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Abstract

Background: Adverse drug events pose an enormous public health burden, leading to hospitalization, disability, and death.
Even the adverse events (AEs) categorized as nonserious can severely impact on patient’s quality of life, adherence, and persistence.
Monitoring medication safety is challenging. Web-based patient reports on social media may be a useful supplementary source
of real-world data. Despite the growth of sophisticated techniques for identifying AEs using social media data, a consensus has
not been reached as to the value of social media in relation to more traditional data sources.

Objective: This study aims to evaluate and characterize the utility of social media analysis in adverse drug event detection and
pharmacovigilance as compared with other data sources (such as spontaneous reporting systems and the clinical literature).

Methods: In this scoping review, we searched 11 bibliographical databases and Google Scholar, followed by handsearching
and forward and backward citation searching. Each record was screened by 2 independent reviewers at both the title and abstract
stage and the full-text screening stage. Studies were included if they used any type of social media (such as Twitter or patient
forums) to detect AEs associated with any drug medication and compared the results ascertained from social media to any other
data source. Study information was collated using a piloted data extraction sheet. Data were extracted on the AEs and drugs
searched for and included; the methods used (such as machine learning); social media data source; volume of data analyzed;
limitations of the methodology; availability of data and code; comparison data source and comparison methods; results, including
the volume of AEs, and how the AEs found compared with other data sources in their seriousness, frequencies, and expectedness
or novelty (new vs known knowledge); and conclusions.

Results: Of the 6538 unique records screened, 73 publications representing 60 studies with a wide variety of extraction methods
met our inclusion criteria. The most common social media platforms used were Twitter and online health forums. The most
common comparator data source was spontaneous reporting systems, although other comparisons were also made, such as with
scientific literature and product labels. Although similar patterns of AE reporting tended to be identified, the frequencies were
lower in social media. Social media data were found to be useful in identifying new or unexpected AEs and in identifying AEs
in a timelier manner.

Conclusions: There is a large body of research comparing AEs from social media to other sources. Most studies advocate the
use of social media as an adjunct to traditional data sources. Some studies also indicate the value of social media in understanding
patient perspectives such as the impact of AEs, which could be better explored.
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Introduction

Background
Adverse drug events (ADEs) can lead to increased morbidity,
mortality, and economic burden within the health care system
[1,2]. Moreover, ADEs can result in patients prematurely
discontinuing treatment or being hesitant to initiate drug
therapies, depriving them of potentially beneficial treatment
[3]. Despite efforts to detect ADEs before a drug is marketed,
some may go undetected, underscoring the importance of
continuous safety surveillance and monitoring.

Postmarketing pharmacovigilance relies on spontaneous
reporting to regulatory agencies, but such systems have
limitations, including time delays and underreporting [4-7]. The
insufficient rate of reporting has prompted researchers to explore
alternative data sources.

Social media data analysis has been applied in various health
research areas, such as disease surveillance and health outcomes
research [8-10]. Safety outcomes, in particular, have been
extensively studied [8-10], and patient reports of ADEs are
found abundantly within this content-rich resource [11]. The
use of social media as a supplementary data source may hold
immense value, as it can capture the perspectives of patients
from diverse demographics, including those who are typically
not reached in traditional pharmacovigilance channels. The
synthesis of ADEs reported in different data sources, including
social media, may increase the representativeness and
comprehensiveness of drug safety signals.

The potential value of extracting drug safety data from social
media was recognized as early as 2010 [11]. Social media data
were believed to have the potential to identify new signals or
detect signals earlier than conventional methods [12]. To manage
the vast amounts of text-based information posted on social
media, ongoing advancements in natural language processing
(NLP) and machine learning methods have facilitated automatic
detection of relevant mentions [13,14]. These methods face
numerous challenges, such as the highly informal language used
on social media and extracting user–expressed ADE concepts,
which are usually descriptive and nontechnical [15,16]. NLP
has played a crucial role in overcoming some of these barriers
encountered in identifying ADE mentions [13,14]. While
technological methods continue to advance [17-21], the practical
utility of social media for identifying adverse events (AEs)
requires further demonstration [22], leading to an ongoing debate
regarding what social media can bring to pharmacovigilance.

Numerous studies have concluded that social media holds the
potential to improve pharmacovigilance, while others, including
the well-known WEB-RADR study [23], have argued against
it, stating that signal detection in Twitter and Facebook
“performs poorly and cannot be recommended at the expense
of other pharmacovigilance activities” [24]. However, these
studies often make conclusions based on case studies, which
necessarily present a limited perspective, particularly given the

selection and the comparative analysis methods used for their
case study may have impacted the outcomes. The general
question of whether social media can enhance
pharmacovigilance may be more complex and nuanced than a
simple “yes” or “no” answer. Instead, we propose to focus this
study on establishing how social media data can contribute to
pharmacovigilance.

Between 2015 and 2021, 7 systematic reviews were published
aiming to evaluate the potential use of social media in
pharmacovigilance [25-30]. These reviews focused on various
aspects such as the frequency of AE reports or the detection of
safety signals [25-30]. Despite the inclusion of a substantial
number of articles, these reviews generally concluded that the
research was still in its infancy and that further investigations
were required. Nonetheless, some of the reviews did note that
social media may be more suitable for identifying mild
symptomatic ADEs, gaining patient perspectives of notable
events and their impact, or detecting AE signals earlier than
regulatory agencies. Since the publication of these reviews,
there has been significant progress in methods used to extract
data from social media and numerous additional studies.

