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Abstract

Background: Previous studies investigating environmental and behavioral drivers of chronic disease have often had limited
temporal and spatial data coverage. Smartphone-based digital phenotyping mitigates the limitations of these studies by using
intensive data collection schemes that take advantage of the widespread use of smartphones while allowing for less burdensome
data collection and longer follow-up periods. In addition, smartphone apps can be programmed to conduct daily or intraday
surveys on health behaviors and psychological well-being.

Objective:  The aim of this study was to investigate the feasibility and scalability of embedding smartphone-based digital
phenotyping in large epidemiol ogical cohorts by examining participant adherence to a smartphone-based data collection protocol
in 2 ongoing nationwide prospective cohort studies.

Methods: Participants (N=2394) of the Beiwe Substudy of the Nurses' Health Study 3 and Growing Up Today Study were
followed over 1 year. During this time, they completed questionnaires every 10 days delivered via the Beiwe smartphone app
covering topics such as emations, stress and enjoyment, physical activity, access to green spaces, pets, diet (vegetables, meats,
beverages, nutsand dairy, and fruits), sleep, and sitting. These questionnaires aimed to measure participants' key health behaviors
to combine them with objectively assessed high-resolution GPS and accelerometer data provided by participants during the same
period.

Results: Between July 2021 and June 2023, we received 11.1 TB of GPS and accelerometer data from 2394 participants and
23,682 survey responses. The average follow-up time for each participant was 214 (SD 148) days. During this period, participants
provided an average of 14.8 (SD 5.9) valid hours of GPS data and 13.2 (SD 4.8) valid hours of accelerometer data. Using a
10-hour cutoff, we found that 51.46% (1232/2394) and 53.23% (1274/2394) of participants had >50% of valid data collection
days for GPS and accelerometer data, respectively. In addition, each participant submitted an average of 10 (SD 11) surveys
during the same period, with a mean response rate of 36% across all surveys (SD 17%; median 41%). After initial processing of
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GPS and accelerometer data, we also found that participants spent an average of 14.6 (SD 7.5) hours per day at home and 1.6
(SD 1.6) hours per day on trips. We also recorded an average of 1046 (SD 1029) steps per day.

Conclusions: In this study, smartphone-based digital phenotyping was used to collect intensive longitudinal data on lifestyle
and behavioral factorsin 2 well-established prospective cohorts. Our assessment of adherence to smartphone-based data collection
protocols over 1 year suggests that adherence in our study was either higher or similar to most previous studies with shorter
follow-up periods and smaller sample sizes. Our effortsresulted in alarge dataset on health behaviors that can be linked to spatial

datasets to examine environmental and behavioral drivers of chronic disease.

(JMIR Public Health Surveill 2024;10:€55170) doi: 10.2196/55170
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Introduction

Background

Physical activity, diet, and obesity areimportant behavioral risk
factors for numerous noncommunicable diseases, such as
coronary heart disease, type 2 diabetes, and certain cancers
[1-5]. However, >80% of American adults do not adhere to
weekly recommendationsfor aerobic and muscle-strengthening
exercise [6], and their dietary habits remain suboptimal
according to Dietary Guidelines for Americans standards [7].
Health behaviors are influenced by various environmental
factors, including the built environment, food accessibility, and
green spaces [8,9]. Well-designed neighborhoods provide
infrastructure such as parks and sidewalks that enable regular
physical activity [10,11], and green spaces mitigate exposure
to noise, light pollution, and air pollution, thereby fostering a
health-promoting environment [12-16]. Moreover, access to
healthy food may promote better eating habits [17]. Research
examining the effects of environmental factors on health
behaviorsis often limited by cross-sectional study designs and
coarse data resolution. Such studies typically rely on
participants’ residential addresses, neglecting time spent in other
locations[18,19], and self-report measures of health behaviors,
which lack objective information on the timing or duration of,
for instance, physical activity and food intake [20]. Thesefactors
contribute to potential biases in assessing the influence of the
environment on health behaviors. More recently, studies have
begun to use mobile health (mHealth) technologies such as
wearables and smartphone apps to capture location and
behavioral dataat amuch higher spatial and temporal resolution
(eg, minute-level location and second-level movement)
[18,21-24]. However, these studies tend to be of short duration
and have small convenience samples, which limits their
representativeness [25,26]. For example, participants might
have different levels of physical activity in the 2-week sample
periods than in their usual routine. As another example, daily
mobility behavior recorded over 7 days could omit lessfrequent
routine behaviors such as grocery shopping.

