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Abstract

Background: Policies, such as stay home, bubbling, and stay with your community, recommending that individuals reduce
contact with diverse communities, including families and schools, have been introduced to mitigate the spread of the COVID-19
pandemic. However, these policies are violated if individuals from various communities gather, which is a latent risk in a real
society where people move among various unreported communities.

Objective: We aimed to create a physical index to assess the possibility of contact between individuals from diverse communities,
which serves as an indicator of the potential risk of SARS-CoV-2 spread when considered and combined with existing indices.

Methods: Moving direction entropy (MDE), which quantifies the diversity of moving directions of individuals in each local
region, is proposed as an index to evaluate a region’s risk of contact of individuals from diverse communities. MDE was computed
for each inland municipality in Tokyo using mobility data collected from smartphones before and during the COVID-19 pandemic.
To validate the hypothesis that the impact of intercommunity contact on infection expansion becomes larger for a virus with
larger infectivity, we compared the correlations of the expansion of infectious diseases with indices, including MDE and the
densities of supermarkets, restaurants, etc. In addition, we analyzed the temporal changes in MDE in municipalities.

Results: This study had 4 important findings. First, the MDE values for local regions showed significant invariance between
different periods according to the Spearman rank correlation coefficient (>0.9). Second, MDE was found to correlate with the
rate of infection cases of COVID-19 among local populations in 53 inland regions (average of 0.76 during the period of expansion).
The density of restaurants had a similar correlation with COVID-19. The correlation between MDE and the rate of infection was
smaller for influenza than for COVID-19, and tended to be even smaller for sexually transmitted diseases (order of infectivity).
These findings support the hypothesis. Third, the spread of COVID-19 was accelerated in regions with high-rank MDE values
compared to those with high-rank restaurant densities during and after the period of the governmental declaration of emergency
(P<.001). Fourth, the MDE values tended to be high and increased during the pandemic period in regions where influx or daytime
movement was present. A possible explanation for the third and fourth findings is that policymakers and living people have been
overlooking MDE.
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Conclusions: We recommend monitoring the regional values of MDE to reduce the risk of infection spread. To aid in this
monitoring, we present a method to create a heatmap of MDE values, thereby drawing public attention to behaviors that facilitate
contact between communities during a highly infectious disease pandemic.

(JMIR Public Health Surveill 2024;10:e57742) doi: 10.2196/57742
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Introduction

During the COVID-19 pandemic, policies, including
stay-at-home orders and social distancing measures, had been
introduced worldwide [1] as measures for terminating
synchronized mobility. Although these measures are known to
delay or suppress COVID-19 infections during their application
period [2,3], several adverse effects have been reported,
including increases in infections of specific viruses in patients
staying at home or in hospitals [4,5]. Moreover, mental stress,
economic inactivity, domestic violence, and variations in the
types of crimes have been reported [6-10], especially in urban
regions with high population density, which alone cannot always
explain the phenomenon of infection spread [11].

Thus, other measures have been developed, such as “stay with
your community” (SWYC) [12], which was introduced in Japan
in December 2020 [13,14] as a measure to suppress infection
expansion. SWYC refers to sustaining fewer contacts with
individuals from unfamiliar communities than with those from
familiar communities, where community refers to a group of
people whose members frequently come into an infectious
connection in daily life. The spread of infection is estimated to
be significantly magnified if individuals violate the SWYC
measure. Other governmental measures studied previously can
also be regarded as approaches to sustaining fewer contacts with
unfamiliar individuals [3,4,15]. These can be regarded as
solutions to suppress the spread of infection via intercommunity
contact resulting from globalization, urbanization, and mobility
[16-18]. The approach can be considered as a mild strategy in
the sense that it is less stringent than stay-at-home orders
because each individual can meet community members who
may be classmates or colleagues in the workplace and than the
“bubbling” strategy where each individual should live within
one’s local community called a bubble by cutting off
intercommunity contact [15]. Constraint to sustain fewer
contacts with individuals from unfamiliar communities, which
we refer to as constraint on intercommunity contact, is inferred
to be violated if individuals from various communities (offices,
schools, conferences, etc) gather in a place narrow enough for
them to contact each other within a sufficiently close distance
of the infection. However, an index to quantify the extent of
nonadherence to the constraint on intercommunity contact,
which can be measured physically, is missing.