Objective
Given the breadth of original studies conducted since these
systematic reviews were published, our aim was to provide an
updated summary of the current literature regarding the value
of detecting ADEs from social media data as compared with
other (traditional) sources. Thus, we narrowed our review to
studies that included a comparison of ADEs found in social
media to another (traditional) data source and excluded studies
primarily focused on the technical aspects of extracting ADE
reports. Considering the extensive landscape of literature in this
area and our objective to map the evidence comprehensively,
we chose to conduct a scoping review using the framework
developed by Arksey and O’Malley [31]. Specifically, our
review aimed to address the following questions:

1. What recent (post-2017) research has been conducted on
the large-scale detection of AEs from social media?

2. What types of drugs and AEs have been studied using social
media data to date, and what are the findings?

3. How do the types and frequency of ADEs identified from
social media differ from those identified from other sources
(such as regulatory data or clinical trials)?

4. What methods are used to identify and extract ADEs from
social media data, and could the choice of methods impact
the results?

Methods

Overview
This scoping review is reported in line with PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses Extension for Scoping Reviews) checklist [32]
and followed a prespecified published protocol [33]. The
inclusion and exclusion criteria are listed in Textbox 1. The
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inclusion criteria were necessarily broad in nature to provide
an understanding of the volume and diversity of the research in

this area.
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Textbox 1. Inclusion and exclusion criteria for studies on identifying adverse drug events data from social media in comparison with other data sources.

Inclusion criteria

• Population

• Any person (including pregnant persons and young and older adults) with or without any condition or disease type (chronic or acute) who
states that they have taken any drug intervention (including vaccines) used in diagnosis, treatment or prevention (as defined by the Food
and Drug Administration [FDA]) and experienced an adverse event

• Intervention

• Any type of social media, defined as any computer-mediated tools for users to create, share or exchange information, ideas, or content via
text, images, and audio (eg, message postings, pictures, and videos) in virtual communities and networks (such as message boards, social
networks, patient forums, Twitter, Reddit, blogs, and Facebook)

• Comparator

• Any data source other than social media (such as spontaneous reporting systems of the FDA or Medicines and Healthcare products Regulatory
Agency, clinical trials or summary of product characteristics) is eligible as a comparator (Table S1 in Multimedia Appendix 1)

• Outcome

• Primary outcomes: data on the type and frequency of adverse drug events data (such as muscle ache, headache, or rash) are required from
social media and at least 1 other data source

• Secondary outcomes: data on the application of the adverse drug events data (such as pharmacovigilance and hypothesis generation)

• Study design

• Any type of assessment

• Any date or language limits

• Published 2017 onward in English, Spanish, or French, or in any language with an English translation available

Exclusion criteria

• Population

• Reports by health care professionals

• People reporting diagnosis, treatment, or prevention with a nonmedical intervention (such as medical devise, surgery, supplements, or natural
remedy)

• People not reporting experience of an adverse event

• Intervention

• Simple, nonsocial, internet-based interventions (ie, web 1.0)

• Studies using social media to recruit participants

• Comparator

• No comparison undertaken to any nonsocial media data source

• Outcome

• We are concerned with the properties of interventions under normal use. We, therefore, did not consider papers where the primary aim was
to assess events, such as intentional and accidental poisoning (ie, overdose), drug abuse, errors, or noncompliance. Drug-drug interactions
are not eligible if they are the primary objective of the paper, due to the different techniques required in identifying interactions as opposed
to adverse events under normal use.

• Papers focused on identifying patient’s perspectives of adverse events (such as fear or impact on quality of life) and papers on subsequent
patient behaviors as a result of adverse events are also ineligible.

• Study design

• Discussion papers, purely technical papers, and papers that only contain examples of posts from social media.

• Any date or language limits

• Anything published before 2017 and anything published since 2017 that is not in either English, Spanish, or French, or in another language
with no available English translation

JMIR Public Health Surveill 2024 | vol. 10 | e59167 | p. 4https://publichealth.jmir.org/2024/1/e59167
(page number not for citation purposes)

Golder et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Search Methods
Eleven databases covering a range of topic areas, including
health and medical research, nursing, information and computer
science, and gray literature were searched (Textbox 2 and Table
S2 in Multimedia Appendix 1). We also searched Google
Scholar. However, due to the immense number of hits this search
engine retrieves, we only sifted the first 300 records. Searching
in databases may not retrieve all relevant available studies as

there are delays in indexing, they may not have been indexed
adequately (particularly where the database does not index using
full text or uses automated methods), or they may lack detail in
their titles and abstracts. We, therefore, conducted handsearching
of the most common journal titles from a previous review [25]:
Drug Safety, Journal of Medical Internet Research, and
Pharmacoepidemiology and Drug Safety (2017-2023l; Textbox
2).

Textbox 2. Sources searched for included studies.

