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Abstract

Background: The relationship between 24-hour rest-activity rhythms (RARs) and risk for dementia or mild cognitive impairment
(MCI) remains an area of growing interest. Previous studies were often limited by small sample sizes, short follow-ups, and older
participants. More studies are required to fully explore the link between disrupted RARs and dementia or MCI in middle-aged
and older adults.

Objective: We leveraged the UK Biobank data to examine how RAR disturbances correlate with the risk of developing dementia
and MCI in middle-aged and older adults.

Methods: We analyzed the data of 91,517 UK Biobank participants aged between 43 and 79 years. Wrist actigraphy recordings
were used to derive nonparametric RAR metrics, including the activity level of the most active 10-hour period (M10) and its
midpoint, the activity level of the least active 5-hour period (L5) and its midpoint, relative amplitude (RA) of the 24-hour cycle
[RA=(M10-L5)/(M10+L5)], interdaily stability, and intradaily variability, as well as the amplitude and acrophase of 24-hour
rhythms (cosinor analysis). We used Cox proportional hazards models to examine the associations between baseline RAR and
subsequent incidence of dementia or MCI, adjusting for demographic characteristics, comorbidities, lifestyle factors, shiftwork
status, and genetic risk for Alzheimer's disease.

Results: During the follow-up of up to 7.5 years, 555 participants developed MCI or dementia. The dementia or MCI risk
increased for those with lower M10 activity (hazard ratio [HR] 1.28, 95% CI 1.14-1.44, per 1-SD decrease), higher L5 activity
(HR 1.15, 95% CI 1.10-1.21, per 1-SD increase), lower RA (HR 1.23, 95% CI 1.16-1.29, per 1-SD decrease), lower amplitude
(HR 1.32, 95% CI 1.17-1.49, per 1-SD decrease), and higher intradaily variability (HR 1.14, 95% CI 1.05-1.24, per 1-SD increase)
as well as advanced L5 midpoint (HR 0.92, 95% CI 0.85-0.99, per 1-SD advance). These associations were similar in people
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aged <70 and >70 years, and in non–shift workers, and they were independent of genetic and cardiovascular risk factors. No
significant associations were observed for M10 midpoint, interdaily stability, or acrophase.

Conclusions: Based on findings from a large sample of middle-to-older adults with objective RAR assessment and almost
8-years of follow-up, we suggest that suppressed and fragmented daily activity rhythms precede the onset of dementia or MCI
and may serve as risk biomarkers for preclinical dementia in middle-aged and older adults.

(JMIR Public Health Surveill 2024;10:e55211) doi: 10.2196/55211
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Introduction

Dementia represents a major public health concern with
profound social, economic, and health care implications, and it
is a leading cause of disability and dependency among the older
adult population. It is estimated that over 55 million individuals
worldwide are affected by dementia [1]. As the global
population ages, understanding the etiology and potential risk
factors associated with dementia has become a critical area of
research. While the pathogenesis of dementia remains
multifactorial and complex, recent studies have underscored
the link of disrupted daily rest-activity rhythms (RARs) to
cognitive decline and the development of dementia in older
adults [2,3].

The RAR is governed by the circadian system and interacts with
the daily cycles of behavioral and environmental changes, which
is crucial for maintaining optimal physiological functioning and
coordination of bodily processes [4]. The circadian system
consists of a network of circadian clocks in the brain and
peripheral organs, and these clocks can be affected or reset by
environmental conditions, work schedules and social patterns
via different time cue inputs including light exposure, food
intake, and physical activity [5]. The importance of
well-functioning circadian regulation in overall health has been
widely recognized. Studies have demonstrated that disruptions
in the RAR are associated with various adverse health
conditions, including cancer [6], cardiovascular diseases [7],
digestive diseases [6], respiratory diseases [6,8], and depression
[9]. In recent years, emerging evidence has suggested that
disruptions in the RAR could contribute to neurodegenerative
processes and cognitive impairment [2,10,11]. However, there
are notable limitations in previous studies such as small sample
size [12-17], cross-sectional design [10,18-27], focusing on
only older population [12,14-17], and short follow-up duration
[14,15].

