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Abstract
Background: From medication usage to the time of day, a number of external factors are known to alter human body
temperature (BT), even in the absence of underlying pathology. In select cases, clinical guidance already suggests the
consideration of clinical and demographic factors when interpreting BT, such as a decreased threshold for fever as age
increases. Recent work has indicated factors impacting BT extend to environmental conditions including ambient temperature.
However, the effect sizes of these relationships are often small, and it remains unclear if such relationships result in a
meaningful impact on real-world health care practices.
Objective: Temperature remains a common element in public health screening efforts. Leveraging the unique testing and
reporting infrastructure developed around the COVID-19 pandemic, this paper uses a unique resource of daily-level statewide
testing data to assess the relationship between ambient temperatures and positivity rates. As fever was a primary symptom
that triggered diagnostic testing for COVID-19, this work hypothesizes that environmentally mediated BT increases would not
reflect pathology, leading to decreased COVID-19 test positivity rates as temperature rises.
Methods: Statewide COVID-19 polymerase chain reaction testing data curated by the California Department of Public Health
were used to obtain the daily number of total tests and positivity rates for all counties across the state. These data were
combined with ambient temperature data provided by the National Centers for Environmental Information for a period of
133 days between widespread testing availability and vaccine approval. A mixed-effects beta-regression model was used
to estimate daily COVID-19 test positivity rate as a function of ambient temperature, population, and estimates of COVID
prevalence, with nested random effects for a day of the week within unique counties across the state.
Results: Considering over 19 million tests performed over 4 months and across 45 distinct counties, adjusted model results
highlighted a significant negative association between daily ambient temperature and testing positivity rate (P<.001). Results
of the model are strengthened as, using the same testing data, this relationship was not present in a sensitivity analysis using
random daily temperatures drawn from the range of observed values (P=.52).
Conclusions: These results support the underlying hypothesis and demonstrate the relationship between environmental factors
and BT can impact an essential public health activity. As health care continues to operate using thresholds of BT as anchor
points (ie, ≥100.4 as fever) it is increasingly important to develop approaches to integrate the array of factors known to
influence BT measurement. Moreover, as weather data are not often readily available in the same systems as patient data, these
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findings present a compelling case for future research into when and how environmental context can best be used to improve
the interpretation of patient data.
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Introduction
Body temperature (BT), together with pulse rate, blood
pressure, and respiratory rate, constitutes one of the
four fundamental “vital signs” essential for assessing and
monitoring an individual’s health [1]. Given established
relationships between abnormal BT and many pathologic
conditions, BT is obtained at nearly every health care
encounter. Moreover, with the limited equipment required for
the collection, BT has become a key element in public health
surveillance, particularly in the case of infectious diseases
(eg, influenza).

Current clinical practice defines normal adult BT between
36.16 and 37.02 °C (97.09 and 98.64 °F [2]), commonly
anchoring abnormality at 2 thresholds: hypothermia (low BT,
≤36 °C) [3] and fever (elevated BT, ≥38 °C [4]). These
values are endorsed by the Centers for Disease Control and
Prevention (CDC) and are often used as screening criteria,
part of differential diagnoses, or in evidence-based prac-
tice pathways [5-7]. Unfortunately, the contextualization of
measured BT against these thresholds represents a nontrivial
comparison.

Ranging from age to medication use, to acute and chronic
diagnoses, it is now well recognized that BT varies in
response to an array of clinical and demographic factors [8,9].
Clinicians, in turn, have begun to consider such information
when interpreting an individual’s BT. For example, develop-
ing practice guidelines that account for individuals’ decreased
ability to mount fever with increased age [10]. To date,
such efforts have largely centered on intrinsic elements of
an individual and their health readily available during an
encounter. Yet an emerging body of work has prompted
questions about the need to consider extrinsic, environmental
factors, specifically ambient temperature.

While commonly associated with conditions such as heat
stroke [11] or hyperthermia [12], foundational work by
Obermeyer et al [8] demonstrated that changes in ambi-
ent temperature represent an independent factor linked to
changes in measured BT in healthy adults. This effect
has been amplified as age increases [13], potentially tied
to the effects of impaired thermoregulation. Moreover, the
confounding nature of ambient temperature on BT interpre-
tation is compounded by the frequent use of noninvasive
temperature measurement techniques (oral and tympanic),
which have also been shown to be highly influenced by
ambient temperature [14].