Databases

• ACM Digital Library

• Conference Proceedings Citation Index–Science (CPCI-S)

• Emerging Sources Citation Index (ESCI)

• Embase

• IEEE Xplore

• Library, Information Science & Technology Abstracts (LISTA)

• MEDLINE

• Open Dissertations

• ProQuest dissertations and theses: United Kingdom and Ireland

• PsycINFO

• Science Citation Index Expanded (SCI-Expanded)

Internet search engine

• Google Scholar (first 300 records sifted)

• Handsearching of journals:

• Drug Safety (2017-2023)

• Journal of Medical Internet Research (2017-2023)

• Pharmacoepidemiology and Drug Safety (2017-2023)

The database search strategies consisted of just 2 facets, “social
media” and “adverse events” (see Multimedia Appendix 1 for
full search strategies in all databases). A date restriction of 2017
onward was placed on the searches because this review updates
7 previous reviews [25-30], the most recent of which is more
focused than our review [29]. No language restrictions were
placed on the searches, although financial and logistical
restraints did not allow translation from all languages.

We also conducted forward and backward citation searching
by checking the references of all included studies and forward
citation searching using CitationChaser [34] to identify papers
that have cited our included studies or that was cited by our
included studies (Table S3 in Multimedia Appendix 1). We
noted any related systematic reviews during our full-text
screening stage and carried out forward citation searches on
these reviews.

The search results were entered into an EndNote (Clarivate)
library with the duplicates removed. Title and abstract screening
were undertaken independently by 2 reviewers in Covidence
(Covidence AS) with any disagreements resolved by discussion,
or if necessary, a third reviewer. Full-text screening was again
undertaken in Covidence by 2 independent reviewers.

Data Extraction
A data extraction spreadsheet was designed and piloted for this
review in Covidence. The form recorded study characteristics
of existing papers on using social media data to identify potential
ADEs. Two reviewers (SG and KO) extracted descriptive data
independently, with findings compared and agreed through
discussion and consensus with a third person where required.
The following data were extracted from the included studies:

1. Details on the type of social media platform used
2. Details on the primary aim of the study
3. Brief details of the methods used to extract data from social

media including which drugs or AEs are searched for and
how

4. Whether the study distinguished between personal and
nonpersonal mentions, and whether it accounted for the
influence of bots or nonindividual accounts

5. The type and frequency of AEs data identified for each drug
and which drug

6. Comparator data source or sources along with any
comparisons of the data collected

7. Conclusions of the original investigators
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8. Finally, whether code or annotated or raw data are made
available by the authors

As this is a scoping review, we did not assess the methodological
quality (risk of bias assessment) of the studies or conduct any
evidence synthesis. Nevertheless, we did briefly summarize
whether the methods were reported, and any issues raised.

Ethical Considerations
Because the scoping review methodology consists of reviewing
and collecting data from publicly accessible materials, this study
did not require any ethical approval.

Results

Overview
After screening 6538 unique records, the full text of 500 were
examined and 73 publications representing 60 studies were
included in this review (Figure 1 and Table S4 in Multimedia
Appendix 1). Those excluded at the full-text stage fell into 10
categories: technical papers (n=225), patient perspective of AE
(n=42), not AEs (n=41), systematic review (n=36), not research
study (n=32), not social media analysis (n=30), no comparator
(n=11), not drug medication (n=7), ongoing or protocol (n=2),
and non-English language (Portuguese).

Figure 1. Flow diagram for included studies.

A brief overview of the included studies can be found in Table
1. The full details of the extracted information for each

publication are provided in Table S4 in Multimedia Appendix
1.
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Table 1. Overview of included publications and studies and their findings when comparing the adverse event extracted from social media to other data
sources.

Reported finding on adverse events

found in social mediaa
Social media source usedStudy name or identifier

used
Publication (author, year)

Unexpected, earlierTwitter, health forums, and drug review sites—bAbbasi et al [35], 2019

Less serious, unexpectedTwitter, health forums, and drug review siteVigi4MedAudeh et al [36], 2020

Less serious, unexpectedTwitter, health forums, and drug review siteVigi4MedBellet et al [37], 2018

Less serious, unexpected, less infor-
mative

Twitter, health forums, and drug review siteVigi4MedBoeuf et al [38], 2017

Less serious, unexpectedTwitter, health forums, and drug review siteVigi4MedKarapetiantz et al [39], 2018

Less serious, unexpectedTwitter, health forums, and drug review siteVigi4MedKarapetiantz et al [40], 2018

Less seriousTwitter, health forums, and drug review siteVigi4MedKarapetiantz et al [41], 2019

Less serious, unexpectedTwitter, health forums, and drug review siteVigi4MedKarapetiantz et al [42], 2019

New, similar, more frequentHealth forums—Barakat and ElSabbagh [43], 2022

Not reportedTwitter—Bennett et al [44], 2022

Less serious, similar, less frequentTwitter, Reddit, and health forums—Bhattacharya et al [45], 2017

Less frequentHealth forums—Blaser et al [46], 2017

SimilarDrug review site—Borchert et al [47], 2019

SimilarTwitter and Instagram—Brattig [48], 2019

NewHealth forums—Campillos-llanos et al [49], 2019

Less frequent, no valueTwitter, Facebook, and health forumsWEB-RADRCaster et al [24], 2018

Not earlier, no valueTwitter, Facebook, and health forumsWEB-RADRvan Stekelenborg et al [50], 2019