In this study, we used data from more than 94,000 participants
aged 43-79 years in a large prospective cohort study, the UK
Biobank (UKB), with at least 6 continuous days of wrist
actigraphy recording and up to 7.5 years of follow-up to examine
the association of RAR measures with future risk of dementia
or mild cognitive impairment (MCI). We also explored the
potential effects of age, genetics, and shiftwork on this
association. We hypothesized that disrupted RAR patterns such
as suppressed and fragmented 24-hour activity rhythms are
associated with a higher risk of developing dementia or MCI.

Methods

Study Population and Data Source
We used longitudinal data on UKB participants (age range at
baseline 43-79 years; 54% female) [28]. Upon enrollment, UKB
participants completed a series of questionnaires that collected
their demographic, lifestyle, and medical history information.
Participants consented to releasing their electronic health records
from the United Kingdom’s centralized National Health Service
(NHS), which were then stored in the UKB’s Hospital Inpatient
Data library [29]. In the UKB cohort, 103,711 participants
completed actigraphy assessments between 2013 and 2015 (2.8
to 9.7 years after enrollment) [29]—the baseline of this study.
We used follow-up data until September 2021 (maximum and
median follow-up after actigraphy: 7.5 and 5 years,
respectively). After excluding those participants with poor
calibration of activity counts, significant gaps in data likely due
to off-wrist periods, <6 days of collected data, dementia or MCI
at baseline, or any missing covariate, 91,517 participants were
included in this study.

Ethical Considerations
The UKB received approval from the North West Multi-centre
Research Ethics Committee (11/NW/03820; 16/NW/0274;
21/NW/0157). This study was conducted under the terms of the
UKB (33883) and Mass General Brigham Institutional Review
Board (#2018P000356).

Assessment of RARs
Participants wore triaxial accelerometer devices (Axivity AX3;
Axivity Ltd) for up to 7 days during the collection period. Prior
actigraphy assessment of older adults [30,31] and existing
criteria from the UKB [32] were used to perform quality checks.
Activity counts in each 15-second epoch were derived from
accelerometer data sampled at ~100 Hz (see Multimedia
Appendix 1 [29,33]). The first 6 days of activity counts were
used to obtain the following nonparametric RAR measures [34]:
(1) activity counts during the most active 10-hour period of the
24-hour cycle (M10) and (2) the midpoint of the M10 period
(M10 midpoint); (3) activity counts during the least active
5-hour period of the 24-hour cycle (L5)—likely representing
hours during sleep, and (4) the timing midpoint of the L5 period
(L5 midpoint); (5) relative amplitude (RA) calculated as
(M10-L5)/(M10+L5)—representing the robustness of a 24-hour
rest-activity cycle; (6) interdaily stability (IS) that quantifies
the stability of the 24-hour rhythm between different days
(Multimedia Appendix 2); and (7) intradaily variability (IV)
that describes the fragmentation of the rhythm (Multimedia
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Appendix 2). Cosinor analysis was also performed to derive 2
additional measures of 24-hour activity rhythms: the amplitude
(midline to peak) and acrophase (time of the peak) of the
24-hour rhythm. All RAR data analyses were performed using
the eZActi2 software [35,36].

Assessment of Dementia and MCI
Study participant hospitalization records were kept within the
UK’s NHS during the follow-up period before being released
by the UKB. The UKB provided algorithmically defined
incidence of health matters from ICD-10 (International
Classification of Disease, 10th Revision) codes. We obtained
data from clinical coding of dementia (ICD-10 code: F05) and
MCI (ICD-10 code: F0.67), and from the UKB algorithm “date
of all-cause dementia” (field 42018). Age at death or the date
of death was based on the death certificates in the NHS. The
first occurrence of dementia or MCI (time-to-event) was the
first date of diagnosis relative to the actigraphy assessment date.

