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Abstract

Background:  The early identification of outbreaks of both known and novel influenza-like illnesses (ILIs) is an important
public health problem.

Objective:  This study aimed to describe the design and testing of a tool that detects and tracks outbreaks of both known and
novel ILIs, such as the SARS-CoV-2 worldwide pandemic, accurately and early.

Methods:  This paper describes the ILI Tracker algorithm that first models the daily occurrence of a set of known ILIs in hospital
emergency departments in a monitored region using findings extracted from patient care reports using natural language processing.
We then show how the algorithm can be extended to detect and track the presence of an unmodeled disease that may represent
a novel disease outbreak.

Results:  We include results based on modeling diseases like influenza, respiratory syncytial virus, human metapneumovirus,
and parainfluenza for 5 emergency departments in Allegheny County, Pennsylvania, from June 1, 2014, to May 31, 2015. We
also include the results of detecting the outbreak of an unmodeled disease, which in retrospect was very likely an outbreak of the
enterovirus D68 (EV-D68).

Conclusions:  The results reported in this paper provide support that ILI Tracker was able to track well the incidence of 4
modeled influenza-like diseases over a 1-year period, relative to laboratory-confirmed cases, and it was computationally efficient
in doing so. The system was also able to detect a likely novel outbreak of EV-D68 early in an outbreak that occurred in Allegheny
County in 2014 as well as clinically characterize that outbreak disease accurately.
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Introduction

Background
Respiratory viruses are responsible for annual and oftentimes
overlapping outbreaks in human populations. This overlapping
disease activity confounds the diagnosis and treatment of
patients presenting with influenza-like illnesses (ILIs) and the
associated high caseloads stress the clinical and logistical
capacity of the health care system. Thus, accurately detecting
and tracking overlapping outbreaks due to these viruses are
important tasks with public health implications and clinical
repercussions for those at high risk [1-5]. The ideal surveillance
system will notice an outbreak after just a few cases that may
be distributed across several shifts at multiple hospitals. An
individual physician may see just 1 or 2 cases, which might
seem inconsequential to them and not worthy of mention, but
an automated surveillance system, such as we describe here,
can gain statistical power and timeliness by aggregating data
across an entire region. The proposed system can harness the
entire set of patients and their symptoms who present to all the
emergency departments (EDs) in a region. By harnessing the
sheer volume of this information, it may recognize cases and
patterns that would elude human observers early in the outbreak,
and thus, serve as a sentinel to detect and characterize outbreaks
early.

In addition to detecting and tracking known viruses of concern,
the world is also faced with the emergence of novel viruses (or
the re-emergence of previously quiescent viruses) and the
diseases that they cause, as evidenced by the appearance of the
SARS-CoV-2 worldwide pandemic. Early detection and tracking
of a novel or re-emerging outbreak disease can be critical in
informing both the care of individual patients and the decisions
made by public health officials. While we hope to someday
prevent the emergence of pathological viruses before they strike
the human population [6], a more realistic goal for the near term
is early detection and tracking [7]. Modeling known diseases
that we expect to see provides a useful background against
which to detect the emergence of new diseases that have a
different clinical or epidemiological presentation.

Previous Work
The most promising route to the early detection of outbreaks
of pathological viruses is real-time surveillance of human and
animal populations [2]. There are myriad approaches to the
problem of disease surveillance based on different data sources
and technologies. Most recent work has been based on data
from laboratories [8] and sentinel physicians [9]. Social media,
including Google Flu Trends, have been proposed as a useful
tool [10], but initial efforts have not worked as well as expected
[11-14]. More recent approaches to the use of social media are
promising [15-18]. A variety of other sources, such as sales of
over-the-counter medications, absenteeism, and traffic patterns
have also been proposed [19].

Most of these data sources have significant limitations. For
instance, laboratory tests of infectious pathogens can identify
outbreak diseases that are known and tested for, but such tests
are blind to emerging pathogens. Furthermore, laboratory tests
are not always routinely performed or reported, especially in

resource-challenged health care settings. Sentinel physicians
and various “drop-in” surveillance methods have poor coverage,
and individual physicians might not notice or appreciate isolated
cases [20]. Methods based on data from social media [21],
absenteeism [22], traffic patterns [23], etc, are nonspecific [24].
More importantly, these methods will only recognize anomalies
after a substantial number of people have been affected, losing
important time when an infectious disease could have been
identified.

