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Abstract
Background: The COVID-19 pandemic has profoundly impacted all aspects of human life for over 3 years. Understanding
the evolution of public risk perception during these periods is crucial. Few studies explore the mechanisms for reducing disease
transmission due to risk perception. Thus, we hypothesize that changes in human mobility play a mediating role between risk
perception and the progression of the pandemic.
Objective: The study aims to explore how various forms of human mobility, including essential, nonessential, and job-related
behaviors, mediate the temporal relationships between risk perception and pandemic dynamics.
Methods: We used distributed-lag linear structural equation models to compare the mediating impact of human mobility
across different virus variant periods. These models examined the temporal dynamics and time-lagged effects among risk
perception, changes in mobility, and virus transmission in Taiwan, focusing on two distinct periods: (1) April-August 2021
(pre-Omicron era) and (2) February-September 2022 (Omicron era).
Results: In the pre-Omicron era, our findings showed that an increase in public risk perception correlated with significant
reductions in COVID-19 cases across various types of mobility within specific time frames. Specifically, we observed a
decrease of 5.59 (95% CI −4.35 to −6.83) COVID-19 cases per million individuals after 7 weeks in nonessential mobility,
while essential mobility demonstrated a reduction of 10.73 (95% CI −9.6030 to −11.8615) cases after 8 weeks. Additionally,
job-related mobility resulted in a decrease of 3.96 (95% CI −3.5039 to −4.4254) cases after 11 weeks. However, during the
Omicron era, these effects notably diminished. A reduction of 0.85 (95% CI −1.0046 to −0.6953) cases through nonessential
mobility after 10 weeks and a decrease of 0.69 (95% CI −0.7827 to −0.6054) cases through essential mobility after 12 weeks
were observed.
Conclusions: This study confirms that changes in mobility serve as a mediating factor between heightened risk perception
and pandemic mitigation in both pre-Omicron and Omicron periods. This suggests that elevating risk perception is notably
effective in impeding virus progression, especially when vaccines are unavailable or their coverage remains limited. Our
findings provide significant value for health authorities in devising policies to address the global threats posed by emerging
infectious diseases.

JMIR Public Health Surveill 2024;10:e55183; doi: 10.2196/55183
Keywords: human mobility; risk perception; COVID-19; Omicron; Taiwan; pandemic; disease transmission; pandemic
dynamics; global threats; infectious disease; behavioural health; public health; surveillance

JMIR PUBLIC HEALTH AND SURVEILLANCE Chang & Wen

https://publichealth.jmir.org/2024/1/e55183 JMIR Public Health Surveill 2024 | vol. 10 | e55183 | p. 1
(page number not for citation purposes)

https://doi.org/10.2196/55183
https://publichealth.jmir.org/2024/1/e55183


Introduction
The COVID-19 pandemic has significantly impacted human
life, with human mobility serving as a crucial factor
in contagious disease transmission [1]. Throughout the
pandemic, human mobility was shaped by both mandatory
preventive measures and the evolving risk perceptions of the
public. Different countries and cultures have responded to
the pandemic with varying strategies and levels of effective-
ness. For example, Japan initially implemented voluntary
lockdowns and relied on its citizens’ compliance without
enforcing strict legal penalties. Italy, severely hit in the early
stages, imposed stringent lockdowns and travel restrictions
to control the virus spread. Switzerland adopted a more
flexible approach with phased lockdowns and later relied on
public adherence to guidelines [2-5]. These varying responses
highlight the importance of understanding context-specific
public risk perceptions and mobility patterns.

Risk perception varied across different phases of the
pandemic. Initially, when vaccines were scarce and unavail-
able, there was widespread fear of infection, leading to
behaviors such as home confinement and avoiding gath-
erings [6]. As vaccination coverage increased and cases
presented milder symptoms or were asymptomatic, public
fear diminished and a strong desire to return to normal
life emerged [7-9]. Understanding the evolution of public
risk perception during the pandemic is critical for tailoring
effective policy responses, implementing health education,
and comprehending shifting behaviors, essential for long-term
crisis management and adaptability [10].