Emerging data coll ection technol ogies such as smartphone-based
digital phenotyping offer the opportunity to mitigate the
limitations of the aforementioned studies using intensive data
collection schemes by capitalizing on the widespread use of
smartphones [27,28]. Smartphone-based digital phenotyping
refers to the technology that quantifies human phenotypes at
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the individual level on a moment-to-moment basis using data
from personal digital devices, particularly smartphones, to assess
behavioral patterns, social interactions, and physical mobility
[27]. Compared with studiesthat rely on mailing wearabl es, the
smartphone-based approach to digital phenotyping allows for
less burdensome data collection (eg, secure uploading of
near—real -time passive GPS and accel erometer data) and lower
costs. Consequently, digital phenotyping studies can achieve
longer follow-up periods (eg, >1 year) compared to typical data
collection periods (7-14 days) for intensive longitudinal studies
[11,26,29]. Smartphone GPS data with high accuracy (eg, <50
m) can be merged with spatial datasets containing information
on built and natural surroundings, noiselevels, and air pollution
to produce customized exposure metrics for environmental
factors that change throughout the day over weeks and even
months [29-31]. In addition, athough the smartphone
accelerometer may provide less complete data compared to
commercia-grade accelerometry (eg, ActiGraph) because it
usually uses noncontinuous data sampling schemesto conserve
the smartphone battery, it is still capable of taking precise
measurements (eg, 10 measures per second) that can provide
an objective indicator of physical activity by identifying steps
and cadence using advanced walk detection algorithms[32,33].
Smartphone apps can a so be programmed to administer surveys
on health behaviors or psychological health outcomes[14,34].
More importantly, these datasets can be linked at different
temporal scales (eg, minute by minute and daily) and sequences
(eg, instantaneous and time lapsed) to examine the relationships
between environmental and behaviora factors and chronic
disease outcomes.

Objectives

In this paper, we present our assessment of the feasibility and
scal ability of embedding smartphone-based digital phenotyping
in large epidemiological cohorts by examining adherence to
smartphone-based digital phenotyping data collection over 1
year in 2 ongoing nationwide prospective cohort studies; the
Nurses' Health Study 3 (NHS3) and the Growing Up Today
Study (GUTS). We also present our methodology for applying
a smartphone-based digital phenotyping platform to
continuously collect, manage, and process asubstantial amount
of smartphone-based GPS, accelerometer, and survey data
involving approximately 2400 participants. Finally, we present
selected mobility and physical activity outcomes derived from
the processed high-spatial and temporal resolution GPS and
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accelerometer data, as well as results from diet, lifestyle (eg,
visits to green spaces), and psychological well-being surveys,
and discusstheir potential applicationsfor novel epidemiological
investigations through different linkage schemes between
different types of smartphone dataand further link to the health
behaviors and data collected from the ongoing NHS3 or GUTS
prospective cohorts.

Methods

Beiwe Smartphone Substudy of the NHS3 and GUTS

The NHS3 is an ongoing web-based open cohort study of male
and female nurses and nursing studentsin the United Statesand
Canada that began in 2010, whereas the GUTS (N=27,706) is
aclosed cohort of children of participantsinthe Nurses Health
Study |1 from the United States, which started in 1996 and
expanded in 2004 [35]. To be dligiblefor the NHS3, participants
must be registered nurses, licensed practical or vocational
nurses, or nursing students and be born on or after January 1,
1965. For the GUTS, the participants were children of Nurses
Health Study Il participants. As of July 2021, atotal of 35,567
participants in the NHS3 and 10,554 participantsin the GUTS
remained active. NHS3 participants complete questionnaires
about their health and wellness every 6 months, whereas GUTS
participants complete questionnaires every 1 to 3 years[35].

The Beiwe Smartphone Substudy (hereafter referred to as the
substudy) involved a subset of NHS3 and GUTS participants
(1703/2394, 71.14% from the NHS3 and 691/2394, 28.86%
from the GUTS) who downloaded and registered on a
smartphone app called Beiwe [36]. This substudy aimed to
quantify the healthimpacts of environmental exposures, physical
activity, and sleep using smartphone-collected GPS and
accelerometer data and microsurveys. It served as a pilot to
expand web-based mHesal th technol ogy and big data capabilities
to the full NHS3 and GUTS cohorts. To be €ligible for the
substudy, participants recruited from the NHS3 must have
completed at least 2 main study questionnaires and expressed
interest in a biospecimen collection. GUTS participants must
be current responders and have answered “yes’ to any of the 3
biospecimen collection questions on the 2019 questionnaire.
For the eligible participants in both cohorts to be invited, they
must have an active email address on file and have not been
actively enrolled in another NHS3 or GUTS substudy.

Invited participants were then asked to complete a screener for
additional digibility criteria. These criteriaincluded (1) owning
a smartphone, (2) having weekly Wi-Fi access, and (3) living
in the 48 contiguous states of the United States. After that,
invited participantswho met the criteriawere sent an electronic
consent form. After providing their consent, they wereinstructed
to download the Beiwe app on their smartphones. Multimedia
Appendix 1 illustrates the sequences of different recruitment
stages. The app enables the distribution of short surveys and
high-resolution smartphone accelerometer and GPS data. Inthis
substudy, participants were asked to participate in a sampling
period of ayear. Unlike the typical 7-day measurement lengths
in other physical activity and GPS studies [29], this yearly
protocol aimed to record minute-by-minute behaviors and
exposures on workdays and nonworkdays and across weeks,
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months, and seasons. During the sampling period, participants
were asked to keep their smartphones with them during waking
hoursand at home at night, synchronizing their datausing Wi-Fi
at least once aweek. Enrollment for the substudy began in July
2021 and ended in August 2022. Data collection ended on June
15, 2023, defined as the last day for any study participants to
transmit any data.