Syndromic surveillance [25] seeks to identify clusters of signs
and symptoms among patients recorded during routine medical
care, especially in hospital EDs. This approach has the
advantages of both broad coverage (nearly every community
in the United States is served by some ED) and the use of
clinical information (including chief complaints, vital signs,
clinical findings, etc). Unlike traditional systems that rely on
voluntary reports from health care providers (who work with
individual cases), syndromic surveillance systems use data about
entire populations that are continuously and automatically
acquired. Syndromic surveillance attains much of its timelines
from the identification of syndromes before confirmed diagnoses
are made.

To detect outbreaks of rare or novel threats, however, we must
go beyond the traditional syndromic surveillance systems that
only detect known syndromes, such as the Centers for Disease
Control and Prevention (CDC) National Syndromic Surveillance
Program [26]. To identify novel threats to public health,
syndromic surveillance systems need to identify clusters of
patients even if they are not characterized by a predefined
syndromic grouping. The North Carolina Disease Event
Tracking and Epidemiologic Collection Tool system [27]
identifies clusters of related patients based on time of arrival to
identify clusters of related ED visits in 30- and 60-minute
windows. The study by Burkom et al [28] used a Fisher exact
test to identify anomalous clinical terms in an 8-hour block of
current chief complaints compared with a 30-day sliding
baseline. Sets of anomalous terms are then presented to a human
monitor for further investigation. The multidimensional semantic
scan system [29] uses latent Dirichlet allocation to learn a set
of syndromes directly from ED chief complaints. The learned
syndromes include 25 “static” topics that correspond to common
health conditions and a set of 25 “emerging” topics from recent
data that may indicate newly emerging threats. The
multidimensional semantic scan system also uses practitioner
feedback to distinguish between relevant and irrelevant clusters.
The system was extensively tested on data from New York City.
In previous work [30], we described a system that builds a
probabilistic model of normal (baseline) ILI activity using a
large set of patient findings extracted from patient care reports
with natural language processing. It then looks for statistically
significant deviations from baseline normal activity. This system
does not rely on just a small set of findings as might be extracted
from patients’ chief complaints.

The ILI Tracker algorithm introduced here differs from previous
work in several important ways. First, it uses a large set of
findings extracted from patient care reports, not just chief
complaints. This is important because most ILIs cannot be
distinguished solely based on chief complaints but require a
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complete assessment to be recognized. This is especially
important for the recognition of novel or emergent diseases that
may only be detected by the presence of uncommon or unusual
combinations of findings. Second, ILI Tracker explicitly models
and tracks known ILIs. This provides a backdrop against which
novel diseases can be detected even in the presence of modeled
ILIs. Finally, because the ILI Tracker explicitly models known
diseases and their symptoms, it can identify and characterize
patients who do not fit the profile of the expected modeled ILIs
and bring them to the attention of clinicians for further
evaluation.

Current Work
This paper describes the ILI Tracker algorithm that tracks the
daily occurrence of a set of modeled ILIs in hospital EDs in a
monitored region using natural language processing on patient
care reports. A set of clinical findings is extracted from full-text
patient care reports that are available at the time of care or
shortly thereafter. These findings are used by machine learning
algorithms to learn probabilistic models of a set of diseases.
The models are used to determine the likelihood of each disease
for each patient [31]. These likelihoods are then used to compute
the expected prevalence of each disease in the EDs on each day.
ILI Tracker also analyzes whether recent patient cases in the
EDs are not well explained by the known diseases that it models.
If so, it suggests the possible presence of a novel outbreak of a
disease in the population.

The remainder of this paper first describes the ILI Tracker
algorithm in detail. We build models for diseases such as
influenza, respiratory syncytial virus (RSV), human
metapneumovirus (hMPV), and parainfluenza (PIV) using data
from 5 EDs in Allegheny County, Pennsylvania, from June 1,
2010, to May 31, 2014. We then present initial experiments on
how well it can track those diseases from June 1, 2014, to May
31, 2015. Finally, we present a preliminary investigation of an
algorithm based on the ILI Tracker for detecting the presence
of an unmodeled disease.

