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Abstract
Background: With global warming, the number of days with extreme heat is expected to increase and may cause more acute
heat illnesses. While decreasing emissions may mitigate the climate impacts, its effectiveness in reducing acute heat illnesses
remains uncertain. Taiwan has established a real-time epidemic surveillance and early warning system to monitor acute heat
illnesses since January 1, 2011. Predicting the number of acute heat illnesses requires forecasting temperature changes that are
influenced by adaptation policies.
Objective: The aim of this study was to estimate the changes in the number of acute heat illnesses under different adaptation
policies.
Methods: We obtained the numbers of acute heat illnesses in Taiwan from January 2011 to July 2023 using emergency
department visit data from the real-time epidemic surveillance and early warning system. We used segmented linear regression
to identify the join point as a nonoptimal temperature threshold. We projected the temperature distribution and excess acute
heat illnesses through the end of the century when Taiwan adopts the “Sustainability (shared socioeconomic pathways 1‐2.6
[SSP1-2.6]),” “Middle of the road (SSP2-4.5),” “Regional rivalry (SSP3-7.0),” and “Fossil-fueled development (SSP5-8.5)”
scenarios. Distributed lag nonlinear models were used to analyze the attributable number (AN) and attributable fraction (AF) of
acute heat illnesses caused by nonoptimal temperature.
Results: We enrolled a total of 28,661 patients with a mean age of 44.5 (SD 15.3) years up to July 2023, of whom 21,619
(75.4%) were male patients. The nonoptimal temperature was 27 °C. The relative risk of acute heat illnesses with a 1-degree
increase in mean temperature was 1.71 (95% CI 1.63-1.79). In the SSP5-8.5 worst-case scenario, the mean temperature was
projected to rise by +5.8 °C (SD 0.26), with the AN and AF of acute heat illnesses above nonoptimal temperature being
19,021 (95% CI 2249‐35,792) and 89.9% (95% CI 89.3%‐90.5%) by 2090‐2099. However, if Taiwan adopts the Sustainability
SSP1-2.6 scenario, the AN and AF of acute heat illnesses due to nonoptimal temperature will be reduced to 12,468 (95% CI
3233‐21,704) and 62.1% (95% CI 61.2‐63.1).
Conclusions: Adopting sustainable development policies can help mitigate the risk of acute heat illnesses caused by global
warming.
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Introduction
Background
With increasing global warming, the health effects of heat
have become an important public health issue. Some studies
have reported the relationship between hot temperature and
cardiorespiratory disease [1,2], kidney disease [3,4], and
mental disorders [5]. An association between heat waves and
heat-related illness was also reported in China [6].

Taiwan is an island country in Southeast Asia (23° 58′
N, 120° 58′ E) with a population of 2.3 million. Taiwan’s
climate is hot and humid, and the summer begins in June and
ends in September. From 1911 to 2005, Taiwan’s temperature
warmed by 1.4 °C, indicating that warming in Taiwan is
occurring approximately twice as fast as that in the Northern
Hemisphere (0.7 °C) [7]. In response to global warming,
Taiwan has established a real-time epidemic surveillance
and early warning system to monitor acute heat illnesses
since January 1, 2011 [8]. Instead of reporting past cases of
acute heat illnesses, projecting their future number of acute
heat illnesses is crucial for developing prevention strategies
and health service planning [9,10]. However, predicting the
number of acute heat illnesses requires forecasting tempera-
ture changes that are influenced by adaptation policies. To fill
this gap, it is crucial to develop methods that use forecasted
temperature distributions to estimate the number of acute heat
illnesses under various adaptation policies. The Intergovern-
mental Panel on Climate Change’s Sixth Assessment Report
uses 5 shared socioeconomic pathways (SSPs) to take more
possible adaptation scenarios into account when modeling
future climate change [11]. Global temperature is very likely
to increase up to 2.4-4.8 °C in the high-emissions SSP5-8.5
(high-level fossil fuel use) scenario [12].