Nonetheless, the effect sizes between associations of
BT and ambient temperature are small to moderate, and

it remains unclear if their consideration would have a
meaningful impact on real-world health care practices. The
work presented in this paper addresses this exact ques-
tion, leveraging the unique testing and epidemiologic data
sharing efforts associated with the SARS-CoV-2 (COVID-19)
pandemic. Given early studies widely identified fever as
a primary symptom (>83.5% of cases) associated with
COVID-19 infection [15], elevated BT became a common
driver for individuals to seek medical testing. Using publicly
available testing and weather data, this study measures the
association between daily maximum ambient temperature and
COVID-19 test positivity rate across 58 California counties
over a period of 133 days from the time public COVID-19
testing was widely available until initial vaccine use began.

We hypothesized higher ambient temperatures (and
expected associated increases in individual BT) would lead to
increased suspicion of febrile illness. However, as the shift in
BT would be environmentally driven, and not pathologic, this
increase would manifest in a negative relationship between
ambient temperature and test positivity rate. In doing so, we
illustrate a clear example of the impact of BT-altering factors
on a common real-world public health activity and present a
discussion of how such information can be integrated into BT
interpretation workflows.

Methods
Study Design and Population
This work presents an observational retrospective analysis of
daily COVID-19 testing data across the state of California.
As a direct result of efforts to monitor disease spread and
community risk, COVID-19 testing data were covered under
“diseases of public health importance” and were collected at
the state level from all laboratories under the California Code
of Regulations. This highly granular and longitudinal testing
effort throughout the pandemic, coupled with the understand-
ing that febrile illness represented a clinical indication for
COVID-19 illness, provided a unique and well-suited case for
examining the relationship between ambient temperature and
testing.

This work evaluated testing conducted between August
1, 2020, and December 11, 2020, representing a study
period of 133 days. This nearly 6-month window is able
to capture seasonal variability, spanning a wide range of
average monthly temperatures across the state (26.1 °C in
August 2020 to 7.5 °C in December 2020) and allowing
for analysis across a comprehensive distribution of tempera-
tures. Testing data represented gold-standard PCR (polymer-
ase chain reaction) and were reported by the performing
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laboratories, allowing for aggregation across tests performed
in emergency rooms, hospitals, clinics, pharmacies, and other
testing centers. The study period itself was selected to help
minimize bias from the wide array of socioeconomic and
logistic factors inherent to the COVID-19 pandemic.

The start date was chosen to approximate the time when
COVID-19 tests were available in all California counties and
were no longer being rationed. The end date selection was
multifactorial. First, based on the first FDA (US Food and
Drug Administration) emergency use authorization (EUA) for
a COVID vaccine (EUA for a COVID vaccine was granted to
Pfizer on December 11, 2020, and to Moderna on Decem-
ber 18, 2020), this timepoint conservatively approximates
the end of the pre-vaccine period. Given that the vaccine
status of an individual may impact testing practices and the
ability to mount fever, this approach helps to mitigate bias.
Additionally, the first COVID-19 variant (Alpha, B.1.1.7)
was initially detected in the United States on December 29,
2020. Restricting the analysis to the initial pandemic wave
can also help to assure a stable study cohort on which to
perform the analysis in this work.
Data Collection

Overview
Data were drawn from 2 primary sources. First, weather
data were collected from the United States National Oceanic
and Atmospheric Administration (NOAA). Second, daily-
level COVID-19 testing data were provided by the state of
California. Details surrounding the collection, cleaning, and
processing of each data source can be found in the respective
subsections to follow.