New, similarHealth forums—Chen et al [51], 2018

Less serious, different patternTwitter, health forums—de Langen et al [52], 2017

SimilarFacebookden Hollander 2022den Hollander et al [53], 2022

NewFacebookden Hollander 2022Dirkson et al [54], 2022

SimilarTwitter—de Rosa et al [55], 2021

SimilarTwitter, Facebook, blogs, and health forums—Dreyfus and Pierce [56], 2017

New, less frequentHealth forums—Eslami et al [57], 2020

UnderreportedTwitter—Farooq et al [58], 2020

Less frequentTwitter—Ferawati et al [59], 2022

Earlier, new, similarHealth forums—Gavrielov-Yusim et al [60], 2019

Less serious, similarTwitter—Golder et al [61], 2021

Similar, less frequentDrug review site—Han et al [62], 2020

Less frequentTwitter—Harpster and Hultgren [63], 2018

New, similarTwitter—Hoang et al [64], 2018

SimilarTwitter and Facebook—Hussain et al [65], 2022

SimilarHealth forums—Jarynowski et al [66], 2021

New, unexpected, similarTwitter—Jiang et al [67], 2020

SimilarTwitter—Khademi Habibabadi et al [68],
2023

SimilarDrug review site—Kim et al [69], 2020

SimilarTwitter—Koutkias et al [70], 2017

EarlierHealth forumsKurzinger ABKurzinger et al [71], 2018

Earlier, newHealth forumsKurzinger ABKurzinger et al [72], 2018
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Reported finding on adverse events

found in social mediaa
Social media source usedStudy name or identifier

used
Publication (author, year)

Less serious, unexpectedTwitter—Lardon et al [73], 2018

SimilarHealth forums—Lebanova et al [74], 2019

SimilarNaver—Lee et al [75], 2023

SimilarHealth forums—Li et al [76], 2019

Similar, less frequent, less seriousTwitter—Li et al [77], 2020

Similar, less seriousTwitter—Lian et al [78], 2022

Earlier, more frequent, less seriousTwitter and health forums—Liu [79], 2017

New, less seriousTwitter—Mackinlay et al [80], 2017

Different patternsTwitter and Facebook—Maskell [81], 2017

Similar, less seriousHealth forumsMatsuda ABMatsuda et al [82], 2017

Similar, less seriousHealth forumsMatsuda ABMatsuda et al [83], 2017

NewTwitter—Natsiavas et al [84], 2017

SimilarTwitter, Reddit, and blogs—Nguyen et al [85], 2017

Earlier, similarHealth forumsNikfarjam and RansohoffNikfarjam et al [86], 2019

Earlier, new, similarHealth forumsNikfarjam and RansohoffRansohoff et al [87], 2018

Earlier, newHealth forumsNikfarjam and RansohoffRansohoff et al [88], 2018

SimilarHealth forums—Oyebode and Orji [21], 2023

New, similar, less frequentHealth forums—Pan et al [89], 2018

New, unexpectedDrug review site—Park et al [90], 2022

Less seriousTwitter—Patel et al [91], 2018

Earlier, new, similarTwitter—Pathak and Catalan-Matamoros
[92], 2023

EarlierTwitter and Facebook—Pierce et al [93], 2017

Similar, less frequentTwitter and health forums—Powell et al [94], 2022

Less seriousTwitter and health forums—Rees et al [95], 2018

Less seriousHealth forums—Sadeghi et al [96], 2017

OtherReddit—Salamun et al [97], 2020

Earlier, new, similarHealth forums and drug review site—Sampathkumar [98], 2017

Similar, different ratesTwitter—Smith et al [99], 2018

SimilarDrug review site—Song et al [100], 2021

Earlier, newDrug review site—Xia [101], 2022

Similar, less frequentHealth forums and drug review siteYahya ABYahya and Asiri [102], 2022

Similar, less frequentHealth forums and drug review siteYahya ABYahya et al [103], 2022

New, similarTwitter—Yu and Vydiswaran [104], 2022

New, similarTwitter—Zhou and Hultgren [105], 2020

aAs compared with comparator source used.
bNot available.

Characteristics of Included Studies
The most commonly used social media platform was Twitter
(34/60, 57%) [24,35-42,44,45,48,50,52,55,56,58,59,61,
63-65,67,68,70,73,77-81,84,85,91-95,99,104,105], followed by
va r i o u s  h e a l t h  f o r u m s  ( 2 6 / 6 0 ,  4 3 % )
[21,24,35-43,45,46,49-52,56,57,60,69,71,72,74,76,79,82,83,85-89,94-96,98,102,103],

drug reviews sites (9/60, 15%) [21,35,47,62,90,98,100-103],
Facebook (6/60 10%) [36-38,41,42,53,54,56,65,81], Reddit
(3/60 5%) [45,85,97], blogs (3/60, 5%) [56,75,85], and other
social media platforms (2/60, 3%) such as Telegram [66] and
Instagram [48]. Table 2 provides an overview of these
characteristics, along with references, as well as those for the
remainder of this section. In studies that reported the number
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of drugs included, the range varied from 1 to 4888, with some
studies searching for any or all named drugs within the corpus,
and in many cases, not all drugs were explicitly named. This
made any detailed analysis by type of drug too challenging.
Furthermore, 55% (33/60) of the studies searched for data for
≤10 named drugs, 23% (14/60) of the studies searched for 11
to 200 named drugs, and 12% (7/60) of the studies searched for
or extracted all named drugs in their collected corpus. Five
studies did not report the exact number of drugs searched or
extracted [52,81-83,90,96]. One study searched for posts of
interest using 4 named AEs and then extracted drugs mentioned
in these posts. Most studies (50/60, 83%) did not restrict their

search or analysis to any named AEs, while the other 17%
(10/60) of the studies named AEs (such as fever or cutaneous
AEs) [44,46,56,65,68,70,84,92-94]. The extensive number of
drugs and AEs included and the lack of detailed nomenclature
prevented us from conducting any further analysis by drug type
or AE type.