Individuals’ compliance with preventive measures is
influenced by their levels of fear of infection and their
awareness of risks. Previous studies have confirmed the
association between risk perception and human mobility. Risk
perception is also correlated with various factors such as
internet search queries, which reflect near real-time “indi-
vidual fear of infection” [11,12], and the rate of vaccina-
tion and flu trends [13,14], all of which are useful for
COVID-19 trend forecasts. Additionally, forecasting studies
using statistical or machine learning methods, as well as
surveillance studies using compartmental or agent-based
models, have incorporated mobility as a crucial factor or
covariate in predicting COVID-19 trends [11,12]. Those with
a heightened risk perception during the pandemic are more
likely to engage in preventive behaviors [6,15]. However,
as the pandemic persists, individuals might experience a
decline in motivation to adhere to safety measures, such
as mask-wearing, maintaining social distance, and practic-
ing proper hand hygiene. This decline may stem from an
improved pandemic situation or an increase in psychological
fatigue due to prolonged periods of isolation or avoidance of
gatherings [16,17]. Diminishing adherence carries significant
public health implications, potentially leading to a surge
in COVID-19 cases and undermining containment efforts,
particularly during the transition to the post-pandemic phase
[18].

Recent studies underscore that mobility involving frequent
close contact and enclosed settings, such as recreational
activities and workplace interactions, pose higher risks of
transmission [19-21]. In contrast, activities like grocery
shopping and pharmacy visits usually entail briefer interac-
tions, leading to reduced transmission risks [22]. Considering
the time lag is crucial to understanding the significant impact
of social distancing measures in flattening the epidemic
curve, with their effects becoming evident 5‐15 weeks after
implementation [23]. Recognizing the tangible effects of
changes in human mobility takes time to manifest due to the
characteristics of the disease, including its incubation period
and the mode of transmission through respiratory droplets
[24-26].

In summary, we have known that human mobility is
intricately linked not only to the COVID-19 pandemic but
also influenced by public risk perception evolving over time.
However, there is limited understanding of the role played
by changes in human mobility between risk perception and
the course of the COVID-19 pandemic during different
variant periods. To elucidate this mechanism, it is crucial
to consider the temporal dynamics between risk perception,
human mobility, and the progression of the pandemic.

In Taiwan, the COVID-19 pandemic unfolded in 2 distinct
waves. As illustrated in Figure 1, these waves were contained
within Taiwan, unaffected by external epidemic fluctuations,
owing to effective border control measures. The pandemic
remained relatively mild until 2021, when the emergence
of the Alpha variant sparked the first significant outbreak,
prompting fear and concern due to the absence of vac-
cines [27,28]. In contrast, the 2022 outbreak, driven by the
Omicron variant, saw exponential growth. With a signifi-
cant portion of the population having received 2 vaccine
doses, the government gradually relaxed border restrictions
and domestic containment measures [29,30]. This relaxation
potentially led to a more complacent public risk perception,
resulting in reduced compliance with public health recom-
mendations. These distinct waves in Taiwan underscore the
variations in public risk perception and its consequential
impact on public behaviors, thus shaping the trajectory of the
pandemic.

Our study aims to investigate the mediating role of human
mobility in the relationship between public risk perception
and the progression of the COVID-19 pandemic in Taiwan.
We have two primary objectives and they are (1) to examine
the time-lagged impact of evolving public risk perception on
the pandemic, focusing on changes in various forms of human
mobility, including essential, nonessential, and job-related
behaviors, as mediators during the extended pandemic period
and (2) to compare the impact of risk perception between the
pre-Omicron and Omicron eras, analyzing how the distinct
characteristics of these periods influence the relationship
between risk perception, mobility, and virus transmission.

JMIR PUBLIC HEALTH AND SURVEILLANCE Chang & Wen

https://publichealth.jmir.org/2024/1/e55183 JMIR Public Health Surveill 2024 | vol. 10 | e55183 | p. 2
(page number not for citation purposes)

https://publichealth.jmir.org/2024/1/e55183


Figure 1. The distribution of COVID-19–confirmed cases per million people (log-scale) from February 2020 to September 2022 (Source: Johns
Hopkins University Center for Systems Science and Engineering COVID-19 data).

Our hypotheses are as follows.
• H1: Heightened public risk perception may lead to

subsequent reductions in virus transmission, potentially
mediated by changes in mobility. We hypothesize that
the effect of heightened public risk perception will
follow a U-shaped pattern, becoming more pronounced
initially and then diminishing as the epidemic situation
improves, as depicted in Figure 2.

• H2: During the Omicron era, reduced public risk
perception might lead to a delayed decline in confirmed
cases due to the heightened transmissibility of the
variant and decreased adherence to social distancing.

We hypothesize that the time-lag effect in the Omicron
era will occur later, represented by the dashed line in
Figure 2.