Methods

The Algorithm
To diagnose a patient, a clinician must consider that patient’s
findings as well as the prevalence of various diseases in the
community. For instance, given a patient with a fever and cough,
a high rate of influenza in the population will elevate the
probability that the patient has influenza, whereas a high rate
of SARS-CoV-2 will elevate the probability of SARS-CoV-2.
The situation becomes more complicated when multiple viruses
(with similar or overlapping symptoms) are circulating in the
environment for which the rate of each must be accounted.
Bayesian inference provides a principled way to do this.

We assume each patient has exactly one of the diseases {dx0,
dx1, …, dxn}. If Pr(dxi | findings) is the probability that a patient
has disease dxi (for some i in 0,…,n) given their findings, and
Pr(dxi) is the prevalence of that disease in the population at that
time, then:

The denominator of Equation 1 is a sum over all the diseases
we are modeling and is a normalizing factor, so we have:

That is, given a patient’s findings, the probability that the patient
has disease dxi is proportional to the product of the likelihood
of their findings given dxi times the prior probability of dxi.

Using this formulation, we can compute the probability of each
disease for each patient. The expected number of patients with
each disease is the sum over the probability each patient has
that disease. For example, suppose there are 50 patients and 20
have a 0.1 probability of influenza, while 30 have a 0.2
probability. Then the expected number of patients with influenza
is 20×0.1+30×0.2=8. Given the expected number with each
disease, we can compute the expected proportion of each
disease. In the example above, the expected proportion of
patients with influenza would be 8/50=0.16.

The ILI Tracker algorithm combines the above steps to compute
the expected proportion of each disease each day. It starts with
prior probabilities for each disease, computes the expected
number of patients with each disease as above, and then uses
the proportion of each disease as the prior probability of each
disease on the next day. This process continues day by day. The
remainder of this section provides the technical details of this
algorithm.

We first introduce some notation. Let days be the sequence of
days under consideration, pts(d) be the number of patients who
visited the EDs on day d, D(p,d) be the set of findings (“data”)

for patient p on day d, and be all of the
data for the patients on day d. Note that we number days starting
with zero. We assume there is a set of modeled diseases
Dx={dx0, dx1, …, dxn} where {dx1, …, dxn} are the diseases of
interest and dx0 denotes other known diseases. Here, other
represents a large set of known diseases including trauma,
cardiac events, diabetic emergencies, etc, that can occur and
are not one of the n modeled diseases.

For a patient p on day d with findings D(p,d), we can calculate
the probability they have a particular disease dxi:

where Prd(dxi) is the prior probability of dxi on day d and
Pr(D(p,d)|dxi) is the likelihood of the patient p’s findings given
they have disease dxi. We describe how we compute each of
these quantities below. We compute the expected number of
patients with each dxi on day d as:
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We can now estimate the posterior probability of each disease
on day d:

where m is the so-called equivalent sample size and prior(dxi)
is the prior probability of disease dxi. The terms m and prior(dxi)
in Equation 5 provide smoothing of the estimate that avoids
relying too heavily on small values of Ed(dxi) and pts(d) by
augmenting the data with an additional m patients with diseases
distributed according to prior(dxi). We specify m and prior(dxi)
below. We then make the disease priors for day d+1 equal to
the disease posteriors for day d.

In summary, the overall procedure is as follows. Set each prior
probability Pr0(dxi) to initial values as described below. Then
for each day d:

1. Compute Pr(dxi | D(p,d)) for each using Equation
3.

2. Compute Ed(dxi) for each dxi using Equation 4.

3. Compute Prd(dxi | D(d)) for each dxi using Equation 5.

4. Set Prd+1(dxi)=Prd(dxi | D(d)) for each dxi.

Steps 1-4 are repeated for each successive day. That is, each
day, d (beginning with the first day d=0), we start with a prior
probability, Prd(dxi), for each disease. We then use data from
the patients in the EDs on day d to compute a posterior (updated)
probability, Prd(dxi | D(d)), for each disease. The posterior
probability for each disease is then used as the prior probability
for that disease, Prd+1(dxi), the next day.