Assessment of Covariates
The following covariates that may affect RARs were considered
in this study: (1) demographics, including age at actigraphy,
male or female designated sex of individuals, self-reported
ethnicity as European or non-European, college-level education
(reported as yes or no), and the Townsend deprivation index;
(2) comorbidities, including sleep apnea (based on ICD-10 code
G47.30), circulatory disease (based on reports of high
cholesterol, diabetes, hypertension, ischemic heart disease,
smoking, and peripheral vascular disease), BMI >30, and
morbidity burden (classified at the time of actigraphy as none,
moderate, or high based on previously used methods that
summed the presence of diseases or disorders of the endocrine,
connective tissue, gastrointestinal, hematological,
musculoskeletal, immune, renal, and respiratory systems as well
as any cancers) [37-40]; (3) lifestyle, including alcohol intake
(categorized by daily use, 3-4 times per week, 1-2 times per
week, a few times per month, and never), smoking status
(categorized as current, previous, and never); (4) shiftwork (yes
or no); and (5) genetics based on the polygenic risk score (PRS)
for Alzheimer disease. We calculated the single PRS for
Alzheimer disease using the PRS continuous shrinkage [41]
method. This method calculates posterior effect size from
genome-wide association study summary statistics with models
comprising information of local linkage disequilibrium patterns,
and thus reduces PRS error and improves performance. In this
study we used genome-wide association study summary statistics
from a recent study for Alzheimer disease [42], and the linkage
disequilibrium reference panel matrices from the UKB. The
PRS continuous shrinkage default settings were used, and after
deriving the posterior summary statistics, we used PLINK2
[43,44].

Statistical Analysis
Cox proportional hazard models were used to assess the
associations of RAR measures with the subsequent incidence

of dementia or MCI. The results were reported as hazard ratios
(HRs) with corresponding 95% CIs. For each RAR measure
(except M10 midpoint, L5 midpoint, and phase), participants
were divided into 4 quartiles (Q1-Q4). The highest quartile (Q4)
was used as a reference for RA, M10, IS, and 24-hour amplitude;
the lowest quartile (Q1) was used as a reference for L5 and IV.
These reference levels were chosen based on prior findings and
our hypothesis regarding the direction of the association of each
RAR measure with the risk of dementia and MCI, that is, the
level of the RAR measure that is hypothesized to be linked to
the lowest risk of developing dementia was considered as the
reference [37]. Acrophase, M10 midpoint, and L5 midpoint
were categorized into 3 tertiles: earlier (6:00 AM-1:34 PM for
acrophase, 6:00 AM-12:58 PM for M10 midpoint, and
noon-2:47 AM for L5 midpoint), middle (1:34 PM-2:25 PM
for acrophase, 12:58 PM-2:01 PM for M10 midpoint, and 2:47
AM-3:44 AM for L5 midpoint), and later (2:25 AM-6:00 AM
for acrophase, 2:01 AM-6:00 AM for M10 midpoint, and 3:44
AM-noon for L5 midpoint) groups, and the middle groups were
used as the reference [14,15,17]. Separate Cox models were
also used to obtain HRs for 1 SD change in each RAR measure.
Secondary analyses were performed to investigate (1) the
associations between RAR measures and the risk of developing
dementia (by excluding participants who only developed MCI);
(2) the associations between RAR measures and risk of
developing dementia or MCI after excluding those participants
who were shift workers at baseline; (3) the interaction effects
of Alzheimer disease PRS (<median PRS vs >median PRS) and
RAR measures on the risk of developing dementia or MCI (by
including interaction terms and also stratifying participants
based on their PRS values); and (4) the interaction effects of
age (<70 vs ≥70 years) and RAR measures on the risk of
developing dementia or MCI (by including interaction terms
and also stratifying participants based on their age). All
statistical analyses were performed using JMP Pro (version 16,
SAS Institute).

Results

Participant Characteristics
Table 1 describes the demographic, lifestyle, and clinical
comorbidity data gathered from the 91,517 UKB participants
who were included in this study. Most participants were of
White European descent (>95%). In comparison to the 90,962
participants who did not develop dementia or MCI, those who
did (n=555) were older (69.6 vs 62.4 years) and more likely to
be male (n=308, 55.5% vs n=39,758, 43.7%), had lower levels
of education (n=215, 38.7% vs n=39,372, 43.3% attended
college), had a higher prevalence of sleep apnea (n=10, 1.8%
vs n=771, 0.8%), and circulatory system disease (n=261, 47%
vs n=22,273, 24.4%), had a higher morbidity burden (2.0, SD
1.8 vs 1.1, SD 1.3), and were more likely to be current or past
smokers (n=40, 7.2% vs n=6271, 6.9% and n=342, 61.6% vs
n=48,428, 53.2%).
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Table 1. Baseline demographics, lifestyle, and clinical comorbidities of participants (n=91,517), by dementia or MCIa status at follow-upb.