COVID-19 Data
Daily COVID-19 testing data were obtained at the county
level from the California COVID-19 State Dashboard [16].
These data were curated by the California Department of
Public Health (CDPH) and included all testing data as
available across the state (Title 17 of the California Code
of Regulations listed COVID-19 as a reportable disease [17]),
reported by laboratories through the California Reportable
Disease Information Exchange. For each of the 58 coun-
ties across the state of California, data included the date
specimens were collected, the number of COVID-19 tests
submitted, and the number of positive tests. Of note, the
CDPH aligned testing data to the specimen collection date,
rather than the date results became available, which provi-
ded a robust mechanism to assure that the positivity rate
is correctly linked to the temperature of a given day. Tests
that may have been processed for labs outside of California
(location listed as “out of state”) or without a clear indica-
tion for the test location (location listed as “unknown” or
associated generally to the state, that is, “California”) were
excluded.

County population data were sourced from the 2020
California Department of Finances population estimates. The
county populations, together with the daily positive test
counts, were used to derive an estimate of daily COVID-19

incidence. For a given day, this value is approximated as a
sum of daily positive tests over the prior 10 days, divided
by the county population. This window was selected to align
with CDC recommendations, assuming conservatively that
testing occurred on the day of symptom onset [18].

Data were collected for all counties in California.
However, to minimize bias in positivity rates resulting from
small counties, or irregular testing patterns, a subset of data
were excluded as follows. First, counties with a population
of fewer than 25,000 were excluded due to multiple days
with low rates of testing and low COVID-19 prevalence rates.
Second, the distribution of total daily tests was calculated
during the study period, and the bottom quartile of days was
removed from the data set. This helps to mitigate large effects
on positivity due to small absolute changes in positive tests
relative to total tests and to exclude situations in which test
rationing may have occurred thereby biasing the relationship
of testing to positivity rate. Finally, counties that provided
testing data for less than half of the total days in the study
window were omitted to allow for a more precise estimation
of within-county variance for the expected regional clustering
in the relationship between positivity and testing.

Weather Data
Weather data was collected from 595 NOAA weather
stations across the state of California using the National
Centers for Environmental Information Climate Data
Online tool [19]. For each station, data included a daily
timestamp and associated maximum ambient temperature.
Also collected were a set of logistical data including
each station’s precise geospatial location (latitude and
longitude). NOAA temperature data is highly precise and
reliable [20]. Stations are equipped with 3 thermometers
to compute independent 5-minute averages from 2-second
readings from each thermometer. These measurements are
then used to derive an hourly temperature and in turn a
daily maximum. Consistency checks between sensors are
performed as part of data capture, and for each daily
measurement quality indicators are provided to indicate
potential reliability issues or are directly recorded as “null”
if a value could not be computed. Any daily measurements
marked as unreliable were removed, and weather stations
with no data were excluded from the study.

To associate a daily maximum temperature to county-
level testing data, a weighted mean of temperatures from
all weather stations within each county was calculated. As
counties can span larger geographic areas, weights were
created to represent the population size of the ZCTAs (zip
code tabulation areas) in which each station resides. To do
so, reverse geocoding for station latitudes and longitudes was
performed to obtain a zip code for each station using the
Nominatim API [21]. Zip code to ZCTA mappings were
then retrieved from the 2021 Uniform Data System table,
and ZCTA to population mappings were retrieved from the
American Community Survey 5-year data [22]. Notably,
although each county was composed of multiple weather
stations, a percentage of the total population does not live
within a ZCTA containing a weather station. To account
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for the magnitude of these unassigned individuals in the
weighting, the remainder of the population was assumed
to be evenly distributed throughout the county, with equal
exposure to the weather at each station, as shown in Equa-
tion 1. Equation 1 demonstrates that the daily maximum
ambient temperature for a county is calculated as the sum
of the weighted sum of the weather station maximum ambient
temperatures (Ti) by a fraction of the station population (popi)
relative to the county population (popc) and the product of the
average station temperature with the fraction of a county’s
population not associated with a weather station relative
to county population. popw represents the total population
associated with a weather station.