The Taiwan Earth System Model version 1 (TaiESM1)
is a regional climate model specifically designed to simu-
late and project climate features in Taiwan. Because of the
constraint of computing power, the spatial resolution of the
earth system models participating in the Coupled Model
Intercomparison Project Phase 5 is typically about 100 km
[13]. However, this coarse resolution is unsuitable for climate
studies in the Taiwan area because this island is 400 km
long and 150 km wide and occupies only several grid boxes
in these earth system models. The TaiESM1 model can
capture local climate features with high resolution, which
is crucial for understanding the complex terrain and diverse
climatic conditions in Taiwan, such as the influence of the
Central Mountain Range in the middle of Taiwan. The model
incorporates detailed topographic data and regional character-
istics, allowing it to simulate the unique climate patterns of
the island’s weather [14].

Objective
This study aims to estimate the number of acute heat illnesses
in Taiwan for both the past period (2010-2019) and the future
period (2090-2099) under different adaptation policies.

Methods
Study Design
A 2-stage approach was applied. First, we used a distributed
lag nonlinear model (DLNM) to explore the nonlinear and lag
effects of temperatures (mean) on emergency room visits for
acute heat illnesses [15,16]. Second, depending on different
SSP scenarios, we used the model to estimate the number of
acute heat illnesses through the end of the 21st century.
Number of Acute Heat Illnesses
We obtained the daily number of acute heat illnesses from
the real-time epidemic surveillance and early warning system
of Taiwan. The data are publicly provided by the Centers for
Disease Control and Prevention of the Ministry of Health and
Welfare. We obtained the number of emergency department
visits for acute heat illnesses from January 2011 to July
2023 at the first aid responsibility hospitals in Taiwan. The
inclusion criteria for acute heat illnesses included (1) heat and
light effects (International Classification of Diseases, Ninth
Revision, Clinical Modification [ICD-9-CM] code 992), heat
stroke (992.0), heat syncope (992.1), heat cramps (992.2),
heat exhaustion, anhidrosis (992.3), heat exhaustion due to
salt depletion (992.4), heat exhaustion, unspecified (992.5),
transient heat fatigue (992.6), heat edema (992.7), and other
specific heat effects (992.8); and (2) accidents caused by
excessive heat (E900), accidents caused by excessive heat due
to weather conditions (E900.0), accidents due to excessive
heat of manmade origin (E900.1), and accidents due to
excessive heat of unspecified origin (E900.9).
Climate Data
We obtained the historical daily meteorological data on
maximum, mean, and minimum temperatures and relative
humidity from the Taiwan meteorological stations of the
Central Weather Bureau in Taiwan [17]. The Central Weather
Bureau provided 24-hour data from 25 real-time weather
monitoring stations in Taiwan. The meteorological data date
back to 1960 [18]. The projected temperature was obtained
from the Taiwan Climate Change Projection Information and
Adaptation Knowledge Platform [19].
Determination of the Nonoptimal
Temperature Threshold for Acute Heat
Illnesses
We used segmented linear regression to identify the join point
at which there was a significant change in the number of
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patients [20]. The formula of segmental regression can be
expressed as follows:

(1)τ∗ = argminτ i = 1
n1 yi − α1 + β1xi 2 + i = n1 + 1

n yi − α2 + β2xi
Where τ* is the number of optimal breakpoints, n is the total
number of data points, n1 is the number of data points in the
first segment (xi≤τ), α1 and β1 are the parameters for the first
segment, and α2 and β2 are the parameters for the second
segment.

To find the breakpoint τ that minimizes the sum of squared
residuals (SSRs) for the piecewise regression model, we used
numerical optimization techniques such as grid search, where
we tested various candidate values for τ and chose the one
that minimizes the SSR. This process requires iteratively
fitting the piecewise regression model and calculating the
SSR for each candidate breakpoint.

We identified the join point as a nonoptimal temperature
threshold and used it as a reference value for estimating the
relative risk (RR) of acute heat illnesses [21]. The steps to
determine the join point were as follows:

1. Visualize the data: begin by creating a scatter plot
of data. Look for any patterns, trends, or possible
breakpoints that might suggest the existence of distinct
segments.