Participants who did not develop dementia or
MCI (n=90,962)

Participants who developed dementia
or MCI (n=555)

Demographicsc

62.4 (7.8)69.6 (5.4)Age at actigraphy (years), mean (SD)

Sex, n (%)

39,758 (43.7)308 (55.5)Male

51,204 (56.3)247 (44.5)Female

39,372 (43.3)215 (38.7)Attended college, n (%)

45,007 (49.5)274 (49.4)Townsend deprivation index (higher)d, n (%)

87,951 (96.7)535 (96.4)European ethnic background

Rest-activity rhythmicity characteristics, mean (SD)

0.956 (0.035)0.953 (0.047)Relative amplitude

33.3 (15.9)28.0 (15.9)Amplitude (24-hour, AUe)

149,468 (61,082)127,003 (58,873)M10f (countg)

2367 (2565)2708 (2622)L5h (count)

14.02 (1.24)13.79 (1.18)Phase (hours after midnight)

0.91 (0.24)0.95 (0.24)IVh, AU

0.52 (0.13)0.54 (0.13)ISi, AU

Comorbidities

771 (0.8)10 (1.8)Sleep apnea, n (%)

22,273 (24.4)261 (47)Circulatory system disease, n (%)

17,586 (19.3)125 (22.5)BMI > 30 kg/m2, n (%)

1.1 (1.3)2.0 (1.8)Morbidity burden (number of diagnoses), mean (SD)

Alcohol intake, n (%)

20,833 (22.9)160 (28.8)Daily

23,643 (26.0)117 (21.1)3 to 4 times per week

22,830 (25.1)104 (18.7)Once or twice per week

18,522 (20.4)114 (20.5)Few times per month

5134 (5.6)60 (10.8)Never

Smoking status, n (%)

6271 (6.9)40 (7.2)Current

48,428 (53.2)342 (61.6)Previous

36,263 (39.9)173 (31.2)Never

7351 (8.1)18 (3.2)Shiftwork, n (%)

aMCI: mild cognitive impairment.
bCardiovascular disease means the presence of any of the following: hypertension, high cholesterol, smoking, diabetes, ischemic heart disease, and
peripheral vascular disease.
cData come from recruitment between 2.8 and 9.7 years before actigraphy.
dParticipants that scored above the median Townsend deprivation index.
eAU: arbitrary unit.
fM10: activity level of the most active 10-hour period.
gCount: relative mean change in acceleration.
hL5: activity level of the least active 5-hour period.
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iIV: intradaily variability.
jIS: interdaily stability.

RARs and Incident Dementia or MCI
Table 2 presents multivariable-adjusted HRs for dementia or
MCI associated with RAR metrics when considered as quartiles
of exposure or per SD difference. Figure 1 shows survival plots
for incident dementia or MCI associated with RAR metrics.
The risk of dementia or MCI was statistically higher in those
with more suppressed and fragmented 24-hour activity rhythms
as quantified by lower RA (multivariable-adjusted HR per 1-SD
decrease=1.23, 95% CI 1.16-1.29; Q1 vs Q4, HR 1.88, 95% CI
1.46-2.41; Figure 1A), lower M10 (multivariable-adjusted HR
per 1-SD decrease=1.28, 95% CI 1.14-1.44; Q1 vs Q4, HR 1.69,
95% CI 1.30-2.19; Figure 1B), higher L5 (multivariable-adjusted
HR per 1-SD increase=1.15, 95% CI 1.10-1.21; Q4 vs Q1, HR
1.51, 95% CI 1.19-1.91; Figure 1C), and larger IV
(multivariable-adjusted HR per 1-SD increase=1.14, 95% CI
1.05-1.24; Q4 vs Q1, HR 1.56, 95% CI 1.20-2.02; Figure 1D).
Consistently, the risk of dementia or MCI was statistically higher
in those with smaller 24-hour amplitude based on cosinor
analysis (multivariable-adjusted HR per 1-SD decrease=1.32,
95% CI 1.17-1.49; Q1 vs Q4, HR 1.86, 95% CI 1.42-2.42;
Figure 1E). In addition, participants with delayed L5 midpoint
had a lower risk for dementia or MCI (multivariable-adjusted