• H3: In the pre-Omicron era, all forms of mobility could
act as mediators, whereas in the Omicron era, essen-
tial and job-related mobility might have a diminished
impact on the relationship between risk perception and
virus transmission. We hypothesize that this reduc-
tion in impact could be due to the pressing need
for normalcy in daily life and livelihood. Figure 2
illustrates this with relatively flat green and blue dotted
lines.

Figure 2. Hypothesized diagram of the overall effect of risk perception on the pandemic.

Methods
Ethical Considerations
All data are from publicly available sources without any
approval requirement.

Study Design and Data Source
In early April 2021, Taiwan faced a small-scale outbreak
of the epidemic when vaccination coverage was low. Public
awareness of the virus’s threat was notably high. However, by
late August 2021, the number of new daily confirmed cases
had been successfully reduced to fewer than 10 people due to
the implementation of the “zero-COVID” strategy. Subse-
quently, in late February 2022, over 70% of the Taiwanese
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population had received 2 doses of the COVID-19 vac-
cine. With this substantial vaccine coverage, the government
began gradually relaxing pandemic regulations in September
2022. As such, this study focuses on 2 distinct periods—the
“pre-Omicron era,” spanning from April 4, 2021, to August
29, 2021, and the “Omicron era,” covering the time frame
from February 27, 2022, to September 18, 2022.

The analysis used a longitudinal design to evaluate the
mediating impact of human mobility between public risk
perception and the progression of the COVID-19 pandemic,
considering the time lag for each path represented in Figure 3.

This study examines the role of 3 types of mobility
changes—essential, nonessential, and job-related behaviors—
as mediating factors in understanding their influence between
risk perception and disease transmission. Nonessential
mobility typically pertains to leisure activities, providing
individuals with stress relief and enjoyment. Such activities
are discretionary and can be engaged in or canceled based on
individual preferences. For our study, Google’s Community
Mobility Reports’ “Retail and recreation” category, covering
places like restaurants, cafes, shopping centers, and more
represents nonessential mobility.

Figure 3. The directed acyclic graph of the model framework (considering domestic nonpharmaceutical intervention and vacation as control
variables).

On the other hand, essential mobility involves acquiring
necessary goods for daily life, such as food and medi-
cines. These activities are critical for sustaining daily life
and are indispensable. We considered Google’s “Grocery
stores and pharmacies” category in the Community Mobility
Reports to represent essential mobility, including supermar-
kets, drug stores, and other similar locations. Furthermore,
job-related activities are tied to livelihoods and occupa-
tions. Shutdowns affecting these activities may have adverse
financial implications, making it challenging for individu-
als to maintain their regular living standards. In our anal-
ysis, “Workplaces” from Google’s Community Mobility
Reports represent economic or employment-related activities,
considered as job-related mobility.

Our analysis compiles data on a weekly basis. Public risk
perception data, measured by individuals’ information-seek-
ing behavior, are sourced from Google Trends [31]. Specif-
ically, the data extracted from Google Trends include the
time series of particular search terms and topics related to
COVID-19, such as “COVID-19 symptoms,” “COVID-19
prevention,” and “COVID-19 vaccine,” which collectively
represent the public’s risk perception. COVID-19 case and
mortality data are obtained from Johns Hopkins University
[32]. Mobility change variables are calculated by averag-
ing daily data retrieved from Google Community Mobility

Reports. To address potential confounding factors, the
OxCGRT reported 19 daily indices, enabling the calcula-
tion of weekly domestic nonpharmaceutical interventions
(NPIs) by summing daily stringency index scores per week
[33]. Our analysis integrates daily country-level data on
COVID-19 domestic containment, including 7 indicators—
school closures, workplace restrictions, event cancellations,
limitations on gathering size, public transport closures,
stay-at-home orders, and constraints on internal movement.
The variable depicting Taiwan’s holidays is derived by
aggregating the total number of holidays for each week.
Statistical Analysis
We used the distributed-lag linear structural equation models
(DLSEMs), which rely on Markovian structural causal
models (MSCMs), for examining the mediating impact of
human mobility between public risk perception and the
pandemic progression. DLSEMs provide a mathematical
framework for causal inference and offer a way to examine
the temporal dynamics and lagged effects among variables
[34] and offer an advantage by allowing the inclusion
of lagged terms of independent variables in regression
equations, effectively capturing the temporal dynamics and
potential time delays in the relationship between variables,
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and providing a more comprehensive understanding of the
complex interplay over time [35,36].