2. Fit the initial model: start by fitting a simple nonlinear
regression model to the data. This provides a baseline
understanding of the overall relationship between the
variables.

3. Consider potential join points: based on the scatter plot,
we identified potential join points where the scatter plot
showed an inflection point.

4. Fit the segmented model: use a segmented regression
model to fit the data. This model consists of multiple
linear segments, each with its slope and intercept. The
segmented model identifies the join point where the
segments shift.

5. Evaluate model fit: examine the goodness of fit of
the segmented model compared to the initial linear
regression. Check the Akaike information criterion to
see if the segmented model provides a better fit to the
data.

6. Interpret coefficients: analyze the coefficients of
the segmented model to understand the slopes and
intercepts of the different segments. The join point
corresponds to the value of the independent variable
where the transition between segments occurs.

7. Statistical significance: consider the statistical
significance of the join point. If it is statistically
significant, it suggests that the change in the rela-
tionship between the variables is not due to random
variation.

8. Visual confirmation: overlay the segmented regression
line on the scatter plot to visually confirm that the join
point accurately captures the shift in the relationship
(Multimedia Appendix 1).

Temperature Projection
We applied the TaiESM1 to predict the temperature in
Taiwan under different SSPs. The TaiESM1 has been
evaluated against observational data and has demonstra-
ted good skill in reproducing historical climate variability
and trends in Taiwan. It accurately simulates temperature,
precipitation, wind patterns, and other climatic variables,
providing valuable insights into past climate conditions
and future projections. The TaiESM generally agrees with
observations during the period 1979‐2005. It performs better
than the median of Coupled Model Intercomparison Project
Phase 5 models [14]. We used 4 scenarios to project
the temperature of Taiwan from 2015 to 2100 when it
adopts different SSPs, including “Sustainability—Taking the
green road (SSP1-2.6),” “Middle of the road (SSP2-4.5),”
“Regional rivalry—A rocky road (SSP3-7.0),” and “Fossil-
fueled development—Taking the highway (SSP5-8.5)” [22].
Statistical Analysis
Because the relationship between temperature and its health
effects is nonlinear and has lagged effects, we applied DLNM
to explore their relationships. Based on the quasi-Akaike
information criterion, we selected the natural cubic spline
DLNM to model the nonlinear temperature effects and a
polynomial function to model the lagged effects [23]. We
found that a maximum lag of 7 days, 5 degrees of freedom
for the mean temperature, and 4 degrees of freedom for lag
produced the best model fit. The formula was expressed as
follows:

(2)Log(μt) = α + βTt, l +crossbasis(Tempt, l, lag = 7, argvar = list(fun = ns),df = 5, arglag = list(fun = poly, df = 4)) + RHt +NS(DOY, 4) + NS(time, 3) + ηDOWt
Where t is the day of the observation, μt is the observed
daily number of acute heat illnesses on day t, Tt,l is a
matrix obtained by applying the DLNM to temperature, β
is the vector of coefficients for Tt,l, l is the lag days, RH
is relative humidity, NS is the natural cubic spline, DOY
refers to the day of the year, and DOWt is a categorical
variable for day of the week. We used the minimal morbidity
temperature (MMT), which corresponded to the lowest RR
of acute heat illnesses, as the reference value to calculate
the attributable number (AN) and attributable fraction (AF)
caused by nonoptimal temperature [24]:

(3)AFx = 1 − exp( − βx)
(4)ANx = n ⋅ AFx

Where n denotes the total number of acute heat illnesses,
and the parameter βx denotes the coefficient of DLNM
when MMT is used as the reference temperature. The AF
is the proportion of acute heat illness caused by nonoptimal
temperature. AFs can be multiplied by the total number
of acute heat illnesses to obtain the number of acute heat
illnesses caused by nonoptimal temperatures [25].
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Projecting Acute Heat Illnesses Under
Climate Change Scenarios
The projected temperatures from 2015 to 2100 in the SSPs
scenarios were added to the established model to estimate
the AN and AF of acute heat illnesses due to nonoptimal
temperature. We compared changes in AN and AF due to
nonoptimal temperatures across 4 adaptation scenarios during
2010‐2019 and 2090‐2099.