HR per 1-SD increase or ~75 min delay in L5 midpoint=0.92,
95% CI 0.85-0.99; Figure 1G). IS (Figure 1F), M10 midpoint
(Figure 1H), and acrophase (Figure 1I) had no significant
associations with the risk of dementia or MCI.

In addition, we found that the risk was higher for older
participants (multivariable-adjusted HR for each year older at
baseline=1.17, 95% CI 1.15-1.19) and male participants
(multivariable-adjusted HR 1.33, 95% CI 1.11-1.58).

The associations between RAR measures and incident dementia
or MCI remained similar when including only participants who
developed dementia (Multimedia Appendix 3) or when
excluding those shift workers (Multimedia Appendix 4). In
addition, the associations between RAR metrics and risk of
dementia or MCI were independent of PRS (P values >.10 for
the interaction terms of PRS and all RAR measures; Multimedia
Appendix 5) while higher PRS was associated with an increased
risk of dementia or MCI (multivariable-adjusted HR per 1-SD
increase=1.48, 95% CI 1.36-1.60). Moreover, the RAR-dementia
or MCI associations appeared to be similar for the younger (<70
years old) and older (≥70 years old) participants (P values >.10
for the interaction terms of age group and all RAR measures,
except M10; Multimedia Appendix 6).
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Table 2. Relationships of RARa measures with risk of developing dementia or MCIb,c.

Adjusted hazard ratio (95% CI)RAR characteristics

Relative amplitude

1.88 (1.46-2.41)Q1d

1.29 (0.99-1.67)Q2

0.94 (0.71-1.26)Q3

ReferenceQ4

1.23 (1.16-1.29)Per 1-SD decrease

M10e

1.69 (1.30-2.19)Q1

1.11 (0.83-1.47)Q2

1.03 (0.76-1.38)Q3

ReferenceQ4

1.28 (1.14-1.44)Per 1-SD decrease

M10 midpoint

1.10 (0.90-1.34)Earlier

RefMiddle

1.03 (0.83-1.27)Later

0.93 (0.84-1.03)Per 1-SD increase

L5f

ReferenceQ1

1.23 (0.96-1.57)Q2

1.00 (0.78-1.30)Q3

1.51 (1.19-1.91)Q4

1.15 (1.10-1.21)Per 1-SD increase

L5 midpoint

1.06 (0.87-1.30)Earlier

ReferenceMiddle

0.86 (0.70-1.06)Later

0.92 (0.85-0.99)Per 1-SD increase

IVg

ReferenceQ1

1.64 (1.27-2.12)Q2

1.37 (1.05-1.78)Q3

1.56 (1.20-2.02)Q4

1.14 (1.05-1.24)Per 1-SD increase

ISh

1.00 (0.78-1.27)Q1

0.82 (0.64-1.05)Q2

1.01 (0.81-1.26)Q3

ReferenceQ4

0.98 (0.89-1.07)Per 1-SD decrease

Amplitude
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Adjusted hazard ratio (95% CI)RAR characteristics

