective method to identify
susceptible and resistant individuals could help to advance
research on NIHL (eg, identifying the genetics of NIHL
susceptibility and resistance) and aid in its prevention. There
is currently a lack of agreement among existing models
regarding the most effective procedure to identify NIHL-
susceptible or NIHL-resistant individuals. The literature
indicates a linear increase in NIHL during the initial decade
of exposure, followed by a nonlinear pattern thereafter
[29]. Compared to linear and other regression models, the
effectiveness of the ML for identifying individuals highly
susceptible to developing NIHL may be related to their
greater ability to detect nonlinear relationships between NIHL
and multiple risk factors.

Our optimized ML model for detecting individuals either
highly susceptible or highly resistant to NIHL could provide
researchers with a powerful tool for studying the biolog-
ical bases of NIHL, as well as for identifying lifestyle
or environmental factors that enhance or suppress NIHL.
Comparing the genetic makeup of individuals in the NIHL-
SG and NIHL-RG to the general population could aid in
the identification of genes or gene clusters that make some
individuals resistant and others susceptible to NIHL [30,31].
Similarly, a more in-depth comparison of the physical
characteristics, lifestyles, and medical histories of individu-
als in the NIHL-SG and NIHL-RG could reveal heretofore
unknown variables that promote or impede the development
of NIHL. Surveys of an individual’s lifestyle such as music

listening habits, sleep patterns, use of noisy devices, and
medication history could provide useful information and
insights.

There is still some debate regarding the most suscepti-
ble frequency for identifying the early stage of NIHL. In
the studies of risk evaluation for NIHL, the importance of
several frequencies (including 3, 4, and 6) has been identified
[32-34]. One biological reason for this is that the resonant
frequency for the ear canal lies near 3‐4 kHz; sounds near
this frequency are amplified roughly 10‐15 dB by the time
these frequencies are transferred from the external environ-
ment to the tympanic membrane [35]. Another factor is that
the upper frequency of clinical audiograms used to screen for
NIHL is ≤ 8 kHz, this clinical procedure prevents research-
ers from exploring the growth of NIHL at the EHFs. The
EHFs are most susceptible to age-related hearing loss [36,37].
However, there is growing recognition that the EHFs may
also be highly susceptible to NIHL [38]. Others suggest that
the proportion of individuals with notches at 3‐6 kHz is not
overwhelming in noise-exposed individuals [39]. Some have
argued that the EHFs are very effective at detecting early
noise-induced hearing changes [40-42]. In the study of our
group, the importance of EHFs (eg, 10 and 12.5 kHz) has
also been confirmed [26]. However, because most audiome-
ters have limited output at high frequencies, it is possible
that frequencies above 12.5 kHz may be even more sensi-
tive at detecting early NIHL [17]. In this study, various
combinations of those frequencies were examined in the
attempt to find 1 or 2 sensitive indicators, instead of using
multiple indicators spreading to many frequencies. Interest-
ingly, the ML diagnostic model attained peak discrimination
and accuracy levels when using the average HTs at 4 and
12.5 kHz. The amalgamation of a traditional frequency with
12.5 kHz appears promising in detecting and discriminating
individuals in the NIHL-SG and NIHL-RG.

The clinical characteristics of the individuals in the
NIHL-SG and NIHL-RG provide a foundational standard for
future research. In our ML-based NIHL diagnostic model,
we selected the top 15% extreme values to minimize false
positives. In the absence of a unified standard, our selection
of the 15% extreme values approximates 2 SDs from the
mean. It is not a fixed value but can be adjusted based on
different data characteristics. It is important to note, however,
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that as the range of these extreme values increases, so does
the risk of false positives.
Limitations
There are some limitations to our study. The 15% in our
extreme data samples predominantly consisted of males, a
fact that largely reflects the predominance of males among all
shipyard workers. This of course, likely introduced a gender
bias in our findings, an issue that needs to be addressed
in future studies. Additionally, although we calculated the
growth rates of HL with exposure time using cross-sectional
data, future efforts at assessing HL growth rates would benefit
by evaluating longitudinal data beginning at an early age
before the onset of hearing loss and prior to the entry of
employees into noisy work environments. Because young
individuals likely enter the workforce with a preexisting
hearing loss at 12‐16 kHz and because commercial audiome-
ters have a limited maximum output at these frequencies,
it is difficult to measure the growth of NIHL across time
in the workplace because of saturation effects. Although
we excluded workers with a history of noise exposure, it
is unclear whether some individuals who entered the study

were unaware or unable to recall their history of exposure to
recreational and environmental noise. Technological advances
using cell phones and dedicated apps could conceivably make
it possible to conduct yearly hearing assessments among a
large cohort of individuals in order to track the growth of
hearing loss with advancing age prior to the time when
individuals enter the workforce.
Conclusions
Using a large sample of auditory data from shipyard workers
together with questionnaires and extensive demographic
data, we compared various analytic methods for identifying
individuals who were resistant or susceptible to shipyard
noise. Our results suggest that our optimized ML diagnostic
model with misclassified subjects, which assesses HTs at the
EHFs in addition to the traditional audiometric frequencies, is
the most effective method for identifying individuals highly
susceptible or resistant to NIHL. Having identified individu-
als susceptible and resistant to NIHL with this method, future
studies could search for genetic, environmental, and lifestyle
factors that contribute significantly to the growth of NIHL.
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