We used the forecast package of R software (R Foundation
for Statistical Computing) for time-series forecasting [26], the
segmented package for the segmental linear regression model
[20], and the dlnm package for distributed lag nonlinear
modeling [27]. A P value less than .05 was considered
statistically significant.
Ethical Considerations
The research ethics committee of National Taiwan University
approved this study (202305HM147), which uses secondary
data analysis and does not require additional consent.

Results
Demographic and Climate
Characteristics
A total of 28,661 cases were included from January 2011 to
July 2023. The demographic characteristics of the patients
and the distribution of mean temperatures are summarized in
Table 1.

There was a clear seasonal pattern in temperature in
Taiwan (Figure 1A). The mean temperature was 23.2 °C (SD
4.9 °C). A clear seasonal fluctuation of acute heat illnesses
was also observed (Figure 1B). Most cases occurred between
the 150th and 250th days of the year, which is the summer
season in Taiwan (Figure 1C). There is an increasing trend of
extreme heat temperature in Taiwan (Figure 1D).

Table 1. Demographics of patients and weather distribution in Taiwan during 2011‐2023 (N=28,661).
Values

Biological sex, n (%)
  Male 21,619 (75.4)
Age (years), mean (SD) 44.5 (15.3)
Age group (years), n (%)
  0‐64 23,628 (82.4)
  65‐74 2457 (8.6)
  ≥75 2576 (9)
Temperature (°C)
  Mean (SD) 23.2 (4.9)
  Range 5.8-30.5
  Median (IQR) 24 (8.3)
  90th 28.9
  99th 29.8
Relative humidity (%)
  Mean (SD) 78.9 (5.6)
  Range 63.5-94.6
  Median (IQR) 79.2 (7)
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Figure 1. Distribution of temperature, daily number of heat injuries, and trend. (A) Scatter plot of temperature. (B) Daily number of acute heat
illnesses. (C) Number of acute heat illnesses per day over the course of a year. The gray spots are the observed daily number of acute heat illnesses,
and the blue lines are the daily average acute heat illnesses. (D) Number of days when the daily mean temperature exceeded the 90th percentile of the
mean temperature.

Determination of Nonoptimal
Temperature
By segmented linear regression (Multimedia Appendix 1), the
join point of the nonoptimal temperature was 27 °C (Figure
2A). When we used the 27 °C as the threshold value, a 1

°C increase in mean temperature was associated with a 71%
increase in acute heat illnesses (RR 1.71, 95% CI 1.63-1.79;
Figure 2B). The contour map and 3D plot show that the effect
of high temperature on acute heat illnesses was rapid and
urgent, with a short lag time within 1 day and a high RR
(Figure 2C and D).

JMIR PUBLIC HEALTH AND SURVEILLANCE Yang et al

https://publichealth.jmir.org/2024/1/e57948 JMIR Public Health Surveill 2024 | vol. 10 | e57948 | p. 5
(page number not for citation purposes)

https://publichealth.jmir.org/2024/1/e57948


Figure 2. The threshold of nonoptimal temperature and effect of acute heat injuries. (A) The temperature-disease relationships in the shape of a “J”
with the join point at 27 °C of the mean temperature. (B) The lag-response curve of 1 °C above the threshold (27 °C). (C) Contour map showing
the exposure-lag-response relationship between temperature and acute heat illnesses. (D) 3D plot showing the estimated exposure-lag-response
association between temperature and acute heat illnesses. RR: relative risk.

Projection of Mean Temperature
Figure 3 shows the projected mean temperature in Taiwan
by the end of the century. Under the SSP5-8.5 scenario, the
increase in the mean temperature is expected to be +5.8 °C

(95% CI 5.3‐6.3). For the SSP3-7.0 scenario, the increase
is +4.3 °C (95% CI 3.8‐4.8). Under the SSP2-4.5 scenario,
the increase is +2.5 °C (95% CI 2.1‐3.0), and for the
SSP1-2.6 scenario, it is +1.4 °C (95% CI 0.9‐1.9).
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Figure 3. Projection of increased temperature in Taiwan under different climate models. The black line is the historical mean temperature of Taiwan
from 1960 to 2014. The red, orange, blue, and green lines are the projected mean temperatures of Taiwan from 2015 to 2099 under different
scenarios. Notably, the increase in temperature will be attenuated if Taiwan adopts a sustainability approach (SSP1-2.6). SSP: shared socioeconomic
pathway.