DLSEM is a statistical method that combines the concepts
of structural equation modeling (SEM) and distributed-lag
models (DLMs). SEM can simultaneously analyze multiple
dependent and independent variables and consider complex
relationships between latent variables. It can construct and
test multiple causal paths, aiding in the understanding of
causal relationships between variables. However, SEM is
not effective in handling time-delayed relationships among
variables [37].

On the other hand, DLMs are suitable for handling time
series data, taking into account the lag effects of variables
over different periods. It captures the dynamic influence
of independent variables on dependent variables, making it
suitable for studying relationships that change over time.
However, DLMs typically can only handle the effect of a
single independent variable on a dependent variable, unlike
SEM, which can handle multiple variables simultaneously
[38,39].

We chose DLSEMs because they combine the advan-
tages of SEM and DLMs. DLSEMs can include lagged
terms of independent variables in the regression equations,
effectively capturing the temporal dynamics and potential
time delay relationships between variables. This provides
a more comprehensive understanding of complex interac-
tions over time, which is crucial for understanding the
dynamic relationships between risk perception, mobility, and
the development of an epidemic, especially in a constantly
evolving situation like a pandemic. Technical details of
DLSEMs are described as follows.

In this study, DLSEMs formulate an MSCM on the set of
variables as joint probability distributions, as follows:

p V1,V2,V3,V4,V5 = j = 1
5 p Vj |Πj

p V1,V2,V3,V4,V6 = j = 1
6 p Vj |Πj

Where for j>1, Vj is independent of variables inV1,…,Vj − 1 Πj given variables in Πj. V1 is risk percep-
tion, V2 is nonessential mobility, V3 is essential mobility,V4 is job-related mobility, V5 is COVID-19 confirmed cases
per million people, and V6 is COVID-19 deaths per million
people.

In a DLSEM, each factor of the joint probability distribu-
tions in equations 1 and 2 is a distributed-lag linear regres-
sion, where vj, t is the response variable j at time t and
variables in Πj are the covariates. Thus, a distributed-lag
linear regression can be formulated as follows:

vj, t = αj + i:∀V ∈ Π l = 0
Li βj | i, l vi, t − l  +  ϵt       ϵ ∼ N 0,σ2

The set of coefficients βj i = βj i, 0, βj i, 1,…, βj i, Li is denoted
as the lag shape of vj, t and represents its influence on vj, t − l at
different time lag (t - l).

In each regression model, we applied an end point–
constrained quadratic lag shape to all covariates not belong-
ing to the context level, with the following constraints—for
estimating the effect of risk perception on human mobility
change, we assume that a maximum gestation lag of 1 week,
a minimum lag width of 1 week, and a maximum lead-lag
of 5 weeks. For estimating the effect of mobility on the
development of the COVID-19 pandemic, we set a maximum
gestation lag of 3 weeks, a minimum lag width of 1 week, and
a maximum lead-lag of 15 weeks based on existing studies
[23]. Based on our hypothesis, we expect that the impact of
risk perception starts off relatively small, gradually increases
to a peak, and then diminishes to 0 after a certain number
of time lags. To align with this hypothesis and ensure that
our model reflects our prior knowledge of the phenomenon,
we used the end point–constrained quadratic lag shape in
our analysis. All statistical analyses were conducted with R
(version 4.2.3; R Core Team). The “dlsem” package (version
2.4.6) was used for DLSEM.

Results
Descriptive Epidemiology
The number of confirmed cases and deaths during the
2021 outbreak in Taiwan was 21 and 1 per million people,
respectively. This was markedly lower compared to 3400
confirmed cases and 7 deaths per million people, respectively,
during the 2022 Omicron outbreak, as illustrated in Figure 4.
Notably, during the initial COVID-19 outbreak in Taiwan,
there was a shortage of vaccines and essential supplies,
prompting the government to implement strict NPI measures,
particularly national alert level 3. This led to significant fear,
anxiety, and a surge in information-seeking behavior among
the public, as illustrated in Figure 5. In contrast, during the
Omicron era, 70% of the population had received 2 vac-
cine doses, and the government gradually relaxed preventive
measures, resulting in a lower risk perception among the
population compared to the initial outbreak. These differen-
ces highlight the evolving public response and governmental
measures across different phases of the pandemic, empha-
sizing the importance of understanding risk perception and
mobility patterns.
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Figure 4. Weekly COVID-19 confirmed cases and deaths per million people in Taiwan (A) during COVID-19 pre-Omicron era and (B) Omicron era.

Figure 5. Weekly search trend in Taiwan (topic search: COVID-19) from February 2020 to September 2022.