Our data spans the time from June 1, 2010, to May 31, 2015.
We use the data from June 1, 2010, to May 31, 2014, to build
and train disease models, and we start monitoring on June 1,
2014. The prior probabilities on June 1, 2014 for influenza,
RSV, hMPV, and PIV were set to 0.033, 0.035, 0.005, and
0.003, respectively. We determined these values by running ILI
Tracker on the data for March 1, 2014 to May 31, 2014 with
priors on March 1, 2014 of 0.05, 0.05, 0.05, and 0.05, and using
the resulting posterior probabilities from May 31, 2014 as the
prior probabilities for June 1, 2014. The equivalent sample size,
m, was set to 10.

Detecting the Presence of Unmodeled Diseases
As mentioned, the better we can model the usual diseases we
expect to see in the ED, the better we anticipate detecting novel
diseases. The remainder of this section specifies how we do so.

We can regard the output of the ILI Tracker as a model of the
types of patients who are in the ED each day. ILI Tracker
assumes the presence of a fixed set of diseases that can be

modeled using Bayesian networks with specified findings. If
this assumption is satisfied then the model should explain the
evidence (the patients and their findings) well and the probability
of the data given by the model produced by ILI Tracker will be
relatively high.

If any of these assumptions are violated, in particular, if there
are patients with a novel, unmodeled disease, the probability of
the data given by the model produced by ILI Tracker will likely
be reduced compared with a previous period of time when only
modeled diseases were present in the ED. If we track the
probability of the data given by the output of ILI Tracker, a
decrease in this daily probability may signal the presence of an
unmodeled disease. An unmodeled disease may be a novel
disease or a re-emergent disease that we are not currently
modeling.

The day-to-day probabilities for each disease computed by ILI
Tracker can be used to perform a posterior predictive check by
computing the likelihood of the data each day given by the
output of ILI Tracker as follows:

where are the findings on day d for each patient

p and is the set of prior probabilities of each
disease on day d computed by ILI Tracker.

Let the null hypothesis be that the likelihood given by Equation
6 for the current day is the same as or greater than the
likelihoods for all previously monitored days, up to 60 days.
We compute a daily empirical P value, pd, for current day d as
follows:

1. Compute .

2. Compute 

.

3. Set pd to the fraction of times the terms computed in step 2
are less than the terms computed in step 1.

That is, we compute the likelihood of the data for the previous
(up to) 60 days, then compare the likelihood of the data on day
d to those values. We say that day d is unusual if Pd≤0.01. A
sequence of unusual days, each with Pd≤0.01, may signify an
outbreak of a novel disease.

Data and Modeling
Our data come from 5 University of Pittsburgh Medical Center
(UPMC) hospitals serving Allegheny County in Southwestern
Pennsylvania. As of the 2020 census, the population was
approximately 1,223,000. Allegheny County encompasses the
City of Pittsburgh which accounts for approximately 25% of
the county population, with the remainder of the population
being primarily suburban. The racial composition was
approximately 75% White, 13% African American, and 12%
other (including Native American, Asian, Pacific Islander,
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Hispanic, or Latino). The age distribution of the population is
approximately 22% younger than the age of 18 years, 9% from
18 to 24 years, 28% from 25 to 44 years, 23% from 45 to 64
years, and 18% who were 65 years of age or older. UPMC serves
approximately 60% of the ED visits in Allegheny County.

The training data set consisted of ED encounters at the 5 UPMC
hospitals from June 1, 2010, to May 31, 2014, including 815
influenza, 414 RSV, 198 hMPV, 100 PIV that were
laboratory-test positive, and 59,428 other visits. In particular,
patient encounters with a positive laboratory test for influenza
by polymerase chain reaction, direct fluorescent antibody, or
viral culture were labeled as influenza. We use similar criteria
for labeling patient cases with RSV, hMPV, and PIV. For
training purposes, we excluded cases that have positive
laboratory results for more than 1 virus. The 59,428 other visits
were defined as visits in August 2010, 2011, 2012, or 2013,
which did not have any influenza, RSV, hMPV, or PIV
laboratory tests performed. These other cases were obtained
from visits during August of those 4 years because relatively
few outbreaks of these 4 diseases occurred during that month.
The testing data set consisted of ED encounters from June 1,
2014, to May 31, 2015.