Projections of Acute Heat Illness AN and
AF
Figure 4 shows the distribution of temperature and excess
acute heat illnesses at the beginning of the century (2010‐
2019) and at the end of the century (2090‐2099). In the
SSP5-8.5 worst-case scenario, the AN and AF of acute heat

illnesses above nonoptimal temperature (27 °C) was 19,021
(95% CI 2249‐35,792) and 89.9% (95% CI 89.3%‐90.5%)
by 2090‐2099. However, if Taiwan adopts the Sustainability
SSP1-2.6 scenario, the AN and AF of acute heat illnesses due
to nonoptimal temperature (27 °C) will be reduced to 12,468
(95% CI 3233‐21,704) and 62.1% (95% CI 61.2‐63.1; Table
2).
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Figure 4. Projections of temperature distribution and excess acute heat illnesses under 4 adaptation scenarios (A) SSP1-2.6, (B) SSP 2-4.5, (C)
SSP3-7.0, and (D) SSP5-8.5. The top of each panel shows the temperature distribution, and the bottom of each panel shows the distribution of excess
acute heat illnesses expressed as the fraction of additional cases (%) attributed to nonoptimal temperature compared with the minimal morbidity
temperature (15.5 °C). The gray area is the period of 2010‐2019, and the green area is 2090‐2099. The vertical dashed line on the right is the
threshold of nonoptimal temperature (27 °C). SSP: shared socioeconomic pathway.

Table 2. Attributable number (AN) and attributable fraction (AF) of excess acute heat illnesses above the nonoptimal temperature threshold (27 °C)
in different scenarios.

Scenario
Days exceeding nonoptimal temperature
(95% CI)

AN of acute heat illnesses exceeding
nonoptimal temperature (95% CI)

AF of acute heat illnesses above
nonoptimal temperature (%) (95%
CI)

2010‐2019 2090‐2099 2010‐2019 2090‐2099 2010‐2019 2090‐2099
SSP1-2.6a 416 (379-453) 919 (867-969) 6463 (1664-11,262) 12,468

(3233-21,704)
34.2 (33.3‐35.2) 62.1 (61.2‐

63.1)
SSP2-4.5 371 (336-408) 1295 (1238-1351) 6021 (1344-10,699) 15,995

(3887-28,102)
31.9 (31‐32.8) 77.6 (76.8‐

78.5)
SSP3-7.0 323 (291-358) 1509 (1452-1567) 5198 (904-9492) 17,548

(3546-31,549)
27.6 (26.7‐28.5) 84.3 (83.6‐85)

SSP5-8.5 377 (341-413) 1783 (1725-1840) 6200 (150-12,249) 19,021
(2249-35,792)

32.9 (32‐33.9) 89.9 (89.3‐
90.5)

aSSP: shared socioeconomic pathway.

Discussion
Principal Findings
This study shows that temperatures stabilize by the end of
the century in the sustainability development scenario, with
the lowest burden of acute heat illness above nonoptimal
temperatures. In response to the impact of global warming,
Taiwan is formulating a climate policy aimed at reducing
carbon emissions. Our study contributes valuable insights
to climate health research, underscoring the importance of

proactive measures to address health risks associated with
rising temperatures.

This study is valuable, as it develops a new method for
estimating nonoptimal temperature join points, thus provid-
ing a more reasonable threshold for acute heat illnesses.
Different from the temperature-mortality relationship, which
is often U-shaped [28], the relationship between temperature
and acute heat illnesses is J-shaped with the majority of
cases distributed on the left side of the MMT. Since inap-
propriate temperature thresholds can lead to overestimation
or underestimation of disease risk [29], there is a need to
develop a new method to determine temperature thresholds
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[8]. This study shows that the segmented regression is
suitable for estimating the threshold temperature for acute
heat illnesses, thus providing a more reasonable threshold
for acute heat illnesses. However, its suitability depends on
the shape of the relationship between the health outcome
and temperature. If the relationship is a traditional U shape,
where both high and low temperatures increase the risk,
segmented regression might not be the best approach. In
such cases, other methods might be more effective to capture
the nonlinear relationship, such as polynomial regression or
spline models.