There was a significant decrease in human mobility in
May 2021 in Taiwan, as shown in Figure 6. This pattern
was particularly pronounced during the first outbreak in
2021, caused by the Alpha variant. In the pre-Omicron era,
nonessential mobility displays the most significant variation,
followed by job-related mobility, illustrated in Figure 7.
Essential mobility shows minimal differences compared to
the pre-Omicron era. In the Omicron era, the variation in

nonessential mobility reduced compared to the pre-Omicron
era, yet it still maintained a 20% decrease relative to the
pre-Omicron era. Job-related mobility experiences a 10%
decrease relative to the pre-Omicron era. These mobility
trends suggest different public compliance levels and changes
in daily activities, reflecting varying responses to government
policies and perceived risk during different pandemic phases.
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Figure 6. Time series of human mobility change for Taiwan from February 2020 to September 2022.

Figure 7. Human mobility change for Taiwan during (A) the pre-Omicron and (B) Omicron eras.

Model Estimation Results
Figure 8 and Figure 9 illustrate the complete path of the
structural equation model for the pre-Omicron and Omicron
eras in Taiwan, respectively. During the pre-Omicron era,
the increased risk perception associated with cases was
significantly mediated by all types of human mobility. In
the Omicron era, the increased risk perception associated
with cases was significantly mediated by non-essential and
essential mobility. This means that public fear of infection led
to reduced movement, which in turn helped lower the number
of new cases. This effect was more pronounced before the
Omicron variant became widespread.

In the pre-Omicron era, following a 1- to 2-week period of
heightened public risk perception, there was a peak decrease
of 8.44 (95% CI −5.82 to −11.05; P=.020) in nonessential
mobility, 4.97% (95% CI −3.74 to −6.20; P=.001) in essential
mobility and 7.30% (95% CI −5.98 to −8.63; P<.001) in
job-related mobility. After the decline in all types of mobility,
reducing nonessential mobility led to a decrease of 0.12 (95%

CI 0.11-0.12; P=.030) confirmed cases per million people
within 5 weeks, essential mobility contributed to a reduction
of 0.15 (95% CI 0.14-0.15; P=.020) within 6 weeks, and
job-related mobility resulted in a decrease of 0.08 (95% CI
0.077- 0.08; P=.010) within 10 weeks.

In the Omicron era, after a 1- to 3-week period of
heightened public risk perception, there was a peak decrease
of 4.297 (95% CI −6.01 to −2.58; P=.020) in nonessential
mobility and 1.25 (95% CI −1.84 to −0.66; P=.047) in
essential mobility. After the decline in these two types of
mobility, reducing nonessential mobility led to a decrease
of 0.014 (95% CI 0.013-0.015; P<.001) confirmed cases
per million people within 9 weeks, and essential mobility
contributed to a reduction of 0.015 (95% CI 0.014-0.16;
P<.001) within 9 weeks. These results demonstrate the
delayed effects of risk perception on mobility and, con-
sequently, on virus transmission. The changes in public
behavior influenced by perceived risk had measurable
impacts on the number of COVID-19 cases.
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Figure 8. The pathway of the distributed-lag linear structural equation model with estimated causal effects and cumulative effects through each
mediating factor (on the right) during the pre-Omicron era. The numbers on the arrows represent the coefficients of the peak effect, with the numbers
in parentheses indicating the time delay at which the maximum effect occurs. (Domestic nonpharmaceutical intervention and vacation are considered
as control variables). *P<.05; **P<.01; ***<.001.

Figure 9. The pathway of the distributed-lag linear structural equation model with estimated causal effects and cumulative effects through each
mediating factor (on the right) during the Omicron era. The numbers on the arrows represent the coefficients of the peak effect, with the numbers in
parentheses indicating the time delay at which the maximum effect occurs. (Domestic nonpharmaceutical intervention and vacation are considered as
control variables). *P<.05; **P<.01; ***<.001.

The Overall Effect of Risk Perception on
the COVID-19 Pandemic
Figure 10 demonstrates that during the pre-Omicron era, risk
perception generally led to a decrease in confirmed cases
after a lag of 4 to 9 weeks. Similarly, during the Omicron
era in Taiwan, risk perception generally led to a decrease in
confirmed cases after a lag of 4 to 11 weeks.

All types of human mobility act as mediating factors in
reducing the number of confirmed cases. Risk perception has
a direct positive effect on the development of the pandemic,
indicating that other factors may contribute to the escalation
of the pandemic. The most significant effect on the number
of confirmed cases is observed approximately 7 to 11 weeks
after an increase in risk perception.
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Figure 10. The mediating effect of human mobility between risk perception and COVID-19 incidence (A) during pre-Omicron era and (B) Omicron
era in Taiwan (95% CIs are shown in a lighter color).