In this study, we developed a new index that can be physically
quantified and used to assess the risk of infection spread in each
local region. The term “local region” refers to a defined range
of space, such as a municipality (city, ward, or village, excluding
islands), as a part of a prefecture or a meshed area of a certain

width (eg, 1 km2). In the case of necessity, we have clarified
the corresponding geographical area. The index we propose
integrates mobility and intercommunity connectivity, which are
key factors contributing to the spread of infection in each local
region. In terms of mobility, the correlation between human
movement and infections has been analyzed [19,20], and
infections involving viruses transmitted by mosquitoes have
been found to be partially driven by human mobility [21].
Specifically, the radius of gyration has been used to measure
activities that affect the spread of infection in urban areas
[22,23]. On the other hand, it has been discovered that a local
region embracing the diversity of mobility patterns can show
various responses to changes in an environment where various
communities interact [24-26]. Controlling such complex
interactions through interventions focused on popular venues,
where people gather from various communities, may reduce
both the peak infection rate and the total infected population,
while retaining high social activity levels [27].

Partial differential equations have been used to predict the spread
of infection via inter- and intraregional interactions [28]. The
silent index for 5 industrial domains in a country has been shown
to correlate with COVID-19 infection cases by a lag of weeks
[29] but is not applicable to risk estimation for a finer mesh of

100 m2 or 1 km2 or by finer temporal resolution, which is desired
for proposing ways to live in each local region [14]. In this
study, we highlight the diversity of the moving directions of
people, to which moving individuals may not pay attention, as
a risk factor for local regions breaching the constraint on
intercommunity contact due to increased opportunities for
individuals from different communities to meet in a single
location.

In this study, we show the correlation involving a new index,
moving direction entropy (MDE), which represents the diversity
of the moving directions of individuals in each local region and
the spread of infection. We assumed that the direction of an
individual’s movement reflects one’s interest in moving to or
from the community. Based on this assumption and using a data
set on the movements of individuals, we expected MDE to
represent the extent to which the constraint on intercommunity
contact would be violated. Thus, we computed the correlation
between the rate of infection in the population and MDE in a
local region to evaluate the utility of MDE as a measure of the
risk of infection expansion. The correlations between MDE and
other infectious diseases, such as influenza and sexually
transmitted diseases (STDs), were also evaluated. We found
that MDE is strongly correlated with the spread of COVID-19
and obtained evidence supporting our hypothesis. Furthermore,
we computed the temporal variation in MDE values for local
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regions in Tokyo to clarify the changes in the nonadherent
activities of individuals in urban settings. Finally, we propose
the application of MDE as a new risk measure for suppressing
infection expansion and suggest the use of an urban risk map.

Methods

Hypothesis: Virus Infectivity and Impact of
Intercommunity Contact
To consider situations that violate the constraint on
intercommunity contact, we set hypothesis A, which involves
the tendencies of different infectious diseases during the
expansion of infection. Hypothesis A is as follows: if the
infectivity of a virus, defined as the number of other individuals

that an infective individual can infect, is larger, the impact of
intercommunity contact on infection expansion becomes larger.

The intuitive meaning of hypothesis A is illustrated in Figure
1, using a social network model. To consider the structural
features of contacts, the spread of infection has been modeled
using social networks [30-36]. To understand the influence of
the above constraint violation on the spread of infection, it is
desirable to control contacts among individuals by setting node
degrees for the strategic manipulation of social networks, as in
a previous report [34]. For example, SWYC was discovered in
a previous report [12] using scale-free networks, among other
models, modified by reflecting spatiotemporal constraints in a
real society on the degrees of nodes in the network. STDs have
been analyzed using social network models [35] and were also
modeled using scale-free networks [36].

Figure 1. Viral infections spread across 2 types of networks. A and C: Strong intercommunity bridges (eg, COVID-19); B and D: weak intercommunity
bridges (eg, sexually transmitted diseases). Influenza is positioned as intercommunity bridges of intermediate strength. Meeting places are represented
by orange shadows (C and D).

In Figure 1, the edges represent infectious contacts among
individuals and the thick edges represent communities. Multiple
communities are densely interconnected via thin edges in
Figures 1A and 1C forming a large connected subgraph that
includes intercommunity contacts represented by thin edges,
that is, less frequent than within each community represented
by thick edges. Figures 1B and 1D are composed of smaller
connected subgraphs than those in Figures 1A and 1C.
Hypothesis A states that infection spreads widely across
communities if intercommunity infectious bridges, shown by
thin edges, are dense owing to the strong infectivity of the virus
via individuals attending intercommunity meetings in real spaces

(orange shadows in Figure 1), as shown in Figure 1B. That is,
the widened intercommunity meeting places in the orange
shadows, as in Figures 1C and 1D, mediate infections only if
intercommunity bridges are dense, as in Figure 1C, where
infectious connections exist in the meeting places.