The volume of data analyzed varied between 130 to 230 million
posts, whereas the volume of AEs mentions varied between 14
and 1,191,767. In general, studies that used Twitter or Facebook
analyzed a larger number of posts compared with studies that
used medication reviews or health forums.

Table 2. Characteristics of included studies (including social media platforms selected, number of drugs searched and whether named adverse events
[AEs] were searched).

ReferencesaStudies (N=60), n (%)Category and subcategory

Social media platform

[24,35-42,44,45,48,50,52,53,55,56,58,59,61,63-68,70,73,77-81,84,85,91-95,99,104,105]38 (63)General social media

[21,35,47,62,90,98,100-103]9 (15)Drug review site

[21,24,35,36,38-43,45,46,49-52,56,57,60,69,74,76,79,82,83,85-89,94-96,98,102,103]26 (43)Online health forums

[56,75,85]3 (5)Blogs

Number of drugs searched

[36-45,47,49,51,53-56,59,61-63,65-68,70-72,74-76,78,86-88,91,93,94,97,99,100,105]33 (55)1-10

[21,24,35,46,48,50,57,58,64,69,73,79,92,95,102,103]14 (23)11-200

[60,77,89,101,104]7 (12)All named

[52,81-83,90,96]5 (8)Not reported

[84](1 (2)Searched AEs

Only named AEs

[44,46,56,65,68,70,84,92-94]10 (17)Yes

[21,24,35-43,45,47-55,57-64,66,67,69,71-83,85-91,95-105](50 (83)No

aIncludes all publications.

Methods of Included Studies
Seven studies [35,44,52,57,63,89,96] did not describe their
methods in enough detail to identify any issues with their
methodology. A further 12% (7/60) of the studies
[21,24,45,50,55,56,81,95] used third-party software to detect
or extract ADE mentions. For 28% (17/60) of the studies
[48,51,58,64,65,69,70,75,80,82,83,85,94,97,98,102-105], some
methodological issues were identified such as (1) lack of
reproducibility [45], (2) no mention of manual validation of
ADE mentions [58,85], (3) missing key information such as the
volume of social media data from which the ADE signals were
extracted or analyzed [70-72], and (4) using lexical match for
ADE detection or extraction [43,48,50,58,64,69,86,89,93,98].
For the remaining 48% (29/60) studies
[36-43,46,47,49,53,54,59-62,66-68,73,74,76-79,84,86-88,90-93,99-101],
we did not identify any methodological issues.

Only 6 studies [36-42,45,67,82,83,93,95] mentioned that they
attempted to exclude bots (or spam content) from the final set

of posts, and 15 studies [21,36-42,51,53,54,61,64,
67,71,72,77,78,80,82,83,90,94,105] attempted to remove
nonpersonal accounts (such as organizations or companies).
Moreover,  22% (13/60)  of  the  s tudies
[30,36-42,53,54,58,60,61,64,68,71,72,78,79,94,105] attempted
to distinguish between personal experience of the AEs from
nonpersonal mentions.

Data Source for Comparison
The most common comparison (42/60, 58%) was made with
spontaneous reporting systems (such as Food and Drug
Administration Adverse Event Reporting System, Medicines
and Healthcare products Regulatory Agency or VigiBase). This
was followed by comparisons to product labels (21/60, 29%),
scientific literature (18/60, 25%), or online medical sites (5/60,
7%). Other comparisons included drug information databases,
reference standards, and an internal database. Table 3 reports
the details of these data sources used and their references.
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Table 3. Data sources for adverse events compared with social media.

ReferencesStudies (N=60), n (%)Data source and source name

—a42 (70)Spontaneous reporting system

[35,45,47,56,58,61-63,67,70,76,77,79,80,90,93-95,97,99,100,102,103,105]23 (38)Food and Drug Administration Adverse Event
Reporting System

[24,50,51,60,71,72,81]5 (8)VigiBase

[61,65,91,92]4 (7)Medicines and Healthcare products Regulatory
Agency

[36-42,73,96]3 (5)French pharmacovigilance database

[75,100]2 (3)Korea Adverse Event Reporting System

[44,78]2 (3)Vaccine Adverse Event Reporting System

[82,83]1 (2)Japanese Adverse Drug Event Report

[58]1 (2)MedEffect

[68]1 (2)Surveillance of Adverse Events Following Vacci-
nation In the Community

[66]1 (2)Argentinian spontaneous reporting systems

—21 (35)Product labels

[24,36-42,45,46,49-51,53,54,56,69,73,74,98]12 (20)Structured Product Labeling/Summary of Product
Characteristics

[21,43,48,57,64,77,79,85,102,103]9 (15)Side Effect Resource

—18 (30)Scientific literature

[21,52,69,70,86-89,102,103]7 (12)Scientific literature

[53,54,59,66,67,69,86-88]6 (10)Clinical trials

[61,67,99]3 (5)Systematic reviews

[55,67]2 (3)PubMed

—4 (7)Medical websites

[67,104]2 (3)MedlinePlus

[84]1 (2)Drug Bank

[58]1 (2)Drugs.com

[57]1 (2)WebMD

—12 (20)Other

[36-42,61,73,99]4 (7)Drug Information Database

[67,101]3 (5)Safety communications

[24,50,77]2 (3)Reference standards

[56]1 (2)Administrative claims

[45]1 (2)Internal adverse drug event database

[53,54]1 (2)Surveys

aNot applicable.