Effect of Different Human Mobility as
Mediators
We further investigate the effect and time lags related to
different types of human mobility. In a pre-Omicron era in
Taiwan, the overall effect of risk perception on confirmed
cases was influenced by all types of mobility, with nones-
sential and essential mobility having an earlier onset on
confirmed cases, as shown in Figure 10.

In the pre-Omicron era, a 1-unit increase in public risk
perception is associated with a reduction of 5.59 (95% CI
−4.35 to −6.83) COVID-19 cases per million people through
nonessential mobility after 7 weeks. Essential mobility
exhibits a reduction of 10.73 (95% CI −9.6030 to −11.8615)
COVID-19 cases per million people after 8 weeks, while
job-related mobility results in a decrease of 3.96 (95% CI
−3.5039 to −4.4254) COVID-19 cases per million people
after 11 weeks. The cumulative effect of mediating factors
shown in Table 1 reveals that essential mobility has a
substantial impact.

In the Omicron era in Taiwan, the overall effect of risk
perception on confirmed cases was influenced by nonessential
and essential mobility, as shown in Figure 10.

During the Omicron era, a 1-unit increase in public
risk perception leads to an anticipated reduction of 0.85
(95% CI −1.0046 to −0.6953) COVID-19 cases per million
people through recreational mobility after 10 weeks. Essential
mobility shows a reduction of 0.69 (95% CI −0.7827 to
−0.6054) COVID-19 cases per million people after 12 weeks.
The cumulative effect of mediating factors in the Omicron era
is much smaller than in the pre-Omicron era, as we saw in
Figure 10.

These findings highlight how different types of mobility
play varying roles in mediating the impact of risk perception
on COVID-19 transmission. The more pronounced effects in
the pre-Omicron era reflect the stricter public response to the
initial stages of the pandemic compared to the more relaxed
attitudes during the Omicron era.
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Table 1. Summary of the overall causal effect associated to each path, linking risk perception to human mobility change, and then connecting
confirmed cases in Taiwan.

Pathway
Peak temporal-lagged effect
(week) Estimate (SE) 95% CI

Pre-Omicron
Risk→nonessential→cases 7 –5.5940 (0.6328) −6.8342 to −4.3538
Risk→essential→cases 8 –10.7323 (0.5762) −11.8615 to −9.6030
Risk→job-related→cases 11 –3.9646 (0.2351) −4.4254 to −3.5039
Risk→cases 10 8.6680 (0.0549) 8.5605 to 8.7755
Overall causal effect on cases 7 –11.6229 (1.2867) −14.1448 to −9.1010

Omicron
Risk→nonessential→cases 10 –0.8499 (0.0789) −1.0046 to −0.6953
Risk→essential→cases 12 –0.6941 (0.0452) −0.7827 to −0.6054
Risk→cases 11 0.3538 (0.0423) 0.2709 to 0.4366
Overall causal effect on cases 10 −1.1902 (0.1491) −1.4824 to −0.8981

Discussion
Summary of Findings
The findings of our study provide valuable insights into
how shifts in public risk perception impact the COVID-19
pandemic through human mobility across distinct pandemic
phases. First, our analysis reveals a nonlinear relationship
between human mobility and the association of public
risk perception with COVID-19 transmission. This evidence
indicates that risk perception can shape the dynamics of the
COVID-19 pandemic through alterations in human mobi-
lity, displaying a U-shaped pattern over time. Second, the
influence of risk perception on virus transmission through
human mobility differs across various stages. Its impact
persists longer but exhibits a lesser effect during the Omicron
era compared to the pre-Omicron era. Finally, in the pre-
Omicron era, essential, nonessential, and job-related mobility
collectively mediate the link between public risk percep-
tion and COVID-19 transmission. However, in the Omicron
era, job-related mobility does not significantly mediate the
relationship between risk perception and disease transmission.
A common aspect observed across both pandemic eras is the
earlier discernible impact of risk perception on COVID-19
transmission for essential and nonessential mobility compared
to job-related mobility.
Mechanism of Pandemic Mitigation
Measures
The findings suggest that an upsurge in public risk percep-
tion corresponds to a decrease in human mobility, corrob-
orating existing literature [6,15]. Similarly, a decline in
human mobility contributes to future pandemic mitigation,
aligning with established research [20,21,30]. Synthesizing
these relationships from prior studies, our research indicates
that heightened public risk perception leads to pandemic
mitigation through reduced human mobility [16]. Our model
delineates a U-shaped pattern in the relationship among
these variables, consistent with findings in existing studies.
This pattern implies an initial surge in public fear and