1.86 (1.42-2.42)Q1

1.28 (0.96-1.70)Q2

1.22 (0.91-1.63)Q3

ReferenceQ4

1.32 (1.17-1.49)Per 1-SD decrease

Acrophase

0.99 (0.81-1.20)Earlier

ReferenceMiddle

0.90 (0.73-1.13)Later

0.93 (0.85-1.02)Per 1-SD increase

aRAR: rest-activity rhythm.
bMCI: mild cognitive impairment.
cModels are adjusted for age at the time of actigraphy, sex, education, Townsend deprivation index, ethnic background, obesity, sleep apnea, morbidity
burdens, circulatory disorders, night shiftwork status, alcohol intake, smoking status, and polygenic risk score of Alzheimer disease.
dQ: quartile.
eM10: activity level of the most active 10-hour period.
fL5: activity level of the least active 5-hour period.
gIV: intradaily variability.
hIS: interdaily stability.
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Figure 1. Rest-activity rhythm and risk of developing dementia or MCI. Survival curves for dementia or MCI since baseline (actigraphy assessment)
for (A) participants with lower RA (1st quartile) and higher RA (4th quartile), (B) participants with lower M10 (1st quartile) and higher M10 (4th
quartile), (C) participants with lower L5 (1st quartile) and higher L5 (4th quartile), (D) participants with lower IV (1st quartile) and higher IV (4th
quartile), (E) participants with lower amplitude (1st quartile) and higher amplitude (4th quartile), (F) participants with lower IS (1st quartile) and higher
IS (4th quartile), (G) participants with earlier L5 midpoint (1st tertile) and later L5 midpoint (3rd tertile), (H) participants with earlier M10 midpoint
(1st tertile) and later M10 midpoint (3rd tertile), and (I) participants with earlier acrophase (1st tertile) and later acrophase (3rd tertile). IS: interdaily
stability; IV: intradaily variability; L5: activity level of the least active 5-hour period; M10: activity level of the most active 10-hour period; MCI: mild
cognitive impairment; RA: relative amplitude.

Discussion

Principal Findings
In this large, prospective cohort study, we evaluated the
association between RAR metrics, derived from wrist
actigraphy, and incidence of dementia or MCI during a
follow-up of up to 7.5 years. Our results underscore the
significance of specific RAR metrics, notably RA, M10,
amplitude, L5, L5 midpoint, and IV in delineating the dementia
or MCI risk, independent of previously identified risk factors
for dementia or cognitive decline.

Unlike previous studies, our analysis is based on a notably large
sample size of >94,000 participants, using objective actigraphy

assessments for RAR and spanning a broad age range of 43-79
years. This study adopted a longitudinal design with nearly 8
years of follow-up and comprehensively adjusted for known
confounders, including demographic, shiftwork status, lifestyle,
comorbidity, and genetics, to enhance the robustness of the
results. Specifically, we showed that suppressed 24-hour
rhythmicity (lower RA and 24-hour amplitude), accompanied
by reduced activity levels (M10) during the active phase and
increased activity levels during the resting phase (L5) as well
as fragmented 24-hour rhythms (greater IV), were linked to the
higher risk for dementia or MCI. These results are consistent
with previous studies. For instance, using the Rush Memory
and Aging Project data, the risk for Alzheimer dementia was
higher in those with lower 24-hour amplitude and greater IV
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[12]; a longitudinal study of 2496 older men indicated that a
larger increase in IV over a span of 7.5 years was associated
with a steeper decline in Modified Mini-Mental State
Examination scores [16]; and another study of 763 older women
showed that reduction in RA was associated with elevated risks
for MCI and probable dementia [17]. It is worth noting that our
study showed consistent adverse impacts of disrupted rest-active
rhythms across different age groups (≥70 years and <70 years).

Regarding the mechanisms underlying the RAR-dementia link,
disturbances in circadian regulation and sleep-wake cycles have
been proposed as one of the common pathological pathways
[3]. Supporting this concept, shift work, an established major
cause of circadian or sleep disturbances, has been linked to a
higher risk for developing dementia [45-47]; and Musiek et al
[22] identified a relationship between increased IV and amyloid
plaque pathology in preclinical Alzheimer disease. Clearly,
circadian disturbances not only occur in shift workers but also
may be caused by other factors such as traveling in different
time zones and social jet lag [48,49]. Consistently, we found
that the associations of RAR disturbances with dementia risk
remained in non–shift workers.