(1)tempamb = (1/popc) ∗ i = 1
n (Ti ∗ popi) + 1/(n ∗ popc) ∗

i = 1
n Ti ∗ (popc − popw)

Statistical Analysis
The unadjusted association between temperature and
positivity rate was characterized using the Spearman rank
correlation coefficient for multiple representative coun-
ties (the counties with minimum, median, and maximum
populations). To robustly estimate the association between
temperature and positivity rate (calculated as the ratio
between positive tests and total tests on a given day), a
multivariate mixed-effects beta regression was used. Daily
positivity rate was estimated with a logit link function, as
a function of daily maximum ambient temperature, derived
COVID-19 prevalence, and county population. To account for
variability in testing practices and community behavior early
in the pandemic, random effects were added for the county.
Additionally, a random effect for day of the week (DOW)
was nested within the county to account for regional testing
and potentially different reporting practices (eg, weekend test
results were sometimes all reported on Mondays). To aid in
model convergence, the prevalence was scaled by a factor
of 1000, and the county population was log-transformed to
account for the heavy right tail of a few large counties.
Positivity rate was adjusted using a scalar transform to avoid
zero values [23].

To assess model stability, several diagnostics and post
hoc analyses were performed. First, variance inflation factors
were computed to assess collinearity between the study
variables. Next, a series of model diagnostics were calculated
including residual versus predictor plots, a quantile-quantile
plot of residuals, an outlier test plot, and a nonparametric
dispersion test plot using the standard deviation of fitted
and simulated residuals. Finally, as a sensitivity analysis for
associations to the max-temperature data, the beta regression
was refitted, this time using a randomly drawn daily max
temperature between –6.7 and 60 °C, similar to the range of
observed temperatures. All other data were left unmodified.
All data processing and analysis were performed using R
(version 2023.12.0), together with TidyVerse [24], and the
GLMM TMB packages [25]. Diagnostics used the DHARMa
package [26].
Ethical Considerations
This study was deemed non-human subjects research. All
data were retrieved from public use datasets, and secondary
analyses were performed. Therefore, this study did not require
institutional review board review per Federal Regulations for
the Protection of Human Research Subjects (45CFR 46) [27].

Results
COVID-19 testing data were reported by the state for each
of the 58 total counties. Of those, 1 (Sutter County) did not
report temperature data at any weather station during this time
period, and 1 county (Del Norte) did not have any zip code
associated with its weather stations; both were omitted. Nine
counties had populations below 25,000 (Alpine, Colusa, Inyo,
Mariposa, Modoc, Mono, Plumas, Sierra, and Trinity) and
were omitted. After filtering out days in the bottom 25% of
total tests administered (n=123), and for missing temperature
values, 4 counties (Calaveras, Glenn, Lake, and Siskiyou)
were found to provide data for less than 50% of total days in
the study window (66 of 133 days, August 1 to December 11,
2020), and were thus omitted. This resulted in a final cohort
of 43 unique counties. An overview of the testing and weather
data for these counties can be found in Table 1.

Table 1. Overview of county data during the study period.
Data set and characteristic Value
County descriptions

Unique counties, n 43
Population (1000s), mean (SD); range 988 (1710); 30‐10,300

COVID-19 testing data, mean (SD); range
Mean testing days 122 (15.1); 78‐133
Daily total tests 3790 (9420); 123‐128,000
Daily COVID-19 positivity rate 0.058 (0.043); 0.000067‐0.36
Daily COVID-19 prevalence (per 1000 population) 2.1 (2.6); 0.057‐37

NOAAa weather data, mean (SD); range
Number of weather stations 11 (8.7); 2‐42
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Data set and characteristic Value

Mean daily maximum ambient temperature (°C) 26.6 (7.3); 2-47.8
aNOAA: United States National Oceanic and Atmospheric Administration.

For context to the underlying hypothesis, unadjusted plots for
daily maximum ambient temperature versus daily COVID-19
positivity rate can be found for the minimum, median,
and maximum counties by population (Lassen, Placer, and
Los Angeles, respectively) in Figure 1. In all 3 counties,
Spearman rank correlation coefficients were negative with

P values below .01, as shown in Table 2, demonstrating
an overall negative correlation between positivity rate and
maximum ambient temperature. Adjusted results from the
beta regression and primary analysis can be found in Table
3.

Figure 1. Unadjusted daily COVID-19 positivity rate plotted against daily maximum ambient temperature for the counties with the minimum
(Lassen), median (Placer), and maximum (Los Angeles) populations.

