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Abstract

Background: Predicting vaccination behaviors accurately could provide insights for health care professionals to develop targeted
interventions.

Objective: The aim of this study was to develop predictive models for influenza vaccination behavior among children in China.

Methods: We obtained data from a prospective observational study in Wuxi, eastern China. The predicted outcome was
individual-level vaccine uptake and covariates included sociodemographics of the child and parent, parental vaccine hesitancy,
perceptions of convenience to the clinic, satisfaction with clinic services, and willingness to vaccinate. Bayesian networks, logistic
regression, least absolute shrinkage and selection operator (LASSO) regression, support vector machine (SVM), naive Bayes
(NB), random forest (RF), and decision tree classifiers were used to construct prediction models. Various performance metrics,
including area under the receiver operating characteristic curve (AUC), were used to evaluate the predictive performance of the
different models. Receiver operating characteristic curves and calibration plots were used to assess model performance.

Results: A total of 2383 participants were included in the study; 83.2% of these children (n=1982) were <5 years old and 6.6%
(n=158) had previously received an influenza vaccine. More than half (1356/2383, 56.9%) the parents indicated a willingness to
vaccinate their child against influenza. Among the 2383 children, 26.3% (n=627) received influenza vaccination during the
2020-2021 season. Within the training set, the RF model showed the best performance across all metrics. In the validation set,
the logistic regression model and NB model had the highest AUC values; the SVM model had the highest precision; the NB
model had the highest recall; and the logistic regression model had the highest accuracy, F1 score, and Cohen κ value. The LASSO
and logistic regression models were well-calibrated.

Conclusions: The developed prediction model can be used to quantify the uptake of seasonal influenza vaccination for children
in China. The stepwise logistic regression model may be better suited for prediction purposes.

(JMIR Public Health Surveill 2024;10:e56064) doi: 10.2196/56064
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Introduction

The population of China comprises over 200 million children
under the age of 15 years, accounting for approximately 10%
of the global population in that age band [1]. The incidence rate
of influenza infections among children aged ≤14 years was
estimated to be 15.86 per 1000 person-seasons, a notably
elevated figure in comparison to those of younger adults (5.17)
and older adults (2.37) in China [2]. In the realm of public health
interventions preventing influenza transmission, vaccination
stands as an important strategy. A study conducted in the United
States revealed that influenza vaccination averted 2.36 million
influenza-associated illnesses among children aged 6 months
to 17 years in the 2018-2019 season [3]. The technical influenza
vaccination guideline in China recommends the inoculation of
children aged 6 to 59 months as well as school-age children
against influenza [4]. Such recommendations were underpinned
by the rationale that children aged 6 to 59 months are at
heightened risk of developing severe symptoms subsequent to
infection, whereas school-age children, owing to their extensive
social interactions, might propagate the transmission of the
influenza virus [5,6]. However, a meta-analysis showed that
only one-quarter of children aged 6 months to 17 years in
mainland China were vaccinated against influenza [7].

Identifying individuals who are unlikely to receive the influenza
vaccine in the upcoming season could provide valuable insights
for public health strategies. For example, this information would
be essential for health care professionals and policy makers to
allocate resources effectively and develop targeted interventions
to increase vaccination uptake. Several efforts have been made
to develop a prediction model to identify vaccination uptake
behavior. Loiacono et al [8] developed and validated a logistic
regression model to predict adults’ influenza vaccine uptake in
England. Another logistic regression model was constructed by
Oster et al [9] using birth hospitalization records to predict
undervaccination status in the United States. An expanding
array of methodologies has been adopted for constructing
prediction models and their subsequent application within
clinical contexts, including Bayesian networks (BNs) and
machine learning (ML) models [10,11]. Models derived from
these diverse, adaptable, and intricate techniques have
demonstrated potential for enhanced predictive accuracy.
However, there are limited studies examining the performance
of BN and ML models in predicting vaccination behaviors.