One “unexpected” result was the nonsignificant association of
the stability measure (IS) of 24-hour rhythms with the risk for
dementia or MCI because the reduction in IS has been linked
to aging and dementia [12,26]. Notably, while other studies
have similarly reported a lack of significant associations
[13,14,17], our research contributes to more definitive insights
into these complex associations with a substantially larger
sample size. In a related study, Park et al [50] reported higher
IS in older adults when compared to younger adults, and
interpreted the results as the consequence of changes in daily
schedules. This study raises a potential concern about the
masking effect of daily schedules on RAR measures, especially
IS [51]. An important follow-up question is how reliable IS can
be in reflecting intrinsic changes in circadian regulation or
predicting or capturing the long-term impacts of acute disturbed
24-hour behavioral cycles on circadian health and related
cognitive changes. Future studies including circadian rhythms
of other physiological variables or mathematical modeling for
estimation of circadian rhythms [52-56] are needed to address
the question.

The relationship between the RAR phase and dementia or MCI
risk is still inconclusive. Our study identified earlier L5 mid-time
as a risk factor for dementia or MCI, but not changes in
acrophase or M10 mid-time. L5 mid-time is usually related to
the timing of sleep, whereas M10 mid-time and acrophase are
usually related to the timing of peak activity. Previous research
has yielded varied results. For example, Lysen et al [13] did not
observe any association between the circadian phase measured
by L5 onset and risk of dementia or MCI, whereas Posner et al
[14] observed an association between earlier L5 midpoint (but
not M10 midpoint) with higher risk for dementia (but not MCI)
[14]. Xiao et al [17] reported a significant linear association of
delayed acrophase, M10, and L5 midpoints with a higher risk
for dementia or MCI in older women. These inconsistent
findings might be explained by unadjusted confounders that

influence sleep timing, such as chronotype (ie, preferred sleep
time), sleep disorders (eg, insomnia), use of sleep medication,
and photoperiod. Future studies should consider controlling for
such factors when clarifying relationships between the RAR
phase and dementia or MCI.

Clinical Implications and Future Research
Our findings provide insights into the clinical practice and future
research in dementia and MCI prevention, screening, and
intervention. Specifically, incorporating assessments of sleep
and rest-activity patterns into routine health evaluations might
be beneficial for middle-aged and older adults. In geriatric care,
routine monitoring and management of RAR may help evaluate
the factors affecting cognitive health. Educating caregivers and
family members about the importance of consistent rest-activity
patterns could be incorporated into the home-based care for
individuals at risk. Tailoring preventive and therapeutic
strategies to individuals based on their RAR characteristics,
especially in populations like shift workers, could also be
effective. Future research should further clarify the causality of
the associations between RAR and cognition, and test whether
interventions that improve sleep hygiene, modify light exposure,
or adjust physical activity levels can positively impact RAR
and, consequently, help prevent or slow cognitive decline.

Strengths and Limitations
The strengths of this study include having a large sample size
of more than 94,000 participants; using objective assessments
of RAR using actigraphy; controlling for a large number of
confounders, including demographic, lifestyle, comorbidity,
genetics, and morbidity burden; large age range of participants
(aged between 43 and 79 years); and the longitudinal study
design with nearly 8 years of follow-up. Limitations of our study
are as follows: (1) the majority of participants were of White
European descent (>95%), limiting our ability to investigate
racial or ethnic differences in the associations; (2) the rate of
dementia or MCI events (~550 out of 94,000) appeared to be
relatively low due to the overall young age of the participants
(median age 63.5 years); (3) we were unable to differentiate
between different types of dementia. However, this provides a
great opportunity for future studies, when the participants
became older, to investigate the long-term association of RAR
and different types of dementia or MCI; (4) single-time
assessment of actigraphy and covariates did not allow us to
examine changes in RAR and dementia risk; (5) internal
circadian clocks and environmental factors such as light
exposure and social obligations were not assessed or controlled
such that it is not possible to separate intrinsic and extrinsic
influences on RAR.

Conclusions
We found that altered daily rest-activity patterns were linked
to future risk of dementia or MCI, independent of other known
risk factors. Monitoring of ambulatory daily motor activity or
rest-activity patterns with wearable devices may provide a
unique opportunity to identify people at higher risk of dementia
or MCI.
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