Figures 1A and 1C correspond to highly infectious diseases,
such as COVID-19, or infections in densely populated areas,
such as restaurants, in urban regions. Figures 1B and 1D show
diseases with low infectivity, such as STDs, that are normally
transmitted via intimate contact or exceptional hubs, such as
prostitutes. Therefore, the node degrees here are assumed to be
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lower, corresponding to low infectivity [37]. A moderately
infective species, such as influenza, whose infectivity based on
the basic reproduction number is lower than that of COVID-19
[38-40] or COVID-19 in less populated areas, is positioned as
an intercommunity bridge of intermediate strength between
Figure 1A/C and Figure 1B/D. Based on the literature, we
assumed that influenza was less infectious than COVID-19, and
influenza, including H7N9, H5N1, H1N1, etc, was compared
with COVID-19 before February 2021. Xue et al [39] compared
the Omicron variant and influenza (seasonal and 2009 H1N1)
in terms of transmission rate and effective reproduction number
(Re). Daemi et al [40] used the basic production number to
compare H1N1 and COVID-19 before the appearance of
Omicron.

MDE Approach
To date, data on human mobility have been used to analyze the
spread of COVID-19. In a previous report [41], the effect of
social distancing was evaluated. However, it is difficult to obtain
accurate results for the medium-term COVID-19 pandemic [42]
because of the nonlinear relationship between the number of
COVID-19 cases and human mobility. In this study, we focused
on the diversity of the moving directions of people using an
entropy-based index, among other physical features such as the
distance between individuals. To consider the diversity of the
moving directions of individuals in each local region, we
developed MDE. This statistical entropic feature is obtained by
aggregating movements to generate inferences about
intercommunity contacts on a regional scale [43]. The limitations
of this approach will be discussed later in the Limitations
subsection in the Discussion section.

We define MDE in region r at time t as follows:

where q denotes the anticlockwise angle of the moving direction
and 0 [rad] for the north. q is discretized by segmenting 2p into
100 segments (p/50 each). pq (r, t) is the probability that an
individual moves in the [q, q+p/50] direction in region r at time
t.

This definition diverts information entropy, established in
information science, to consider the diversity of the collected
information in order to model the behavior of individuals. Thus
far, the entropy of individual trajectories has been used to study
the relevance of mobility diversity to social behavior,
socioeconomic indicators, and spatial attractiveness [44-46]. In
the traditional mathematics of information entropy, the sensor
error does not affect the ordinal results of MDE for local regions.
The value of HERR(r, t), an error function of a normal distribution
with a standard deviation σ representing the sensing error of
the moving direction, is constant as long as σ is constant. The
value of HMDE(r, t) obtained from the sensor data is the sum of
HERR(r, t) and the true value of HMDE(r, t) because HMDE(r, t)
is the convolution of HMDE(r, t) and HERR(r, t). We did not
include error bars in the analysis and discussion because we
evaluated the ranking of MDE values, including HERR(r, t),
which is constant.

We applied Equation (1) to used data set 1, setting r to each
municipality for the experiments in the Results section, and

meshes (100 m2 or 1 km2) for creating the maps in the
Conclusions. We then compared the results with the infection
cases in used data set 2 by referring to the populations in used
data sets 3 and 4.

In summary, we hypothesized that the effect of intercommunity
contact is expected to be more significant if the infectivity of
the target virus is high (as for COVID-19). Thus, the risk of
intercommunity contact can be estimated by MDE. We used
MDE as an index for estimating the pandemic risk of
COVID-19, which is of high infectivity, based on the
expectation from the hypothesis above.

Data Sources
The collected data are summarized as presented below. Further
information is provided in Multimedia Appendix 1.

Used Data Set 1: Point Data on Human Movements
The first data set used was point data on human movements in
Tokyo provided by Agoop Corp. Simply put, location and
velocity were sensed using GPS sensors embedded in
smartphones.

Used Data Set 2: Number of Infection Cases
Data on the number of infection cases were collected for
comparison with MDE values for (1) COVID-19 and (2) other
infectious diseases.

Used Data Set 3: Population of Each Local Region
To validate hypothesis A, we used the data set for the population
in Tokyo: (1) permanent habitats, (2) daytime populations, and
(3) influx movements, provided as open data. These regions
include 53 land segments, excluding the islands of Tokyo.

Used Data Set 4
Number of institutions (restaurants, supermarkets, etc) in each
region of Tokyo.