Method of Comparison
The most common method of comparing AEs was by frequency
(33/60, 55%) [24,36-47,50,53,54,57,59-63,65-67,73,74,78,79,
81-83,85-92,94,96,99,105], followed by type of AEs (30/60,
50%) [16,21,30,36-42,47-49,51-54,57,58,63,64,66,70-72,77,
80-83,86-90,93,95,96,98,100,102-104], rank order of AEs
(11/60, 18%) [43,45,47,53,54,61,68,75,76,78,82,83,99], and
timing of AE identification (10/60, 17%)

[24,35,50,71,72,79,86-88,93-95,98,101]. Other methods
included disproportionality analysis, or comparing correlation
and agreement, proportion, and proportional reporting ratios
(15/60, 25%) [36-43,46,51,55,61,68,71,72,77,85-88,90,92,
95,99], which are used to detect more frequently reported
drug-adverse drug reaction pairs or to detect potential safety
signals. In addition, precision [35,92,102,103] and recall [35],
among other metrics such as sensitivity, specificity, positive
predictive value, and negative predictive value [56] of the
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detection were sometimes compared between different data
sources to evaluate detection accuracy and specificity.

Results of Comparison
Many of the publications state that similar patterns of AEs were
reported in social media as compared to other traditional
p h a r m a c o v i g i l a n c e  d a t a  s o u r c e s
[35-43,47,48,51-56,60-62,64-70,74-78,82,83,85-89,92,94,98,99,102-105].
However, some studies [24,45,46,50,57,59,62,89,94,102,103]
detected fewer numbers of AEs on social media.

Another limitation noted of social media data was that no serious
AEs were detected [36-42,45,52,61,73,77-80,82,83,91,95,96].
de Langen et al [52] noted that serious AEs were only identified
in the literature.

The main advantages noted were that social media data included
unexpected or new AEs [35-43,49,51,53,54,57,60,64,67,71-73,
80,84,86-90,92,98,101,104,105] (24/60, 40%) and that AEs
could be identified earlier [35,60,71,72,79,86-88,92,93,98,101]
(9/60, 15%) in social media as compared to those reported in
spontaneous reporting systems [35,71,72,76,79,93], search query
logs from search engines [35], drug safety communications
[101], and scientific literature [76,86-88]. In contrast, 3 (5%)
out of the 60 studies suggested that routine surveillance of social
media would not aid in earlier identification of ADE signals
[24,50,95], while one stated it will not be useful to confirm
previously identified safety signals [45] and another one stated
that certain social media platforms (such as online health
forums) may be timelier in signal detection while others
(Twitter) will not [35].

Regarding evaluation metrics, findings from these publications
were inconsistent. One study concluded that social media had
a generally higher recall but lower precision in ADE detection
than other data sources such as search query logs [35]. However,
this conclusion was noted to be context specific, because

different social media channels had performed better or worse
depending on for which event-type they were tasked to detect
the signals [35]. Meanwhile, social media was also found to be
more sensitive in detecting ADE than administrative claims,
but less sensitive than the spontaneous reporting system of Food
and Drug Administration Adverse Event Reporting System [56].
In addition, social media detection was found to be more
specific, able to yield higher positive predictive value and
similarly low negative predictive value as other data sources
[56].

Data and Code Availability
Only 25% (15/60) of the studies stated that their data was
available: 5/15 (33%) studies [53,54,62,75,92,102,103] stated
that the data would be available upon request, and the other
10/15 (67%) [24,46,49,50,58,59,61,64,65,75,77,94] studies
either provided data as supplemental material or a link to a
repository. In 2 cases [39,64], the links were no longer working
when checked as part of this review.

Five studies [53,54,64,65,86-88] stated that their code was
available. All links were validated, and one link [64] was found
to no longer work.

Author’s Conclusions
Overall, out of the selected 60 studies, 47 (78%) were supportive
of the use of social media as an adjunct to traditional
pharmacovigilance (Table 4). Of the rest, 8 (13%) studies stated
that there may be potential value in the use of social media in
pharmacovigilance, but more research is required to improve
methods. Only 5 (8%) out of the 60 studies were not supportive
of the use of data from social media for pharmacovigilance;
however, 1 (20%) of the 5 noted that usefulness may be
improved with advances in techniques used to identify ADEs
in social media posts.

Table 4. Author’s conclusions on the use of social media for pharmacovigilance.

ReferencesStudies (N=60), n (%)Author’s conclusion

[21,35,44,46-49,52-61,63-68,71,72,74-76,78,81-84,86-92,96-105]47 (78)Support—as complementary resources

[36-43,51,62,73,79,80,93]8 (13)Support—with more research to improve methods

[45,77,94,95]4 (7)Unsupportive

[24,50]1 (2)Unsupportive—may be improved with more research

Discussion

Principal Findings
This review identified 60 studies published on the potential
utility of social media in pharmacovigilance by comparing social
media data to other sources since 2017. This demonstrates that
the subject of using social media in AEs detection is still prolific.
Indeed, many more studies were identified that analyzed social
media for the purpose of identifying AEs but were done without
comparison and were thus excluded from this study.