Free-text patient care reports were used as the input to the Topaz
parser [32], which for each report generates the status (value)
for each of the 79 clinical findings that clinical experts have
deemed relevant to ILIs. The highest measured temperature was
classified into 4 categories, which included ≥104.0 F (40.0 C),
100.4-103.9 F (38.0-39.9 C), <100.4 F (38.0 C), and unknown.
Each of the remaining findings took the values present, absent,
or unknown. The designation of “absent” indicated that the
clinician had reported the finding as being absent (eg, “patient
denies sore throat”). We discarded those findings with
information gain scores (regarding disease diagnosis) of zero.
Because there is a testing bias for ILIs across age groups, the
age finding was not included.

Our approach to outbreak detection is based on modeling and
tracking patients with known diseases and noting anomalies.

This requires modeling each patient. To that end, we developed
5 Bayesian network disease models (ie, influenza, RSV, hMPV,
PIV, and other) using the same search process to find each
Bayesian network structure, as follows. We started with a naïve
Bayes network structure in which all findings have an arc from
the disease node to each finding node. We then used the K2
learning algorithm [33] to identify additional arcs among the
clinical feature nodes which were assigned an arbitrary ordering.
The search was based on the K2 Bayesian score with a
restriction that each finding could have at most 2 parents beyond
the disease node. After finding a network structure, we estimated
from the data conditional probabilities in the network model.
For instance, Figure 1 shows the relationships among the top
20 features of the RSV model [34].

We used the area under the receiver operating characteristic
curve (AUC) [35] as the measure of discrimination performance.
The AUCs obtained for influenza, RSV, hMPV, PIV, and other
were 0.88, 0.92, 0.91, 0.89, and 0.90, respectively. In testing
the performance of the influenza model, the disease-positive
group consists of patient cases that have positive laboratory
results for influenza. The negative test group consists of cases
that either have negative laboratory results for influenza or have
not had any laboratory tests performed for influenza. It is likely,
however, that some of the patient cases without any laboratory
tests for influenza will have influenza, which we would expect
to have reduced the AUC that we report. An analogous situation
exists for testing the RSV, hMPV, and PIV models.

When testing the model of other disease, the negative test group
includes cases that have at least 1 positive laboratory test result
for influenza, RSV, hMPV, or PIV. The positive test group
consists of cases that either have negative laboratory results for
all 4 respiratory diseases or have not had any of those tests
performed. It is likely, however, that some of the cases without
any tests performed will have one or more of the 4 respiratory
diseases. Given this consideration and the discussion in the
previous paragraph, the reported AUCs are likely to represent
lower bounds on performance that would be obtained if the test
case labels were more accurate.
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Figure 1. A Bayesian network model for the 20 most informative findings in the RSV model. RSV: respiratory syncytial virus; SpO2: measure of the
saturation of peripheral blood oxygen.

Ethical Considerations
The research protocol was approved by the University of
Pittsburgh Institutional Review Board (study number 20030193).
As no patients were enrolled in this study and no compensation
was offered, we obtained a waiver of consent from the
institutional review board. A UPMC-approved honest broker
deidentified the data to meet the requirements of a limited data
set before distribution.

Results

This section reports the results we obtained in applying ILI
Tracker to the data described above to estimate the presence of
the outbreak diseases we modeled over time and to monitor for
the presence of a novel disease in the population.

Tracking of Known Diseases
Figure 2 shows the results of running the ILI Tracker for the
period June 1, 2014, to May 31, 2015. The red (dashed) lines
are the daily number of laboratory-confirmed cases and the blue
(solid) lines are the expected number of patients computed by
ILI Tracker each day. The ILI-expected case predictions appear
to be correlated with the number of positive laboratory results
for those diseases. Note, however, that the expected and
confirmed cases of RSV before January 1 deviate significantly.
The possibility this deviation was due to a novel disease is
discussed below. We computed the correlation between the
daily number of expected and confirmed cases for each disease.
Table 1 shows the Pearson and Spearman r and P values. Across
the 4 modeled diseases, the peak days predicted by the ILI
Tracker were close to the peak days according to the
laboratory-confirmed cases. The peak days of the 7-day moving
averages differed by 6 days for influenza, 6 days for RSV, 0
days for hMPV, and 4 days for PIV.
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Figure 2. Expected and confirmed cases for June 1, 2014, to May 31, 2015 (7-day moving average). hMPV: human metapneumovirus; ILI: influenza-like
illness; RSV: respiratory syncytial virus.

Table 1. Comparison of ILI Tracker and confirmed cases from June 1, 2014, to May 31, 2015, as measured using Pearson and Spearman correlations.
The P values are the probability of the r values if the correlations were 0.