Ethical Considerations
The data on human movements in Tokyo (referred to as used
data set 1) were smartphone-derived mobility data, and the
identification of individual users was prevented by Agoop Corp
[47]. The subjects provided their consent before data collection.
The procedures for data collection and avoidance of the risk of
personal identification were performed in accordance with the
Japanese Act on the Protection of Personal Information [48]
and the guidelines of the Location Business and Marketing
Association of Japan [49]. This data set does not constitute a
clinical trial or involve human subjects research, and is widely
available for both commercial and academic research use upon
purchase [50-52], which verifies that the use in this study is
supported ethically by established use cases. The authors
purchased the data for academic research use and obtained
permission to use the data.

The collection of this data set was approved in the review of
the internal committee of Agoop Corp for privacy protection
and compliance management. The exemption of ethical review
on this data collection and the approach of the present secondary
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analysis have been approved by the institutional review board
(IRB) of the Medical Governance Research Institute (Tokyo,
Japan; number: 22000031).

The secondary analysis is exempt from IRB review in
accordance with the Ethical Guidelines for Medical and Health
Research Involving Human Subjects of the Ministry of Health,
Labour and Welfare, Japan [53]. The analyses on used data set
1 were also approved as an exemption by the Research Ethics
Committee of the School of Engineering, The University of
Tokyo (reference number: 24-23).

Results

Positive correlations were found between MDE and the rate of
infection cases (number per 10,000 people) for COVID-19 in

each of the 53 local regions and all municipalities, excluding
islands in Tokyo Prefecture (Figure 2). First, we confirmed that
the MDE values for all local regions were substantially invariant
according to the Spearman rank correlation coefficient (>0.9)
between the MDE values of different periods, as shown in Table
1 (generated data set 1 in Multimedia Appendix 1). We obtained
the MDE values for the periods of missing data using linear
completion from adjacent periods. When linear completion was
impossible due to missing mobility data within 3 months of the
target infection cases (April 2020), we used the MDE value of
April 2021, considering the similarity of human behaviors in
the same season.

Figure 2. Correlation of X as (A) MDE and the densities (per km2) of (B) restaurants, (C) supermarkets, and (D) hospitals versus the rates (cases per
10,000 habitats) of infection cases (Y: COVID-19). The dots represent the values of (X, Y) for the 53 municipalities in Tokyo, excluding islands. Note
that both values do not reflect the population but are the rates obtained by dividing the number by the width or population of each city. MDE is converted

here for visualization to –log (4.6–HMDE). MDE: moving direction entropy.
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Table 1. The invariance of moving direction entropy values quantified by the Spearman rank correlation for 53 local regions in Tokyo between different
periods.

October 17-
30, 2022

July 25-Au-
gust 8, 2022

April 1,

2022b
October 18-
31, 2021

July 26-Au-
gust 9, 2021

April 1,

2021b
December 3-
9, 2020

October 10,

2020b
December 5-
11, 2019

Variablea

0.920.910.910.910.910.930.960.961.0December 5-11,
2019

0.920.920.920.930.940.961.01.00.96October 10,

2020b

0.910.910.920.930.940.971.01.00.96December 3-9,
2020

0.980.980.980.990.991.00.970.960.93April 1, 2021b

0.990.990.990.991.00.990.940.940.91July 26-August
9, 2021

0.991.01.01.00.990.990.930.930.91October 18-31,
2021

1.01.01.01.00.990.990.920.920.91April 1, 2022b

1.01.01.01.00.990.990.910.920.91July 25-August
8, 2022

1.01.00.990.990.990.980.910.920.92October 17-30,
2022

aThe dates show the periods when the moving direction entropy (MDE) values were computed.
bThe MDE values for periods of missing data using linear completion from adjacent periods.

As shown in Table 2 (generated data set 1 in Multimedia
Appendix 1), the value of the Spearman rank correlation
coefficient between MDE and the infection cases of COVID-19
in municipalities was over 0.6 for all periods (average 0.76) of
COVID-19 expansion. The correlation values were relatively
low in December 2020 and October 2021, during which the
correlation also decreased for other indices showing the densities

(ie, the number of restaurants, supermarkets, etc per km2)
obtained from used data set 4. Note that the values of X and Y
in Figure 2 are divided by area width and population,
respectively, which means that there is no effect mediated by
the region size. As shown in Tables 2 and 3, the correlation
between MDE and the rate of infection was smaller for influenza
than for COVID-19, and tended to be even smaller for STDs.