A multitude of factors have been identified as influential in
influenza vaccine uptake, encompassing sociodemographic
factors (such as age and education), level of vaccine confidence,
and prior vaccine experiences [12,13]. Although Loiacono et
al [8] included sociodemographic factors, vaccination history,
and clinical conditions from primary care records as predictors
when developing their predictive model, few studies have
incorporated individuals’ vaccination intentions as predictors.
Individuals’ attitudes toward vaccines could potentially exert
a direct impact on their vaccination behaviors [14]. Therefore,
variables associated with these attitudes should be integrated
into prediction models to enhance the predictive performance.

In this study, we developed predictive models of influenza
vaccination behavior among children aged 6 months to 14 years
using different methods (BN, ML, and regression) and assessed
the performance metrics of these models.

Methods

Study Design and Participants
We performed a cross-section survey in Wuxi city of eastern
China between September 21 and October 17, 2020. Wuxi
(31.5704° N latitude and 120.3055° E longitude) has a densely
populated demographic (approximately 7.46 million residents)
and a well-developed transportation infrastructure, which
provide conducive conditions for the spread of influenza virus.
Thus, determining the factors that can accurately predict
influenza vaccination behaviors has practical implications,
potentially alleviating the influenza-related burden in the city.
Participants were recruited from six immunization clinics,
including Anzhen, Dongting, Huazhuang, Jiangxi, Meicun, and
Taihu, in Wuxi between September 21 and October 17, 2020
[15]. Parents bringing their child to the immunization clinic for
vaccination were encouraged to participate in our study. We
excluded children lacking an immunization record number
(which is used to track vaccination administration records) and
children aged >14 years. A total of 3009 participants were
recruited. Individuals aged ≥6 months are eligible to receive
the influenza vaccine in China [4,5]. To ensure that children
would be eligible for influenza vaccination (ie, aged ≥6 months)
at cohort entry, we excluded children born after March 2020
(n=626) (Figure 1).
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Figure 1. Flowchart of participant selection. Lasso: least absolute shrinkage and selection operator.

Ethical Considerations
The Ethics Committee of Wuxi Center for Disease Control and
Prevention granted approval for this study (2020No10). All
participants who consented to complete the survey were required
to sign informed consent forms. We assured participants that
their survey responses would remain anonymous. Participants
received a gift valued at 5 RMB (US $1=6.8148 RMB) upon
completing the survey.

Outcomes and Candidate Predictors
One year after the survey, we extracted the influenza vaccination
records for each child, including the vaccination time and site.
The immunization records were retrieved from the Jiangsu
Information Management System of Vaccination Cases [16].
The predicted outcome variable was influenza vaccination status
during the 2020-2021 season, specifically between October 18,
2020, and June 30, 2021 (the final date for the supply of
influenza vaccines in Wuxi during the 2020-2021 season).

Data on children’s characteristics such as age, sex, and firstborn
status were obtained at cohort entry. Since parents are mainly
responsible for children’s vaccinations, we also collected the
parents’ sociodemographic information, including age,
relationship to the child, education level, annual family income,
and occupation. Parental vaccine hesitancy was measured using
the 10-item Vaccine Hesitancy Scale based on a 5-point Likert
scale [17]. We reversed answers to items L5, L9, and L10 as
they are phrased negatively. The total score for all 10 items was
summed and the total maximum score was 50 points. We
established a cut-off value of 40, where scores ≤40 indicated
“high hesitancy” and scores >40 indicated “low hesitancy” [15].
A previous study indicated that the distance to the immunization

site was associated with vaccination behavior [18]. Therefore,
we investigated parents’perceptions of convenience to the clinic
and satisfaction with the clinic services using one question for
each aspect rated on a 5-point Likert scale. The ratings of
“strong agreement” and “agreement” were coded together into
“agree” and otherwise the responses were coded as “disagree.”
Parents were asked about their intention to have their children
vaccinated against influenza in the 2020-2021 season, with
answers of “yes,” “not sure,” or “no” possible. The responses
“no” and “not sure” were both included in the category “no” in
the analysis. We also developed the predictive models under
the conditions with and without combining “no” and “not sure”
for comparison. The prior influenza vaccination history (prior
to the 2020-2021 influenza season) was extracted as a predictor
from the electronic health record system. All covariates are
provided in Table S1 of Multimedia Appendix 1.