concern at the pandemic’s onset, with gradual changes in
mobility affecting pandemic mitigation. As the epidemic
situation improves, public concerns diminish, and the impact
of behavioral changes on disease mitigation lessens pro-
gressively [40,41]. Overlooking the time-varying aspect of
this mechanism might underestimate pandemic mitigation
effectiveness. Our research addresses this gap by using
a time-varying model, offering a nuanced perspective on
the large-scale impact of public mobility on the relation-
ship between risk perception and epidemic status. This
approach reveals a dynamic nature of epidemic mitigation not
extensively discussed in previous studies.
The Time Lag Effect of Risk Perception
on Virus Transmission
Our findings confirm that shifts in mobility prompted by
risk perception contribute to delayed pandemic mitigation
during the Omicron era, in line with our initial hypothesis.
The time lag in our study denotes the duration necessary for
the effects of heightened public risk perception on pandemic
control to manifest. During the Omicron era, we observed
this duration ranged from 4 to 20 weeks after the elevation
of risk perception, extending 6 weeks beyond the pre-Omi-
cron era (4 to 14 weeks). Notably, previous studies conduc-
ted in Europe and the United States suggest that a decline
in human mobility can initiate a slowdown in COVID-19
transmission within 2‐7 weeks [25,26,42]. The estimated
onset times of these impacts within our models align with
this range. However, during the Omicron era, the duration
is notably longer, and the effect is markedly reduced. This
phenomenon may be attributed to pandemic fatigue related to
social distancing measures among the population, compoun-
ded by a substantial surge in confirmed cases in 2022, thereby
prolonging the pandemic’s abatement period [16]. Further-
more, by reaching a 70% vaccination coverage rate, Taiwan
effectively curtailed severe cases, subsequently leading to
diminished public risk perception compared to the initial 2021
outbreak [43]. Previous studies have primarily focused on
the 2020‐2021 pandemic [25,26,41,42]. Building upon this
foundation, our research analyzes the delayed impact of risk
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perception on virus transmission across different pandemic
phases. In comparison to prior studies, our research confirms
that during the Omicron period, the duration of this effect
is longer, indicating varying influences of pandemic fatigue
and vaccination coverage on public behavior and epidemic
outcomes across different phases of the pandemic. This adds
a new dimension to understanding the dynamics of infectious
diseases over time.

Mediation by Different Human Mobility
Types of the Association Between Risk
Perception and COVID-19 Transmission
In the pre-Omicron era, before achieving high vaccine
coverage rates, all categories of mobility were identified
as significant mediators. Our findings may suggest that
interactions within nonessential activities, such as recreational
pursuits, and job-related activities, like daily commutes, could
potentially serve as high-risk transmission routes due to
close contact and enclosed environments. Previous studies
consistently highlight that changes in these job-related and
nonessential mobilities are positively correlated with future
virus transmission and pandemic severity in many countries
[21,22,44-47].

Conversely, essential activities like grocery shopping
and pharmacy visits typically involve shorter interaction
durations, resulting in reduced transmission risks [20,48].
Recent studies suggest that essential mobility did not
significantly impact virus transmission in the United States
throughout 2020‐2021 [24,47,49]. However, our study
observed a significant impact of essential mobility on
virus transmission, suggesting a nuanced difference in the
Taiwanese context. It indicates that essential mobility acts
as a mediator between risk perception and virus transmis-
sion throughout 2021‐2022, albeit with a weaker media-
ting effect in 2022 during the Omicron era compared to
the effect observed in 2021. In the pre-Omicron era, this
could be attributed to people becoming more cautious in
their shopping routines, emphasizing hygiene practices, and
adopting contactless shopping modes. Widespread use of
face masks and hand sanitizers, and adherence to social
distancing measures became standard practices in grocery
stores, pharmacies, and other essential shopping locations
[50,51]. The situation in 2022 during the Omicron era can
be attributed to the effectiveness of a high vaccination
rate among the population, leading to the normalization
of essential mobility. These adaptive shopping behaviors
became pivotal in the public’s overall risk management
strategy against a highly transmissible virus.