Furthermore, the following tendencies were observed: (1) MDE
and the number of restaurants were most strongly correlated

with the rate of COVID-19 infection during the tested periods
(Figure S1 in Multimedia Appendix 1); (2) influenza was
correlated with MDE less strongly than COVID-19 but was
more strongly correlated with the densities of elementary, junior,
and high schools; and (3) the density of listed companies had
higher correlations with STDs than with other indices.

Regarding the first tendency, after periods of the governmental
declaration of emergency, rapid upward trends were found in
cities with high-rank MDE values and low-rank restaurant
densities, as shown in Figure 3 (generated data set 2 in
Multimedia Appendix 1). Local regions that did not have a
high-rank density of restaurants (ranked lower than 20th)
showed a significantly larger expansion if they were relatively
highly ranked on MDE (within the 30th highest) than those with
higher than the 20th density of restaurants (P<.001; generated
data set 1 in Multimedia Appendix 1).

JMIR Public Health Surveill 2024 | vol. 10 | e57742 | p. 6https://publichealth.jmir.org/2024/1/e57742
(page number not for citation purposes)

Ohsawa et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Correlation of the rates of infection cases (COVID-19) and explanatory indices (moving direction entropy and the densities of institutes in
local regions) quantified by the Spearman rank correlation for 53 local regions in Tokyo.

Rates of infection cases: COVID-19 for 3 yearsIndices

P valueaAverage202220212020

July
25

April
1

January
25

October
18

July
26

April
1

Decem-
ber 3

October
17

July
26

Before
April 5

—d0.770.750.710.870.670.850.840.620.730.830.77MDEb,c

Density (/km2)

.370.760.780.760.830.550.850.820.650.770.860.74Restaurants

.110.740.730.770.800.580.830.750.660.770.810.74Supermarkets

.0020.710.740.730.760.600.800.740.540.690.830.65Elementary schools

<.0010.680.670.670.720.550.790.700.570.720.780.62High schools

.0040.710.720.730.730.630.800.730.560.720.810.66Junior high schools

.020.730.770.710.820.560.790.790.630.740.830.67Train stations

<.0010.630.660.570.710.540.690.680.560.650.700.56Hospitals

.020.740.770.740.790.590.810.780.600.730.820.72Listed companies

.010.730.750.710.780.650.840.760.550.710.860.70Population

at-test; P values show the significance of the superiority of MDE to other indices.
bMDE: moving direction entropy.
cThe MDE values were computed on used data set 1 for each period, and the rates of cases were obtained from used data set 2 for each period of 2
weeks.
dNot applicable.

Table 3. Correlation of the rates of infection cases (sexually transmitted diseases and influenza) and explanatory indices (moving direction entropy
and the densities of institutes in local regions) quantified by the Spearman rank correlation for 53 local regions in Tokyo.

InfluenzaSTDsa (December 3-17, 2019)Indices

Condyloma

acuminatum

Chlamydia Genital herpesGonorrhea

0.45–0.180.56–0.060.48MDEb

Density (/km2)

0.38–0.150.60–0.060.53Restaurants

0.44–0.170.57–0.080.49Supermarkets

0.43–0.220.52–0.120.43Elementary schools

0.51–0.180.54–0.090.48High schools

0.55–0.200.52–0.100.45Junior high schools

0.34–0.140.60–0.050.52Train stations

0.37–0.180.53–0.090.45Hospitals

0.400.040.700.130.64Listed companies

0.44–0.230.51–0.130.43Population

aSTD: sexually transmitted disease.
bMDE: moving direction entropy.
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Figure 3. The transition of the number of infection cases for 10 randomly selected municipalities in Tokyo. Because the value is equalized in the period
of the most frequent declaration of emergency (by 2021 in Figure S1 in Multimedia Appendix 1), the most radical uptrends in Ota, Machida, Hachioji,
and Nerima in this figure (in the dotted frames) show the expansion after the declaration. These regions show high-rank moving direction entropy and
low-rank density of restaurants (generated data set 1 in Multimedia Appendix 1). We do not show the error bars because the curves only show the raw
data.