Table 2. Unadjusted Spearman correlation between daily maximum ambient temperature and daily COVID-19 testing positivity rate of the minimum,
median, and maximum counties by population during the study period.
County Spearman rank correlation (ρ) P value
Lassen −0.61 <.001
Placer −0.49 <.001
Los Angeles −0.38 <.001

Table 3. Adjusted coefficients and 95% CIs of beta regression estimating daily COVID-19 positivity rate. COVID-19 prevalence is represented as
#/1000, and the county population is log-transformed.

Odds ratio (95% CI) P value
Intercepta 0.0059 (0.0012-0.029) <.001
Daily maximum ambient temperaturea 0.993 (0.992-0.994) <.001
Daily COVID-19 prevalence 1.14 (1.13-1.15) <.001
County population 1.2 (1.1-1.4) <.001

aCoefficients reflect analysis of temperature in °F, as reported in the underlying data source.

Even after adjustment for COVID-19 prevalence and county
population, the association of daily maximum ambient
temperature was found to be significant (α<.05), present-
ing with an odds ratio lower than 1 (0.993), implying an
inverse relationship to testing positivity rate. Across the state,
there was significant variability in the average COVID-19
positivity rate between counties, and to a lesser extent to the
DOW on which testing occurred, as noted by the variance of
the random effects, 0.28 and 0.025, respectively.

Overall, the model was found to be stable. Variance
inflation factors were found to be low (1.36, 1.36, and 1
for temperature, prevalence, and logarithm of the popula-
tion, respectively) suggesting minimal collinearity. Further,
Pearson residuals were calculated and found to be below
3. Complete model diagnostics can be found in Multime-
dia Appendix 1. Finally, when the model was replicated
using random maximum daily temperatures, the association
between temperature and positivity rate was no longer
significant, with a coefficient of 0.00031 (95% CI −0.00064
to 0.0013; P=.52). This in turn provides evidence that the
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results highlighted here present associations that are products
of observed data, and not simply an artifact of the studies
large sample size.

Discussion
Principal Results
Using more than 19 million COVID-19 PCR tests col-
lected over a period of 5 months, this study identified
an inverse relationship between daily maximum ambient
temperature and COVID-19 testing positivity rate. Replica-
tion of this analysis using identical testing data, but random-
ized temperatures, does not produce this relationship, offering
supporting evidence to the hypothesis that the effects of
ambient temperature on BT may not be widely considered in
the context of seeking public health infectious disease testing.

Prior literature has established that measured BT is
associated with ambient temperature levels, even in individ-
uals not suspected of having pathologic BT derangements
[8]. At a fundamental level, the effects of ambient tempera-
ture on the human body are known to be driven by several
mechanisms that include both thermodynamic principles of
metabolic heat production and physiologic consequences of
thermoeffector response [28]. Beyond the effects of thermo-
regulation on core BT, ambient temperatures can influence
BT through bias introduced into the measurement itself.
Ambient temperature has been notably shown to impact
noninvasive measurement tools such as infrared thermometers
[29,30]. The bias of ambient temperature on BT measurement
has been found to be rapid, occurring within as little as
20 minutes of exposure to changes in ambient temperature,
leading to a significant degree of misalignment from true BT
reaching over 1 degree change over this time period [31,32].

However, BT is not used in isolation, and downstream
implications on health care practice arising from this
association between ambient temperature and BT have not
been well explored. In the context of decision points for
testing and screening, the results of this study indicate
that such a relationship may exist. However, we recognize
this study is not designed to elucidate the mechanism by
which it impacts this practice. Based on findings in the
primary and sensitivity analyses, we posit that higher ambient
temperatures resulted in elevated BTs (either directly to core
temperature due to exposure or through biased measurement),
which led individuals to seek out or be referred for testing
that reduced positivity rates on warmer days.

Findings also highlighted a positive association between
positivity rate and county population, suggesting that even
when holding prevalence and temperature constant, test-
ing patterns may differ in larger counties, where perhaps
individuals may be more likely to seek testing due to an
understanding of their population density and exposure risk.
As we move beyond quantifying the deterministic relation-
ships governing BT and ambient temperature, this represents
an important premise that studies involving public health
practices must also consider behavioral and policy-related
factors. With respect to the testing outcomes explored in

this work, the positivity rate may be influenced by guidance
on who should seek testing and when, as well as structural
elements such as the availability or ease of access of tests to a
specific population.