Our study indicates that the Taiwanese population is more
vulnerable to acute heat illnesses compared to other countries.
In Taiwan, a 1-degree increase in mean temperature increases
the risk of acute heat illnesses by 71% (RR 1.71, 95% CI
1.63-1.79), which is higher than the 18% increase reported
in previous meta-analyses (RR 1.18, 95% CI 1.16‐1.19)
[30]. Though this difference might be related to the use
of different reference temperatures, we should consider the
specific vulnerable factors in Taiwan. Taiwan is facing an
aging society, and older people are particularly vulnerable
to acute heat illness due to multiple existing health condi-
tions [31,32]. We suspect that the aging population might
be a significant factor contributing to the higher risk, and
we suggest that further studies explore the accessibility of
medical care and evaluate the home environments of older
people to identify behavioral or environmental factors. Since
the vulnerable factors might vary across different cities and
countries [33], actions to prevent heat-related health impacts
must include identifying these factors in each community
[34]. Each identified factor should be considered when
designing plans to mitigate vulnerability. A simple heat-rela-
ted illness screening tool might be useful in identifying
individuals at risk [31].

In Taiwan, the government announced the Climate Change
Response Act in 2023, which requires all ministries and local
governments to assess the impacts of climate change and
take practical actions to increase the adaptive capacity of
vulnerable groups. This study used data on reported acute
heat illnesses from the real-time epidemic surveillance and
early warning system of the Ministry of Health and Wel-
fare. Using the data, epidemiologists can quickly estimate
trends and risks of diseases associated with global warming,
providing timely recommendations for government decision-
making.

The use of health surveillance for climate health research
and policy can provide timely and actionable information

for public health interventions. It can help estimate health
impacts on populations, assess the effectiveness of interven-
tions, and inform decision-making to mitigate the health
impacts of climate change. The generalizability of our
findings to other countries or regions depends on multi-
ple factors, including the availability and quality of health
surveillance data, local climatic conditions, and the imple-
mentation of climate mitigation strategies. As the threat of
heat to public health becomes more apparent, the promo-
tion of national heat hazard prevention strategies to reduce
public health impacts is important for policy-making. Spain
implemented a Heat Health Prevention Plan between 2004
and 2013. As a result of the program, the impact of temper-
ature on mortality declined. The reduction in mortality due
to extreme heat was greater in the provinces where more
heat health prevention program measures were implemented
[35]. We recommend that the government develop effective
strategies for dealing with rising temperatures based on
epidemiological evidence.
Limitations
The real-time epidemic surveillance and early warning system
did not cover all hospitals in Taiwan, so there may be
underreporting of acute heat-related injuries. The actual
number of acute heat illnesses would be higher than our
estimate. However, our study used a case-crossover design,
which involved comparing the numbers of cases in a time-
series sequence. The noninclusion of all hospitals would
not influence the association between temperature and the
number of acute heat illnesses. In a study of reporting
systems, reporting rates may change over time, leading to
an increase in reporting in later years. We added a time
variable to the DLNM to adjust for this effect, which we
conservatively assume would not confound our results. Risk
factors for acute heat illnesses include urban residence, age,
socioeconomic factors, ethnicity, and race [36], and our data
did not include this information. We recommend that future
studies consider incorporating additional risk factors, such
as air pollution or other interacting variables, and model
adaptation scenarios more comprehensively in the future.
Conclusions
This study estimated the burden of acute heat illness under
different adaptation policies. If Taiwan adopts high emis-
sions and limited efforts to mitigate climate change, acute
heat illnesses due to nonoptimal temperatures will increase
substantially in the future, while the adoption of sustainable
development policies can help reduce the risk.
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