Spearman r (P value)Pearson r (P value)Disease

0.63 (<.001)0.81 (<.001)Influenza

0.64 (<.001)0.66 (<.001)RSVa

0.65 (<.001)0.72 (<.001)hMPVb

0.52 (<.001)0.51 (<.001)PIVc

aRSV: respiratory syncytial virus.
bhMPV: human metapneumovirus.
cPIV: parainfluenza.

Putative Detection of a Novel Disease
The system reported finding a novel disease which, based on
CDC reports for the time period being reported on, appears to
be an enterovirus D68 (EV-D68) outbreak.

Figure 3 shows the daily empirical P values from June 1, 2014,
to May 31, 2015. The horizontal red lines indicate P=.1 and
P=.01. As mentioned above, P=.01 is our threshold for unusual.
On August 25, 2014, ILI Tracker signaled an unusual day.

Although a single unusual day is not necessarily the beginning
of an outbreak, it may warrant further investigation. A total of
8 of the 10 most unlikely patients on August 25 (ie, patients
with very low probability findings given the expected prevalence
of modeled diseases in the ED) showed signs of a respiratory
illness. Starting on September 2, ILI Tracker noted 4 additional
unusual days within a single week, with the most unlikely
patients again showing signs of a respiratory illness. By
September 9, there were sufficient data to characterize these
anomalies in terms of the most prevalent findings.
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Figure 3. Daily empirical P values from June 1, 2014, to May 31, 2015.

Each day, d, we computed the expected number of patients with
each finding, f, based on the rate of that finding for each disease
and the prevalence of each disease in the ED on that day, with

the formula .

If patients with a novel disease are present in the ED, we expect
the actual number of findings in the data that are characteristic
of the novel disease to exceed the expected number of those
findings when assuming that only modeled diseases are present.
We identified the top 10 most excessive findings for one week
starting September 2. Figure 4 tracks the daily occurrence of
these findings from July to October 2014. There was a clear
increase in their frequency starting in the latter part of August.

During the late summer (late August and early September) of
2014, the ED of the UPMC Children’s Hospital of Pittsburgh
experienced an abrupt increase in children presenting with acute
respiratory illness, asthma exacerbation, and dyspnea. While
symptoms overlapped with common causes of
community-acquired viruses, they were unique based on the
severity of illness, the sheer volume of children seeking care,
and the timing being unusual for any of the annual common
acute respiratory viruses that usually circulate. Rapid testing
was negative for influenza and RSV. Even the full nucleic
acid–based clinically available assays were confusing as some
children tested positive for rhinovirus but were much more ill

than expected. The assay was not supposed to cross-react with
enterovirus, but it did.

During August and the fall of 2014, the CDC identified an
outbreak of EV-D68 in the United States, especially among
children [36]. As reported by the New Vaccine Surveillance
Network (NVSN) [37], common symptoms of EV-D68 include
cough, nasal congestion or rhinorrhea, wheezing, and shortness
of breath or dyspnea [38]. These symptoms were among the top
10 excess symptoms identified by the ILI Tracker during the
same time period (Figure 4). Although fever is often a common
symptom of many ILIs, it was neither a common symptom
identified by NVSN in children with EV-D68 nor was it among
the excess symptoms identified by ILI Tracker. Neither Topaz
nor the NVSN was designed to capture neurologic outcomes,
such as acute flaccid myelitis, which is a rare but particularly
severe neurologic consequence of EV-D68 leading to paralysis
[39]. All these factors support that the novel disease identified
by ILI Tracker is EV-D68.

On November 24, 2014, the ILI Tracker again signaled a day
with highly unusual patient findings. This was a weaker signal
(Figure 3) than the signal in late August and early September.
Nine of the 10 most unusual patients showed signs of a
respiratory illness. The ILI Tracker also noted an isolated
unusual day on May 13, 2015.
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Figure 4. Daily absolute counts of the top 10 excess findings from July to October 2014.