Taiwan’s epidemic intervention strategy played a crucial
role in mitigating the impact of different types of activi-
ties. In comparison to many countries, Taiwan’s proactive
and stringent public health measures, such as early bor-
der controls, comprehensive contact tracing, and effective
quarantine methods, have contributed to a more effective
containment of virus spread [52]. These measures, coupled
with high levels of compliance and trust in government
directives among the public, further influenced risk percep-
tion and activity patterns. Thus, the stringency and timely

implementation of these policies may have contributed to
differences in the mediating effects of mobility types across
different stages of the pandemic.

When comparing the peak times and scales across different
types of mobility, we observed that essential and nonessential
mobility exhibited similar peak times and scales during the
pre-Omicron era. However, job-related mobility displayed
a smaller scale and a delayed peak time. This difference
could be attributed to the significant costs associated with
workplace closure measures, despite their effectiveness
[53]. Additionally, commuting behaviors remained relatively
unchanged before and after the pandemic [54]. Our findings
underscore the importance of considering various types of
mobility in relation to the association between risk percep-
tion and future pandemic outcomes when devising targeted
interventions and preventive strategies.

Policy Implications
Our findings carry significant policy implications for health
authorities. Human mobility, influenced by risk perception,
significantly shapes future pandemics in a dynamic proc-
ess. Health authorities should consider that the impact
of public health measures on the pandemic is not imme-
diate. Our study identifies a relevant time frame illustrat-
ing how mobility changes impact the occurrence of the
pandemic. This insight provides a valuable reference for
determining the optimal timing to ease restrictive policies.
Prior to the widespread availability of effective vaccines,
it is imperative to prioritize the accurate dissemination of
information concerning the severity of the pandemic, its
transmission pathways, and essential facts. Public concerns
and apprehensions are notably linked to nonessential and
essential mobility, influencing pandemic mitigation more
than job-related activities. Thus, our findings could provide
insights for implementing preventive measures against future
emerging infectious diseases.

As the Omicron period witnesses increased vaccine
accessibility and relaxed government mobility restrictions,
sustaining efforts in enhancing public health education
remains pivotal. Sensitizing individuals to risk perception
encourages the voluntary adoption of preventive behaviors,
ensuring a sustainable strategy for long-term pandemic
management. Additionally, understanding the delayed effects
of public risk perception on virus transmission through
changes in mobility can help health authorities better allocate
resources and adjust policies timely. This dynamic under-
standing can lead to more effective planning of medical
resource distribution, such as vaccines and health care
capacity.

Limitations
This study has several limitations. First, using Google
Mobility data as a proxy for changes in human mobility
might underestimate the actual reasons behind trips. As the
specific purposes of these movements remain undisclosed,
our inferences are solely drawn from the locations people
visited. These data primarily reflect population levels at these
places rather than capturing individual behaviors. Second,

JMIR PUBLIC HEALTH AND SURVEILLANCE Chang & Wen

https://publichealth.jmir.org/2024/1/e55183 JMIR Public Health Surveill 2024 | vol. 10 | e55183 | p. 11
(page number not for citation purposes)

https://publichealth.jmir.org/2024/1/e55183


all the data used in our study are aggregated, lacking the
incorporation of individual lifestyle habits, such as mask-
wearing, which could significantly impact the virus spread.
Finally, the absence of individual-level data hindered the
integration of individual behaviors into our model. While our
model shows a reduction in the mediating effect during the
Omicron era, it does not elucidate whether public behavio-
ral changes are predominantly driven by individual will-
ingness or the relaxation of government policies. Future
research endeavors could integrate diverse survey methodol-
ogies to conduct a more comprehensive investigation into
public risk perception and preventive behaviors, leveraging
both macro-level and individual-level data. These limitations
highlight the need for further research to address these
challenges and obtain more appropriate measurements of risk
perception and behavioral changes during pandemics.
Conclusions
This study uncovers significant insights into the inter-
play between public risk perception, human mobility, and

COVID-19 transmission across distinct pandemic phases. We
found a nonlinear, U-shaped relationship between mobility
and risk perception, with the impact of risk perception
on virus transmission varying between the pre-Omicron
and Omicron eras. In the pre-Omicron phase, all types of
mobility mediated the association between risk perception
and COVID-19 transmission, while in the Omicron era,
job-related mobility showed no influence. These findings
suggest that health authorities can optimize the timing and
nature of public health interventions by understanding the
time-lagged effects of risk perception on mobility. Our
findings highlight the importance of maintaining robust
public health education efforts to sustain voluntary preventive
behaviors. Future research may further incorporate individ-
ual-level data to explore the nuanced impacts of specific
behaviors on virus transmission, enhancing the effectiveness
of pandemic responses and better preparing for future public
health crises.
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