In Figure 4A from generated data set 3 in Multimedia Appendix
1, the upper-right (lower-left) cluster includes local regions with
larger (smaller) MDE and larger (smaller) numbers of infected
cases. The locations of these regions are shown on the map of

Tokyo in Figure 4B [54]. In Figure 5, the regions are classified
based on the population densities of (1) permanent habitats, (2)
daytime populations, and (3) influx movements from used data
set 3.
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Figure 4. (A) Distribution of (X, Y) from Figure 2A in local regions. (B) Their locations in the map. The plots in A are clustered corresponding to the
colored regions in B, that is, the most active part in the east, the next most active part, and the least most active part. Part A includes islands in the lowest
cluster to show comparability with Okutama, Hinohara, and Hinode, which are the furthest from the central part. A free-license map (free Tokyo map)
is used. MDE: moving direction entropy.
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Figure 5. Transition of moving direction entropy (MDE) in local regions classified according to population density (A: permanent, B: daytime, C:
influx flow). In parts B and C, MDE in class 1 increased during the period of COVID-19 infection expansion. Individuals in cities with high interregional
activities are believed to stay careful in these periods, avoiding densely populated areas, but their movements were against their careful attitudes,
according to the results here. We do not show error bars for MDE (X-axis; discussed in the Methods section).

Discussion

Principal Findings
The correlation of MDE with the rate of COVID-19 cases was
larger than that of other factors (Table 2), although it was not
significantly larger than that of restaurant density. This strong
correlation provides useful information for creating government
measures. That is, mobility in and to restaurants has already
been restrained by governmental measures, such as the
declaration of emergency, but MDE has been left without
attention. As a result, a significantly rapid expansion in cities
with high-rank MDE and low-rank restaurant densities was
found (Figure 3). This shows the necessity of adding MDE as
an index to evaluate the regional latent risk of infection spread.

Because MDE is regarded as an index representing the extent
to which individuals from different communities contact each
other, the relative weakness of the correlation of MDE with
cases of influenza and STDs compared with COVID-19
coincides with hypothesis A, considering the infectivity with
respect to Figure 1 A/C and B/D. That is, Figures 1A and 1C
show that a stronger trend of intercommunity infectious contacts
accelerates the spread of the virus if it is highly infective,
whereas such an acceleration is not observed in Figure 1B or
1D for less infective viruses. This also coincides with Figure
4A, where the upper-right cluster corresponds to the busiest
regions, including the wards in central Tokyo, as shown in
Figure 4B. In contrast, the lower-left cluster in Figure 4A has
the lowest MDE and the lowest number of infected cases and
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includes the western (low population) part of Tokyo and the
islands.

The transition of MDE implies an improvement or worsening
of the behavior of individuals in local regions concerning the
spread of infection. The local regions in classes 1 and 2 in
Figures 5A-C with large MDE values correspond to the upper
cluster in Figure 4A, while those in class 3 with lower MDE
values correspond to the lower cluster in Figure 4A, including
the western part of Tokyo, as shown in Figure 4B, and the
islands belonging to Tokyo. However, the regions with the
largest densities of daytime population and influx (moving from
other regions) experienced an upward trend in MDE, as in class
1 (Figures 5B and 5C), during the COVID-19 expansion period
that started in the spring of 2020 and remained stable from the
summer of 2020 (Figure S1) until July 2021. Such a coincidence
between the expansion period and the upward trend of MDE
was not obvious in Figure 5A where class 1 did not show an
upward trend and class 2 did not show a more obvious
downward trend than class 1. Thus, the accelerated dynamic
movements of individuals fostered the interaction of
communities, corresponding to an increase in MDE. In addition,
individuals in the active regions were found to take fewer safe
actions during risky periods, as shown by the upward trends of
MDE in class 1 (Figures 5B and 5C).

We evaluated the correlation between MDE and the spread of
infection, but we do not claim to have verified a causal
relationship. We proposed MDE as an index for assessing the
risk of infection retrospectively from the data by showing only
the correlation. However, causal relationships have been
published, including the abovementioned relationship [22], and
this showed that an increase in COVID-19 infection reduces
the range of movement and diversity, which is the opposite of
the dedication of causality and its content. That is, the previous
authors analyzed the causality from the spread of infection to
human movements, whereas we evaluated the risk of infection
spread relevant to human movements. Moreover, the previous
authors showed negative causality, whereas we showed a
positive correlation. Thus, the causality associated with the
diversity of movements due to the spread of COVID-19 is
unlikely, and the fact that a correlation was found may indicate
a likelihood that a causality of COVID-19 infection spread due
to the diversification of movements is present. However, there
is a limitation in determining whether this is indeed a causal
relationship, as it would require an interventional method to
actually cause the spread of infection, which would be ethically
unsuitable.

Limitations
The results should be interpreted with consideration of some
limitations. It is debatable whether mobility patterns obtained
from a data set on mobility collected by smartphones may be
generalized to the public [55] because smartphone users may
not be representative of the changes in mobility of the population
as a whole, and their representativeness may vary by location
and season, as pointed out by Wellenius et al [3]. In addition,
because of the privacy policy of the provided data set, we were
unable to assess the characteristics of individuals using
smartphones, such as age, gender, race, and income.