The WEB-RADR study [24,50], which is probably the most
cited research on the utility of social media in
pharmacovigilance, recommends that social media data not be

used for broad statistical signal detection at the expense of other
pharmacovigilance activities. However, the authors
acknowledged several limitations with their approach, including
shortcomings in their AE recognition algorithm. It was noted
that the method for automatic extraction of AE mentions used
in their study (primarily based on string matching) is an
extremely basic approach, even for the time when the study was
conducted, a choice that severely impacts the validity of their
conclusion. Nonetheless, the study also noted that for certain
underrepresented areas of pharmacovigilance, such as drug
exposure during pregnancy, social media data could provide a
valuable resource of information.

Vigi4Med project is another well-known study of social media
analysis for pharmacovigilance [36-42]. This study searched
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for all AEs related to 6 drugs in 22 French medical forums.
They extracted 60 million posts and validated 5149 posts
manually. The main comparison was to the French
pharmacovigilance database, although for one drug they also
carried out a comparison with Summary of Product
Characteristics or product labels. They concluded that although
the information in forums was less informative, less serious,
and contained fewer signals, it could be complementary as
forums contained more unexpected AEs than the French
pharmacovigilance database.

While the above 2 studies are probably the most well-known,
there are a large number of other studies that analyzed the utility
of social media in pharmacovigilance, as we have demonstrated.

As exemplified by these studies, the identification of ADEs and
the choice of drug or comparator source can significantly
influence the conclusions drawn from a study. It is crucial to
consider these factors when evaluating the results. Particularly,
the methods used for detecting ADEs may result in
overestimation or underestimation of the reports from social
media. Our findings indicate that only a few studies
distinguished personal reports of ADEs from other general
mentions, potentially introducing biases. While this may be less
problematic in moderated patient health forums, it becomes
more challenging when general social media platforms are used,
where various factors can lead individuals to mention
drug-related AEs that are not based on personal experiences. In
addition, it is important to implement filters or rules in ADE
detection to ensure that mentions are not negations, feared
ADEs, or unrelated signs and symptoms, such as indications
for a drug that do not represent an ADE. Failure to incorporate
these measures may result in an inflated number of captured
ADEs.

Detection of ADEs can be limited by certain methods. Many
studies [24,43,48,50,58,64,69,71,72,89,93,98] (notably,
WEB-RADR) relied on dictionary-based or lexical matching
systems to identify ADE mentions. These methods may overlook
a great number of mentions due to the descriptive idiomatic and
nontechnical language used by patients to describe their
symptoms. The lexicons used by these systems were typically
curated from traditional sources such as drug labels or Side
Effect Resource database (SIDER), which do not capture the
full range of patient expressions. While incorporating
consumer-generated terms, such as those from consumer health
vocabularies or previous social media mentions, expands the
number of matches, a lexical match method still primarily
identifies frequently reported ADEs. In contrast, studies using
advanced NLP and machine learning techniques, such as deep
learning, have demonstrated superior performance in ADE
recognition, including rare and previously unknown ADEs. For
instance, Xia [101] developed a historical awareness multilevel
framework that leverages transfer learning from prior review
embeddings and uses Bidirectional Encoder Representations
from Transformers–based sentence and word embeddings with
an attention mechanism. This approach achieved state-of-the-art
performance with an impressive F1-score of 0.944.

In several studies, it was observed that the frequency of drug
mentions in social media varied depending on the specific drug

[24,50,101,105]. It was reported that drugs ranked in the top
100 by sales generated more posts compared to other drugs.
Therefore, the selection of drugs for study can impact the
conclusions regarding the use of social media for
pharmacovigilance. In addition, the use of a single comparator
can introduce further issues. For instance, SIDER, a database
of ADEs extracted from product labels lacks coverage for many
drugs and has not been updated since 2015, potentially missing
newly reported ADEs on updated labels or reported in the
literature. Interestingly, 2 studies [21,43] noted that the number
of new ADEs identified in social media was higher than with
SIDER. However, fewer new ADEs are identified in social
media if a comparison is made to more up-to-date sources such
as ClinicalTrials.gov, Food and Drug Administration data, and
PubMed or MEDLINEPlus [46].

Future Research Directions
The question as to the utility of social media analysis in
identifying AEs does not appear to be resolved. Future research,
particularly with the advancement of artificial intelligence,
should be welcomed. It may be, however, that we should not
be asking social media to replace spontaneous reporting systems
but more as an adjunct and to develop social media listening
skills akin to those used in businesses. For example, social media
is increasingly being recognized as a source for patient
perspectives, and this was evident in our included studies as
many studies [36-42,45-47,51-54,57,60,61,68,78,91,95,98,99]
discussed the application of social media data for identifying
quality of life issues, adherence behavior, or coping mechanisms
[106]. Research into the value of social media to identify trends
in the public discourse, public concerns, and patient perspectives
could prove useful.

Summary of and Comparison With Previous
Systematic and Scoping Reviews
In our previous systematic review in 2015, we identified 29
studies comparing social media AEs data to another source of
data [61]. These studies focused on using discussion forums,
whereas in our review the dominant platform used was Twitter,
followed by discussion forums. We now include other platforms
such as Reddit and WebMD, which were not identified in our
previous review. The sources used to compare against were
similar to those noted in this review. Previously, we found that
social media data had general agreement with other data sources
for patterns of AEs but showed the potential to identify AEs
earlier (one included study) and to identify new or unexpected
AEs—particularly symptomatic “mild” symptoms. This agrees
with this review, with more studies now investigating the
timelines of social media data.