Model Building
The BN-based model was constructed using an iterative process
in which the network structure was gradually constructed
through a combination of manual construction and data-driven
methods. Initially, a blocklist of arcs (ie, arcs that cannot be
present in the network structure) was determined based on expert
knowledge and logical relationships (order of event occurrences)
using the variables collected. Using a scoring algorithm (the
hill-climbing algorithm), 200 network structures were learned
and constructed using bootstrap sampling based on all variables.
The frequency of each directed arc in the 200 network structures
was calculated, and arcs with frequencies higher than 60% were
retained to derive an average network structure [10,19]. The
variables not included in the network would then be excluded.
The obtained average network structure was further optimized
by removing illogical arcs (such as child’s sex to firstborn status)
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and adjusting the direction of arcs that did not align with the
logic (such as firstborn status to parents’ education level). The
resulting network structure served as the basis for Bayesian
posterior estimation, enabling the computation of conditional
probabilities for each node.

We considered both stepwise logistic regression and least
absolute shrinkage and selection operator (LASSO) regression.
In the initial construction of the logistic and LASSO regression
models, all variables were included. The logistic regression
model was progressively refined through backward stepwise
algorithms that systematically reduced variables by minimizing
the Akaike information criterion (AIC) [8]. The model with the
lowest AIC would be chosen as the prediction model. For
LASSO regression, variable selection was achieved by
penalizing the absolute values of the coefficients of the
variables. As the tuning parameter λ increases, coefficients of
more variables shrink toward 0, which could result in a sparse
model where only a subset of predictors are retained in the final
model [8]. Through determining the optimal value of λ using
10-fold cross-validation on the training set, we could minimize
the prediction error. We report the estimated coefficients of
variables in the final logistic regression and LASSO regression
to indicate the contribution of variables.

The support vector machine (SVM), naive Bayes (NB), random
forest (RF), and decision tree classifier (DTC) algorithms were
also used to construct prediction models. All variables collected
were included in the SVM, NB, and RF models. Ranges were
set for cost and   in the SVM model and a grid search was
performed within the specified ranges to optimize the
hyperparameters. Initially, all variables were included in the
DTC model. We calculated the cost-complexity parameter value
that yielded the lowest cross-validated error and pruned the tree
model accordingly (ie, some variables were excluded) to prevent
overfitting in the DTC model, resulting in a new tree to predict.

Statistical Analysis
The variables were characterized by the frequency of occurrence.
The data set was randomly split into training and validation sets
at a 7:3 ratio. The training set was used for constructing the
prediction model, whereas the validation set was used to validate
the model and assess the model’s performance. The children’s
vaccination status was classified based on the predicted
probability following the approach proposed by Loiacono et al
[8]. Specifically, a predicted probability ≤0.50 was assigned to
indicate nonreceipt of vaccination, while a probability above
0.50 indicated receipt of vaccination. Receiver operating
characteristic (ROC) curves were plotted using sensitivity and
1–specificity. We evaluated model performance using various

metrics, including accuracy, precision, recall, F1 score, area
under the ROC curve (AUC), and Cohen κ (see Table S2 in
Multimedia Appendix 1). Calibration plots were also generated
to compare the predicted outcomes from the model with the
observed outcomes, providing insights into the alignment
between predicted and actual probabilities [20]. Additionally,
we performed sensitivity analyses, excluding children who were
too young to have an influenza vaccination history (aged less
than 6 months in September 2019). We also developed a model
for children aged 6 months to 5 years as this is highlighted as
the high-risk demographic for influenza in the guidelines [4,5].

All analyses were performed using R packages (bnlearn 4.8.1
and gRain 1.3.9 for the BN and NB models, MASS 7.3-51.5
for the logistic regression, glmnet 4.1-7 for the LASSO
regression, e1071 1.7-13 for the SVM model, randomForest
4.6-12 for the RF model, and rpart 4.1.19 for the DTC model).
We used Netica software 6.09 [21] to perform BN inference.
Statistical significance was determined at a P value threshold
of <.05 using a two-sided test.