Experiment With a Synthetic Outbreak
ILI Tracker identified a novel outbreak in late August and
September of 2014. To further test the ILI Tracker, we created
a synthetic outbreak by identifying cases from September 1,
2014, to September 30, 2014, with upper respiratory infection,
respiratory distress, or chest wall retractions and artificially
adding them from March 1 to 30, 2015. Figure 5 shows the
empirical P values computed by ILI Tracker for the outbreak
year June 1, 2014, to May 31, 2015, with this new artificial
outbreak added to March. The thick black horizontal bars
indicate where these cases were copied from (September 1-30)

and the thin black horizontal bars indicate where they were
copied to (March 1-30). A total of 2787 of these unusual cases
from September 2014 were added to March 2015. The results
in Figure 5 support that the ILI Tracker was able to identify this
“outbreak” despite significant background activity from
influenza, RSV, hMPV, and PIV during that time as shown in
Figure 2. Note that the ILI Tracker produced a signal by the
second day of March at which time only 152 of these cases had
entered the ED. Note also that the ILI Tracker did not signal a
novel outbreak in March when the cases of the artificial outbreak
were not added to the data of that month.
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Figure 5. Daily empirical P values from June 1, 2014, to May 31, 2015, with a synthetic outbreak added to March 2015.

Comparison to an Alternate System
Autoregression is a standard method for outbreak detection
[40-42]. To better understand the ability of the ILI Tracker to
detect unmodeled outbreaks, we implemented an outbreak
system based on autoregression and compared its performance
with that of the ILI Tracker. We call the autoregression-based
system AR Alarm.

For each finding, f, on each day, d, we built an AR(7)
(autoregression with a lag term for each of the 7 previous days)
model using the daily counts for that finding up to (but not
including) the current day. We then used the model to predict
the number of patients with that finding for the current day and
called it predicted(f,d). We then set p(f,d)=predicted(f,d)/pts(d)
where pts(d) is the total number of patients on day d. Thus,
p(f,d) is the probability (predicted by the AR(7) model) that an
arbitrary patient on day d has finding f. We then compute the
probability (according to the AR(7) model) of seeing the actual
number of patients with finding f on day d, actual(f,d), with the
formula Pr(actual(f,d))=Binom(actual(f,d),pts(d),p(f,d)), where

Binom is the binomial distribution. We use the Simple Bayes
assumption and set the probability of the set of findings on the

current day, d, to , where {fi} is the set of findings.
We then compute an empirical P value of the findings on each
day using the method described in the “Detecting the Presence
of Unmodeled Diseases” section.

Figure 6 compares the empirical P values for ILI Tracker to
those from AR Alarm on the data from June 1, 2014, to May
31, 2015, including the artificial outbreak (described above)
added to March. After the first 60 days, when the systems are
calibrating themselves, they are in general agreement. Note,
however, that ILI Tracker notices the August to September
outbreak 14 days earlier than AR Alarm and with a stronger
signal. Also, AR Alarm produces a few isolated signals, while
ILI Tracker produces weaker signals (early October, early
January, early February, and late March). Note that the ILI
Tracker produces a strong signal and the AR Alarm produces
a weaker signal in March when the artificial outbreak was added
to the data.
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Figure 6. Comparison of empirical P values from ILI Tracker and AR Alarm for June 1, 2014 to May 31, 2015, with a synthetic outbreak added to
March 2015. AR: autoregression; ILI: influenza-like illness.

Runtime Analysis
Using a computer with 2 processors, each with six 1.6-GHz
cores, it took less than 1 minute to construct all the disease
models from the 4 years of training data.

Daily processing occurred in 3 phases. First, feature extraction
from ED patient care reports. Second, computation of disease
likelihoods for each patient. Third, computation of the expected
number of each modeled disease and the P value of the data for
each day.

On average, there were about 700 patients each day. Feature
extraction typically took about 5 minutes each day using a
computer with four 3.6-GHz cores. Computation of disease
likelihoods typically took less than 1 minute for the entire set
of patients on a given day. Given the likelihood for each patient,
the ILI Tracker algorithm takes less than 10 seconds to compute
the expected number of each modeled ILI and P value of the
data each day using a computer with four 2.5-GHz cores. Thus,
the total time to run the ILI Tracker per day on a desktop
computer was less than 10 minutes.

We note that feature extraction and computation of disease
likelihoods for each patient report are independent of the others.
Thus, additional health care facilities can be added to our
surveillance system and each can process their patient care
reports using their own hardware, which would maintain
run-time tractability. The runtime of the ILI Tracker algorithm
for a given day is O(P×D×F) for each day, where P is the
number of patients, D is the number of modeled diseases, and
F is the number of modeled findings. Processing time increases
linearly as patients, diseases, and features are added, and thus,
the algorithm is readily scalable.