Our 2015 review [26] identified 22 technical papers on the
extraction of AEs data, but such papers were excluded in our
current review if they did not compare the results to an existing
data source. The large number of technical papers that we
excluded indicates that many more papers have been published
since 2015 for the purpose of extraction. Interestingly, only 6
of 22 studies in the review by Sarker et al [26] made their
annotations publicly available, a ratio comparable to our review.
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The review by Lardon et al [30] focused on summarizing
methods used for identifying, extracting, and evaluating the
quality of medical information from social media. They found
that works about identification tend to not accurately assess the
completeness, quality, and reliability of the social media data
being analyzed, whereas works about extraction had limited
generalizability to new sites and data sources [30]. Given the
limited information found through 24 publications, they
concluded that the studies they reviewed were inadequate for
precisely determining the role of social media data in
pharmacovigilance.

Tricco et al [12] reviewed 19 studies that compared AEs
reported through social media to validated data. According to
Tricco et al [12], previous research showed that social media
data has the potential to supplement regulatory data as they
allow for earlier detection of AEs and detection of less
frequently reported AEs. But Tricco et al [12] questioned the
validity and reliability of these systems that use social media
data for ADE detection, as none of the works they reviewed
reported on these 2 important dimensions. On the basis of these
findings, Tricco et al [12] concluded that the use of social media
data for pharmacovigilance was “in its infancy” at the time of
their reporting.

On the basis of the 38 studies reviewed by Convertino et al [27],
it was found that social media data occasionally—but not
always—allowed for identification of serious and unexpected
proto-ADEs, but that social media was lower in information
quality compared with spontaneous reporting databases, with
causal relationships rarely evaluated in the detected events.
Overall, Convertino et al [27] did not recommend the use of
social media signal detection for routine pharmacovigilance as
of the end of 2017.

Pappa and Stergioulas [28], in a more recent review of 100
articles, compared different approaches to using social media
data in pharmacovigilance. They concluded that in its use for
pharmacovigilance, social media data had both advantages and
limitations in population coverage, usefulness, accessibility,
and processability; advantages in timeliness; and limitations in
quality [28]. Similar to what we found in this review, Pappa
and Stergioulas [28] argued that within the big umbrella term
of social media data (or social data), different types of social
media data sources can vary in specific evaluative dimensions.
For example, data from generic social networking sites (such
as Twitter) tend to raise more quality concerns and require more
quality control as compared with data from specialized health
care social networks and forums (such as WebMD or What to
Expect). The latter have more relevant data and lengthier
postings that have the potential for broader analysis.

Lee et al [29] had a more specific focus, looking at the use of
social media data in detecting new black box warnings, labeling
changes, or withdrawals in advance. There were 2 studies
[24,93] included in the review by Lee et al [29] that were
published from 2017 onward and both these reviews are included
in our scoping review. These studies were 2 of the 4 studies that
reported negative or modest results. A further 9 studies in the
review by Lee et al [29] were positive. This can be compared

with the 10 studies in our review that measured timeliness of
AEs detection, of which 9 reported positive findings.

Limitations
The main limitations of our study are the exclusion of studies
published in languages other than English, French, or Spanish
and the use of Anglo-dominated databases. However, we only
identified one paper in a non-English language that we could
not translate and is likely to have met our inclusion criteria.
This is also a fast-paced area of research, which means that the
applicability of our findings may change over time. Indeed, the
social media platforms themselves are rapidly changing in terms
of use and access, and the technological developments to extract
data from social media are rapidly evolving. The period in which
each included study was undertaken, may have an impact on
their findings.

It was also impossible to identify any patterns of results in
relation to the type of medication studied or the types of AEs
sought. This was due to a combination of poor reporting of the
drug names and AEs and the large number of drugs (up to 4888)
included in some studies.

As this is a scoping review, we also did not conduct any formal
risk of bias assessment to ensure the validity of the results. It
should be noted that any risk of bias assessment will be
challenging given the lack of a validated tool for the types of
studies included.

The interpretation of the results and the authors’ conclusions
extracted from the included studies are subjective, the primary
authors may be biased as to their initial objective, their funding,
and the impact of the results on their career progression.

While we limited our review to studies with a comparison to
gain a better understanding of the potential utility of social
media analysis, it is important to note that utility is an
ambiguous concept—what may be useful to regulatory agencies
may differ to patients or clinicians for example. We should also
be mindful of false positives within any system measuring case
reports of AEs given that causality cannot be proven. False
positives may, however, still be important to identify given the
potential impact on uptake and adherence of medication.

Conclusions
The results of this study may help inform current recommended
practices and the future direction of research in this area. Most
studies concluded that social media can be a useful adjunct to
traditional sources. It was apparent from our study that social
media data may prove most fruitful for more timely hypothesis
generation of new or unexpected AEs and for detecting reports
of mild symptomatic events. Knowledge of mild symptomatic
events is difficult to quantify and has been shown through social
media to play a role in adherence patterns [107,108] and coping
strategies [106]. Future research that uses state-of-the-art NLP
methods to identify personal experiences of AEs from a range
of platforms and that can directly capture reports of medication
change alongside the reasons for change poses to bring the best
return-on-investment for the incorporation of social media data
with other traditional data sources.
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