Results

Participant Characteristics
The analyses included a total of 2383 individuals. Overall,
56.9% (1356/2383) of parents expressed a willingness to
vaccinate their children against influenza, whereas 26.3%
(627/2383) of children had received the influenza vaccine during
the 2020-2021 season. The vaccine uptake status was
significantly associated with various variables, including the
children’s age, firstborn status, and previous influenza vaccine
history, as well as parental factors such as age, educational level,
annual household income, vaccine hesitancy, and willingness
to vaccinate (Table 1). Among parents expressing an
unwillingness to vaccinate their child, a notable proportion of
children (90/1027, 8.7%) received vaccination. Among parents
indicating a willingness to vaccinate their child, a considerable
proportion of children (819/1356, 60.4%) remained unvaccinated
(Table S3 in Multimedia Appendix 1). These results suggest
that within the subset of parents expressing a willingness to
vaccinate their children, factors including younger age of
children, firstborn status, and absence of prior influenza
vaccination, as well as lower parental education level and
household income, may pose barriers to eventual vaccine uptake.
The training data set comprised 1668 children and the validation
data set included 715 children. There were no significant
differences in the variables between the training and validation
data sets (see Table S4 in Multimedia Appendix 1).
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Table 1. Characteristics of participants.

P valuedfχ2Receiving influen-
za vaccine
(n=627), n (%)

Not receiving in-
fluenza vaccine
(n=1756), n (%)

All (N=2383), n (%)Characteristic

Children

<.0014523.02Age group

85 (13.6)1144 (65.1)1229 (51.6)6 months-2 years

393 (62.7)360 (20.5)753 (31.6)3-5 years

130 (20.7)219 (12.5)349 (14.6)6-8 years

14 (2.2)23 (1.3)37 (1.6)9-11 years

5 (0.8)10 (0.6)15 (0.6)≥12 years

.5510.36Sex

313 (49.9)901 (51.3)1214 (50.9)Male

314 (50.1)855 (48.7)1169 (49.1)Female

<.001118.78Firstborn

461 (73.5)1124 (64.0)1585 (66.5)Yes

166 (26.5)632 (36.0)798 (33.5)No

<.0011226.16Prior influenza vaccine uptake

122 (19.5)36 (2.1)2225 (93.4)No

505 (80.5)1720 (97.9)158 (6.6)Yes

Parents

.1412.22Relationship with child

482 (76.9)1297 (73.9)1779 (74.7)Mother

145 (23.1)459 (26.1)604 (25.3)Father

<.001495.27Age group (years)

8 (1.3)155 (8.8)163 (6.8)<26

150 (23.9)649 (37)799 (33.5)26-30

311 (49.6)648 (36.9)959 (40.2)31-35

129 (20.6)248 (14.1)377 (15.8)36-40

29 (4.6)56 (3.2)85 (3.6)≥41

<.001340.98Education level

39 (6.2)224 (12.8)263 (11.0)Junior high school or below

92 (14.7)375 (21.4)467 (19.6)High school graduate or equiva-
lent

441 (70.3)1046 (59.6)1487 (62.4)College or equivalent

55 (8.8)111 (6.3)166 (7.0)Master’s degree or above

<.001366.87Annual household income (US $)

27 (4.3)140 (8.0)167 (7.0)<7669

121 (19.3)556 (31.7)677 (28.4)7669 to <15,337

158 (25.2)454 (25.9)612 (25.7)15,337 to <23,006

321 (51.2)606 (34.5)927 (38.9)≥23,006

.8610.03Health care occupation

38 (6.1)110 (6.3)148 (6.2)Yes

589 (93.9)1646 (93.7)2235 (93.8)No

<.001113.64Vaccine hesitancy
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P valuedfχ2Receiving influen-
za vaccine
(n=627), n (%)

Not receiving in-
fluenza vaccine
(n=1756), n (%)