However, currently, data available from smartphones on the
approval of owners are some of the most comprehensive and
prevalent data. The use of data, such as GPS sensor data, is a
standard approach in the face of these limitations in several
studies, including the studies mentioned above and other reports
[18,22,41], which restrict the data subjects further to Facebook
users. Compared with studies using other digital methods, such
as extracting geolocation data from wearable trackers [56,57]
or geotagged social media posts [58], we used data from a wider
range of samples. Furthermore, restricting smartphone data is
beneficial for users because it enables a simple, automated,
widespread, and easy-to-use method for risk assessment in the
future. Thus, the fact that the results of this study were obtained
from smartphone data implies their usefulness for infection risk
assessments as people are expected to continue to possess
smartphones in the future.

In addition, we introduced a statistical entropic feature by
aggregating movements to generate inferences about dynamics
at a regional scale and discarding unknown heterogeneities.
This approach may not cope with the limitation pointed out in
a previous report [19] that the spatial location of the infection
may differ from the location of the surveillance system. In Japan,
the locations of infection and residence may differ, and the
number of infected persons in the area of residence needs to be
surveyed. We obtained high accuracies for MDE in sensing
latent risk in this study, even with this limitation. First, during
the COVID-19 expansion period, people changed to living in
the local regions of their residences due to the stay home policy
and their cautiousness. Second, regarding the interregional
movement that was still taking place, the below discussion
indicates that it makes sense to observe the correlation between
MDE and the number of infected people counted in residential
regions.

Among mobilities within region r that affect the MDE of r, the
mobility of residents inside r is directly related to the spread of
infection. Let us consider an example scenario for
comprehension. The first scenario is as follows: An essential
worker, a nurse, or a carer living close to (within the same region
r) the hospital or house of the patient they support is from a
community, that is, a nurse station, a care support office, or his
or her own family, which is different from the patient’s family.
Similarly, a visitor to a family living close is from a different
family.

On the other hand, the mobility within r of those from residences
outside r also affects a part of the MDE of region r because this
mobility reflects the diversity of the communities they come
into contact with inside and outside r. The second scenario is
as follows: A nurse or care manager, who lives in r′ and visits
a family in r (r∩r′=ϕ), generates an intercommunity interaction
because his or her community differs from the family to visit.

Thus, the mobility within r of individuals from both inside and
outside r is related to the spread of infection among the residents
of r. We additionally evaluated the influence of the mobility of
those living and acting only outside r on the spread of infection
in region r. The third scenario is as follows: A nurse or care
manager, who lives in their own region r′ (r∩r′=ϕ) and interacts
only within r′, shows an intercommunity interaction in r′ similar
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to the case of the first scenario. Such individuals are indirectly
related to the infection expansion in r because they contact other
essential workers who visit region r, as in the second scenario.

Comparison With Prior Work
The point of this paper is not to present the “best” index for risk
assessment, although comparisons with other indices, such as
population density, have been made (Table 1). In fact, the
superiority of MDE over population density was not significant
(P=.11). Because MDE is an independent measure that is not
affected by population density (MDE is probability-based), we
propose combining MDE with other indices, including
population density, rather than choosing a better index. Such a
combinatorial use of indices is essential for risk assessment and
protective policies in the future. For example, the government
of a local region may state the following: “this city has low
population density, a small number of supermarkets, etc, but
MDE is high. So, citizens should be careful!” or “most people
wear masks in this city, but MDE is high. We should consider
measures other than masks and urge citizens to take vaccines.”
Because MDE is only a statistical indicator for the likeliness of
infection spread, based on the probability of moving direction,
combining it with other indices is an essential approach for finer
risk assessment. In this sense, MDE is also expected to be used
as a variable to reinforce the approach of using similar mobility
data [50] or multivariate machine learning [59] and further
improve the accuracy of the prediction of infection cases.

From a technical perspective, mobility-based studies on the
spread of infection using sensors, such as GPS in smartphones,
are geographically restricted. For example, studies were limited
to smartphone owners in 4 cities in northern Thailand [22],
geolocated social media users in New York City [58], the city
of El Pasto in Texas [60], and parks in the United States [61].
Compared with the locations in these studies, Tokyo is a large
city with 14 million inhabitants. The 53 municipalities range
from urban areas to mountainous areas with very small
populations, including regions with various prepandemic periods
(2019 for all regions in Tokyo, and even until the end of 2020
for suburbs such as Kokubunji, Kunitachi, Inagi, and Hamur;
all regions had severe outbreaks in 2022), and thus, there were
regions with diverse situations. Therefore, the data used in this
study are suitable for our attempts to derive laws not limited to
activities in particular industries or regions.