Advantageously, the extraordinary circumstances of the
COVID-19 pandemic allow us to capture such details at a
level not historically available, strengthening confidence in
the study procedures. California was a leader in public health
testing efforts. Under CDPH guidance (NR20-160) starting
in July 2020, prioritization of testing was expanded not only
to individuals in health care settings (tier 1) but also to any
individual with signs and symptoms (tier 2, which in this case
would include elevated BT). By setting the study window to
begin in August 2020, we captured all PCR testing statewide
under updated reporting guidelines and took further steps to
isolate a period of time during which testing was readably
available to assure tests were available (removing the lowest
quartile of testing days and removing counties with small
populations) to minimize effects of rationing.

The presence of associations does not provide insight into
their use in practice. The ability to capture and aggregate
necessary ambient temperature at the point-of-care remains an
open technical and workflow challenge. Nonetheless, efforts
are emerging to develop algorithmic corrections for BT due
to external perturbations, including for ambient temperature
[33]. From a workflow perspective, it is worth noting that
bias arising from ambient temperature is not unique to BT.
Fluctuations in ambient temperature have also been linked
to changes in clinical measurements such as blood pres-
sure [34]. It has also been shown to impact a number of
common laboratory tests and key cardiovascular biomarkers
[35,36]. Continuing to build on insights around how ambient
temperature impacts other health measurements may provide
a foundation for best practices in the interpretation and use of
BT.
Strengths and Limitations
Strengths of this study include the large sample size and use
of labs for which reporting was mandated statewide by a
public health department. Mandatory reporting of lab data by
the CDPH during the study period aids in minimizing bias
in reporting by site, and the usage of robust PCR testing
provides high-quality testing results. Weather data were also
highly reliable using hourly data reported from multisensor
NOAA stations with robust protocols for data quality.

Despite these strengths, the nature of this study presents
several limitations, especially at the patient level. First, we
cannot capture other individualized BT-altering factors (eg,
demographics or comorbidities), and stratification by clinical
presentation was not possible. We were also unable to
account for other environmental factors such as wind chill
for more precise temperature estimates, as only a small subset
of stations provided such data. At a testing level, although
all testing was performed using PCR, collection type was not
available (ie, nasopharyngeal, nasal, and saliva). While PCR
remains the gold standard in COVID-19 testing, recent work
has shown differences in sensitivity based on site [37], which
may have impacted positivity rates. Additionally, we did not
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have access to the modality of BT measurement (eg, oral vs
forehead) which may have been differentially influenced by
ambient temperature. Finally at a policy level, although we
have taken steps to provide as clean an analysis time period as
possible, accounting for county-level variance with random
effects models, individual policy details (mask mandates,
social gathering criteria, etc) are not reported or available at
day-to-day level modeled in this work. We remain confi-
dent in the findings, however, as this work is designed
to capture average effects across an immense population
over a nearly 3-month period and includes a wide array
of testing locations spanning various illness acuity levels.
Finally, in our estimation of prevalence, the 10-day window
was based on CDC recommendations for masking. Insight
into living arrangements and clinical severity (immunocom-
promised patients or those with severe COVID) may have
resulted in better accounting for differences in viral transmis-
sion and the ability to contribute to future incident cases and
future prevalence.

Conclusions
Our finding of an inverse relationship between maximum
ambient temperature and COVID-19 test positivity rate
suggests that higher maximum ambient temperature may
have caused higher BT, resulting in increased testing for
infection. Even though ambient temperature is known to
affect BT, current efforts to consider ambient temperature
in BT interpretation are nearly nonexistent. As such, we
suspect that lack of consideration of ambient temperature
caused this lower test positivity rate on hotter days. Future
research should endeavor to investigate this association more
throughly, including the study of its mechanism. Learning
more about the effect of ambient temperature on BT and
other tests in health care will enable improved consideration
of these relevant factors and thereby allow for optimized
interpretation of test results.

Data Availability
The data and software code presented in this study are publicly available on GitHub [38].
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