All (N=2383), n (%)Characteristic

21 (3.3)133 (7.6)154 (6.5)High

606 (96.7)1623 (92.4)2229 (93.5)Low

<.0011286.65Willingness to accept influenza vaccine

537 (85.6)819 (46.6)1356 (56.9)Yes

90 (14.4)937 (53.4)1027 (43.1)No

.3011.07Convenience of immunization clinic

402 (64.1)1085 (61.8)1487 (62.4)Agree

225 (35.9)671 (38.2)896 (37.6)Disagree

.2211.49Satisfaction with immunization clinic service

608 (97.0)1718 (97.8)2326 (97.6)Agree

19 (3.0)38 (2.2)57 (2.4)Disagree

Model Training
The final BN framework consisted of 10 nodes and 11 arcs,
including children’s age, firstborn status, previous influenza
vaccine history, parental age, education level, annual household
income, vaccine hesitancy, willingness to vaccinate, satisfaction
with clinic services, and vaccination behavior (Figure S1 in
Multimedia Appendix 1). Child’s sex, relationship with child,
parent’s occupation, and convenience to the clinic were not
included in the BN framework. Child’s age, influenza vaccine
history, and willingness to vaccinate were directly linked to the
influenza vaccination behavior. Additionally, parent’s age had
an indirect association with the vaccination behavior. When the
BN receives information from individual findings, probabilistic
reasoning is used to determine the maximum a posteriori
probability of receiving the vaccine. For instance, if parents
expressed a willingness to vaccinate their child and the child
had been vaccinated against influenza previously, the probability
of receiving the influenza vaccine increased from 26.6% to
85.6% (Figure S1 in Multimedia Appendix 1).

A total of 6 variables were ultimately included in the logistic
regression model (Table S5 in Multimedia Appendix 1). The

LASSO regression model (Table S5 in Multimedia Appendix
1) included 10 variables, with the tuning parameter log(λ) set
at –5.438 (Figure S2 in Multimedia Appendix 1). Child’s age,
prior influenza vaccine uptake, and parents’ willingness to
vaccinate had the greatest contributions to the logistic and
LASSO regression models according to estimated coefficient
values.

Model Performance
Model performance metrics are summarized in Table 2. Among
the seven models constructed within the training set, the RF
model demonstrated the best performance, with the highest
values in AUC, accuracy, precision, recall, F1 score, and Cohen
κ. Within the validation set, the logistic regression model and
the NB model achieved the highest AUC values, the SVM model
had the highest precision, and the NB model had the highest
recall. The logistic regression model had the highest accuracy,
F1 score, and Cohen κ values. The performance of the seven
models was similar when using different methods of combining
answers related to vaccination willingness (see Table S6 in
Multimedia Appendix 1).
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Table 2. Model performance metrics.

Cohen κF1 scoreRecallPrecisionAccuracyAUCa (95% CI)Model

Training data

0.5400.6570.6360.6800.8260.861 (0.842-0.881)Bayesian network

0.5780.6870.6740.7000.8380.875 (0.856-0.894)Logistic regression

0.5650.6770.6630.6910.8330.877 (0.858-0.895)LASSOb regression

0.6250.7160.6630.7780.8620.906 (0.890-0.922)Support vector machine

0.5700.6830.6790.6870.8340.870 (0.851-0.889)Naive Bayes

0.7170.7860.7270.8550.8960.942 (0.930-0.955)Random forest

0.5780.6830.6490.7220.8420.850 (0.828-0.872)Decision tree

Validation data

0.5010.6280.6120.6460.8100.829 (0.793-0.865)Bayesian network

0.5160.6440.6440.6440.8130.849 (0.818-0.881)Logistic regression

0.4910.6210.6060.6370.8060.848 (0.816-0.880)LASSO regression

0.4870.6110.5640.6670.8110.845 (0.813-0.877)Support vector machine

0.5070.6410.6650.6190.8040.849 (0.817-0.880)Naive Bayes

0.4550.5890.5530.6300.7970.825 (0.790-0.861)Random forest

0.4800.6170.6170.6170.7990.813 (0.776-0.850)Decision tree

aAUC: area under the receiver operating characteristic curve.
bLASSO: least absolute shrinkage and selection operator.