Discussion

The performance of ILI Tracker during a 1-year period was
moderate for tracking PIV, strong for tracking RSV and hMPV,
and very strong for tracking influenza, as measured using
Pearson correlation between the tracking and the
laboratory-confirmed cases. Using Spearman correlation, ILI
Tracker’s performance was moderate for tracking PIV and
strong for tracking hMPV, RSV, and influenza.

JMIR Public Health Surveill 2024 | vol. 10 | e57349 | p. 11https://publichealth.jmir.org/2024/1/e57349
(page number not for citation purposes)

Aronis et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


As mentioned above, in late August 2014, ILI Tracker alerted
on an outbreak consistent with the EV-D68 outbreak that was
identified as present in the United States during that period by
the CDC. To our knowledge, that EV-D68 outbreak is the only
novel outbreak that was documented to have occurred during
the period of our study (June 1, 2014, to May 31, 2015). ILI
Tracker is intended to be used as a daily monitor that has its
alerts interpreted by clinicians and public health officials. It can
identify and output unusual patients for further evaluation by
such individuals. Approaches that use aggregate statistics (based
on overall counts of findings) cannot identify individual patients
who are likely to have an outbreak disease.

If ILI Tracker had been in operation during 2014 it would have
signaled a statistical anomaly among patients in late August
and provided a set of patients for further investigation. Based
on clinical judgment, these patients could be assessed, tested,
and possibly isolated. In some cases, samples might be obtained
for rapid sequencing. By early September, ILI Tracker could
also have provided a preliminary clinical description and
timeline of a cohort of unusual patients who turned out to have
findings consistent with an outbreak of EV-D68. In the future,
such information could help clinicians and public health officials
to detect, isolate, characterize, and identify such a novel disease
early in the outbreak.

A putative outbreak of an unmodeled disease also appears to
have occurred in late November and December of 2014 during
outbreaks of both RSV and influenza. Although these patients
could easily be lost among a large number of patients with RSV
and influenza, they are statistically unlikely to be among those
known diseases, according to the analysis by ILI Tracker.
Although this was a weak signal, it was statistically significant
enough to warrant further investigation. Again, if ILI Tracker
had been in operation at that time, it would have identified
patients for further evaluation. The source of that putative
outbreak remains an open question.

The unusual day detected on May 13, 2015 is likely an isolated
incident. Statistically, we should expect such incidents to occur

occasionally. ILI Tracker would provide a set of candidate
patients for consideration by clinicians and public health
officials in the region.

The results reported in this paper provide support that ILI
Tracker was able to track well 4 modeled ILI-like diseases over
a 1-year period, relative to laboratory-confirmed cases, and it
was computationally efficient in doing so. The results we
presented also provide support that the system was able to detect
a novel outbreak of EV-D68 early in an outbreak that occurred
in Allegheny County in 2014, as well as clinically characterize
that outbreak disease accurately. Detection was very efficient
computationally. In general, the ILI Tracker scales linearly in
the number of diseases and number of findings per disease.
Thus, it can be expanded to model many additional, known
outbreak diseases and their findings.

This work has some important limitations that we plan to address
in the future. Here, we assumed a small set of possible (unique)
diagnoses. In future work, we plan to extend ILI Tracker to
model additional (potentially co-occurring) respiratory diseases,
including adenovirus, enterovirus, and SARS-CoV-2. We
currently use the Topaz parser to extract a set of less than 100
findings selected specifically for their relevance to ILIs. We
plan to use the MetaMap system [43] to expand the set of
findings to many thousands that are encoded using Unified
Medical Language System concept unique identifiers [44]. In
addition, we plan to evaluate ILI Tracker and its extensions on
additional years of data from a broader range of hospitals. We
implicitly assume that patient care does not vary over time,
reporting is constant and comprehensive, and mild cases are
noted and documented (regardless of their primary diagnosis).

Our ultimate goal is to deploy an effective, free, and open-source
early-warning surveillance system for use in monitoring data
in hospital EDs. A preliminary version of the ILI Tracker
software will be available on GitHub [45] with updates and test
data planned for the future.
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