Compared with the approach of the “Three Cs” applied in Japan
during the pandemic period [62,63], where individuals were
forbidden to meet in a closed space, crowded place, or
close-contact setting, the measure to reduce MDE can be applied
to realize secure movements rather than as a way of staying in
a meeting place.

However, controlling human mobility in urban transit [64,65]
could not necessarily be regarded as an effective method for
suppressing the spread of the COVID-19 pandemic because
urban transit may not have a stronger influence on this spread
than mobility in the areas of groceries and pharmacies [66].
These results coincide with those in Table 2, where the number
of train stations had a weaker correlation with the number of
infections than did supermarkets.

The regions have been colored independently of the population
or its density because they depend only on the values of MDE
obtained from the sheer probabilistic distribution of the
movement directions of individuals. We should recollect the
better fitness of MDE rather than the population density of these
locations, as shown in Table 2, which could shed light on the
controversy regarding the impact of population density [11].

Conclusions
This study has 4 essential findings. First, the MDE values for
local regions showed significant invariance between different
periods from before to within the COVID-19 pandemic period.
Second, MDE was found to be significantly correlated with the
rate of COVID-19 infection cases among local populations in
the 53 inland regions of Tokyo. The correlation between MDE
and the rate of infection was smaller for influenza than for
COVID-19, and tended to be even smaller for STDs (order of
infectivity of the virus). This supports the hypothesis that the
impact of intercommunity contact on infection expansion
increases for a virus with higher infectivity. Third, the spread
of COVID-19 accelerated in regions with high-rank MDE values
compared to those with high-rank restaurant densities during
and after the period of the governmental declaration of
emergency. Fourth, the MDE values tended to be high and
increased during the COVID-19 period in regions where influx
or daytime movement was present.

A possible explanation for the third and fourth findings is that
policymakers and living people have been overlooking risk
factors corresponding to MDE, even during the governmental
declaration of emergency. Furthermore, the
infection-suppression effort and its effects on the sheer reduction
of movements tended to weaken significantly after the relaxation
of strict control measures [67]. Thus, we propose to keep
monitoring MDE values and, if MDE increases, send out
messages to satisfy the constraint on intercommunity contact,
such as the SWYC guidelines, or be cautious when visiting a
place where people move in diverse directions. However, we
did not consider controlling individual movements as the main
measure because it would be difficult for a single person to lead
the movements of others. Thus, we regard it as the practical use
of MDE to improve the social environment, such as the
development of pathways and other infrastructure to unify the
direction of pedestrian movement in urban areas, where possible.
If individual behaviors are to be controlled, it should only be
added as a supplementary message to environmental
improvement approaches, such as encouraging people to wear
masks in areas where there is inevitably a diversity of directions
of movement or to avoid visiting places where people move in
various directions. In addition, it is difficult from a research
ethics perspective to analyze data on individual movements.

We propose the application of MDE to visualize the locations
of high-risk regions to accelerate the awareness of both
individuals and society as a whole regarding the risks in local
regions. Individuals living or working in regions highlighted in
the heatmap of MDE (Figure 6) will enhance their risk
awareness, and their communication will enhance the awareness

of the regional society [54,68]. In Figures 6A and 6B, 100-m2

meshes with the highest MDE in Tokyo are shown in dense red
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(1000 meshes in Tokyo with the highest MDE values), and
weaker colors represent the ranks of meshes according to their
MDE values. Despite canceling the effects of city size and
human crowd as discussed above, the dense red areas in Figure
6A and the squares in Figure 6B clustered close to the busiest

stations (A: in the central wards Shibuya, Shinjuku, etc; B: in
a selected ward Bunkyo). The mesh regions with the highest
MDE values do not necessarily coincide with train stations, but
some coincide with supermarkets and restaurants, corresponding
to the literature [66].

Figure 6. The heatmaps of moving direction entropy (MDE) for 100-m2 meshes in A all of Tokyo, except islands, and B a part of Bunkyo ward near
the University of Tokyo. The small rectangle in A corresponds to B. Meshes are classified according to MDE values (red: top 1000 meshes in Tokyo,
yellow: second top 1000 meshes, green: third top 1000 meshes, blue: fourth top 1000 meshes). All use free-license maps: A includes a free Tokyo map
and B includes a blank map from the Geospatial Information Authority of Japan.
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