Within the training set, the prediction of receiving the vaccine
was well-calibrated with the observed vaccination behavior
using the DTC, LASSO, and logistic regression models (Figure
S3 in Multimedia Appendix 1). Within the validation data set,
the LASSO and logistic regression models consistently provided
more reliable predicted probabilities. For the predicted
probabilities between 0.25 and 0.50, the SVM, RF, and DTC
models tended to overpredict, while the NB model tended to
underpredict. For predicted probabilities over 0.50, all seven
models displayed a bias toward underprediction.

Sensitivity Analysis
A total of 1699 participants aged <6 months in September 2019
were included for the sensitivity analysis (Table S7 in
Multimedia Appendix 1). The RF model exhibited the best
performance within the training set, achieving the highest AUC
(0.944, 95% CI 0.932-0.956), accuracy (0.881), precision
(0.832), recall (0.813), F1 score (0.822), and Cohen κ (0.733)
values (see Figure S4 and Table S8 in Multimedia Appendix
1). Within the validation set, the LASSO regression model had
the highest AUC (0.880, 95% CI 0.849-0.910), followed by the
logistic regression model (0.878, 95% CI 0.848-0.909). The NB
and RF models both had the highest accuracy (0.816), while
the DTC model had the highest precision (0.774). The NB model
achieved the highest recall, F1 score, and Cohen κ values at
0.698, 0.719, and 0.582, respectively.

Regarding the calibration of predictions, within the training set,
the predictions of the DTC, LASSO regression, logistic
regression, and BN models were generally well-calibrated with
the observed behavior (Figure S5 in Multimedia Appendix 1).
In the validation set, none of the seven models demonstrated

good calibration. When the predicted probabilities were above
0.50, the DTC, BN, LASSO regression, logistic regression, and
SVM models exhibited a bias toward overprediction, while the
NB and RF models showed a bias toward underprediction.

A total of 1982 participants aged 6 months to 5 years were
analyzed separately (Table S9 in Multimedia Appendix 1).
Within the training set, the RF model also exhibited the highest
values across all performance metrics (Figure S6 and Table S10
in Multimedia Appendix 1). Within the validation set, the NB
model showed the highest AUC (0.884, 95% CI 0.851-0.916),
accuracy (0.860), precision (0.727), and Cohen κ (0.607) values,
whereas the BN model had the highest recall (0.713) and F1
score (0.701). Within the validation set, the SVM and logistic
regression models showed better calibration than the other
models (Figure S7 in Multimedia Appendix 1).

Discussion

Principal Findings
In the study, we developed models to predict the likelihood of
influenza vaccination uptake among children aged 6 months to
14 years in the upcoming season. We conducted a survey in
Wuxi city, eastern China, between September 21 and October
17, 2020, and extracted the participants’ influenza vaccination
records after 1 year. Data from a total of 2383 participants were
included in the analysis. The RF model demonstrated superior
performance metrics within the training set, whereas the logistic
regression model exhibited a narrow margin of performance
superiority within the validation set. Both the logistic and
LASSO regression models showed good calibration. Among
these models, the stepwise logistic regression approach,

JMIR Public Health Surveill 2024 | vol. 10 | e56064 | p. 7https://publichealth.jmir.org/2024/1/e56064
(page number not for citation purposes)

Wang et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


characterized by its simplicity and favorable interpretability,
emerged as a viable candidate for predictive purposes.

The factors associated with influenza vaccination included the
child’s age, child’s previous influenza vaccine uptake, parental
age, educational level, annual household income, parental
vaccine hesitancy, and influenza vaccination willingness.
Among these factors, previous vaccine uptake emerged as a
strong positive factor, as supported by previous studies
[12,22,23]. Individuals who personally witnessed the positive
impact due to vaccination, such as a decreased likelihood of
infection, were more likely to continue receiving vaccinations.
To ensure the accuracy of this predictor, we obtained this
variable directly from the electronic record system rather than
relying on participants’ recall, thereby enhancing its reliability.
Compared to children aged between 6 months and 2 years, older
children were more likely to be vaccinated against influenza.
This may be attributed to their enrollment in kindergarten or
school, where peer influence and social networks potentially
foster vaccination uptake [24]. Parents were concerned about
the adverse effects of vaccination on younger children, which
may also decrease the likelihood of young children receiving
the influenza vaccine. Additionally, children from households
with higher levels of parental education or income were more
prone to receiving the influenza vaccine in our study. However,
evidence regarding the relationship between parental education,
income, and children’s influenza vaccination is inconsistent
[22,23]. We also analyzed the factors influencing parents who
expressed a willingness to vaccinate their children but ultimately
did not do so. In addition, participants might be more inclined
to express willingness toward influenza vaccination due to social
desirability bias [16].

Our results did not reveal superior predictive performance of
the ML methods over the logistic regression model, which was
consistent with the outcomes of a previous systematic review
by Christodoulou et al [25]. The strength of ML lies in its ability
to handle high-dimensional data [26]. In instances characterized
by constrained sample sizes and a limited number of variables,
ML may be susceptible to overfitting. The BN model often
involves capturing conditional dependencies among modeled
variables. If the data set is confined or the interrelationships
between variables are not accurately captured, the predictive
performance of a BN model might diminish. The number of
predictors and the sample size of this study were limited, which
might potentially constrain the purported advantages associated
with some complex methodologies such as ML and BN models.
In general, ML techniques require more than 10 instances for
each predictor to mitigate the risk of overfitting [26].
Nonetheless, despite satisfying this criterion, challenges such
as instability and high optimism may persist [27]. The minimum
sample size required for predictive models constructed with
ML and BN approaches is still being explored [28,29].

In the sensitivity analysis, RF still showed the best performance
within the training set and the performance metrics of seven
models did not show substantial discrepancies within the test
set. Additionally, we did not find any model that showed a
prominent advantage in terms of calibration capability. Logistic
regression might still be the most suitable tool to predict

vaccination behaviors owing to its simplicity and favorable
interpretability.

Implications for Practice
Our findings offer valuable insight for practice, allowing for
prediction of the likelihood of children receiving the influenza
vaccine. These modeling results can enable health care
professionals to tailor their strategies based on the predicted
probabilities. When dealing with children who are highly likely
to be vaccinated, health care workers could save time and
simplify the decision-making process [8]. For example, they
could leverage messaging systems or electronic letters to provide
reminders [30,31] or they could inform parents about the
accessibility of the influenza vaccine during medical
consultations. These efforts could particularly benefit children
with a low predicted probability of vaccination. Health care
workers can also use various communication techniques such
as motivational interviewing and improvisational theater to
encourage vaccination, which are known for their persuasive
and respectful features [32,33]. These approaches can help to
identify barriers and increase vaccine confidence, thereby
improving vaccine uptake.

Limitations
Our study has several limitations. First, in China, adherence to
mandatory vaccination requirements prior to school enrollment
is imperative [34]. Noncompliance with these vaccination
mandates results in exclusion from school attendance.
Consequently, parents were compelled to accompany their
children to immunization clinics for vaccination administration.
However, the recruitment of participants solely from
immunization clinics may still introduce selection bias,
potentially limiting the representativeness of the study
population to the general population of children. In addition,
the data collection was limited to Wuxi city in eastern China.
Although we performed internal validation, the model has not
been externally validated in large samples or diverse locations.
Second, vaccination behavior is influenced by various factors,
including parental perceptions of susceptibility to influenza, the
child’s health status, and vaccine policies. To enhance the
performance of the model, it is important to explore additional
factors that contribute to vaccination behavior and incorporate
them into the modeling. Third, influenza vaccination willingness
may vary across seasons and our study focused on a specific
time frame. To account for this variability, future research
should consider conducting season-specific surveys to capture
the changing dynamics of vaccination willingness.

Conclusion
Our findings indicate that the influenza vaccination behavior
for children aged 6 months to 14 years could be identified using
the established predictive model. We propose that the stepwise
logistic regression model with high accuracy and a
straightforward modeling methodology could be better suited
for such prediction tasks. Further validation of the model in
larger and more diverse samples is necessary. More critical
predictors should be considered to increase the accuracy and
reliability of predicting influenza vaccination behavior among
children.
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