Data Collection

Once downloaded, the Beiwe app guides users through the
onboarding process and obtains consent to access location
service data and send notifications. Multimedia Appendix 2
shows screenshots of the app pageintended for participants. At
the beginning of the sampling period, participants completed a
short smartphone-based survey about pet ownership.
Smartphone-based surveyswere delivered every 10 days starting
in July 2021 until the end of the sampling period for the last
substudy participant. The topics of the surveys changed each
time on a predetermined schedule and included surveys on
sitting, physical activity, sleep, mood, stress and enjoyment,
individual sections from food frequency questionnaires (eg,
vegetables, meat, beverages, nuts and dairy, and fruits), and
green space visits. Thelist of questions asked in each survey is
shown in Multimedia Appendix 3.

Simultaneously, the Beiwe app uses the smartphone GPS data
to estimate the location of the participantsat 15-minuteintervals
(90 seconds on and 810 seconds off) [37]. In addition, the app
uses the participants' smartphone accelerometer to measure
triaxial acceleration at a preconfigured frequency of 10 Hz (ie,
90-second intervals with 30 seconds on and 60 seconds off)
[25]. Interval-based collection of GPS and accelerometer data
was chosen to minimize battery consumption while maintaining
the ability to determine participant movement patterns and
behavior throughout the day.

Data Processing

The Beiwe app generates a large amount of data, including
participants' survey responses and GPS and accelerometer data,
which were stored and processed on Amazon Web Services
(AWS) servers. Considering the disparitiesin data characteristics
(eg, passive sensing datavs survey questionnaires) and volumes
(raw accelerometer data are much larger than GPS data), we
devel oped distinct workflowsto processthe 3 main data streams
of interest: GPS, accelerometer, and survey data.

GPS Data

The raw GPS data gathered at a fixed sampling rate of
approximately every 15 minutes underwent Python-based
preprocessing and imputation using a dstatistical method
developed specifically for Beiwe data named Jasmine in the
Forest Python library (Python version 3.9.2; Python Software
Foundation) [37]. This algorithm first filtered out participants
with insufficient data and location coordinates with <50 meters
of horizontal accuracy based on previous literature examining
the quality of GPS data collected viathe Beiwe app [37]. The
algorithm first identified flights (ie, periods of straight-line
movement) and pauses (ie, periods of nonmovement) for each
participant from the collected data. The algorithm thenimputed
missing data (ie, missing flights and pauses) based on
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resampling of observed flights and pauses using a bidirectional
imputation approach based on a sparse Online Gaussian process.
Finally, the algorithm converted the flights and pauses table
into a record of minute-by-minute GPS coordinates using the
start and end coordinates of the flights and pauses along with
their durations. In addition to generating minute-level datasets,
the algorithm cal cul ated daily summary statistics that measured
participants’ mobility, such as the time spent at home and on
trips and number of places visited. The home location was
inferred automatically from the data. A trip was defined as GPS
trajectories between 2 locations at least 50 meters apart where
participants stayed for at least 15 minutes. Places visited were
defined as GPS point clusters that were at least 15 minutesin
duration and 50 meters apart. The GPS imputation method has
been implemented as open-source software and can be accessed
through a GitHub link [38].

Accelerometer Data

For accelerometer data, first, raw accelerometer data collected
by the Beiwe app were retrieved from the AWS production
server and stored in the temporary storage of the AWS
computing instance on the analytical server that we set up. The
data were organized by participant and contained alist of files
storing subsecond-level measurements of acceleration on the
X-, ¥-, and z-axes at each hour. Second, these datawere fed into
a Python-based walking recognition algorithm named Oak in
the Forest Python library that estimated gait cadence for each
second of observation (ie, how many steps a person took in that
second) [38]. This method, validated against 20 publicly
available annotated datasets on walking activity data collected
at various body locations (thigh, waist, chest, arm, and wrist),
accurately estimates walking periods with high sensitivity and
specificity [32]. Details of the validated walking detection
algorithm for Beiwe can be found through a GitHub link [32].
Briefly, we aggregated second-level walking data to minutes,
enabling alignment with the GPS data collected simultaneously.

Survey Data

The submitted raw survey responses were stored in 1 master
file. To process the survey data, wefirst divided thefileinto 12
datasets, each corresponding to 1 of 12 surveys administered.
The survey topics were sitting, stress and enjoyment, emotions,
green spacevisits, physical activity, pets, sleep, vegetables, nuts
and dairy, mests, beverages, and fruits. The datasetswere further
preprocessed to calculate metadata (eg, the time from survey
start to survey submission) into table columns, duplicate survey
submissions were eliminated, and empty survey submissions
were removed. In addition, we summarized and visualized the
response distributions for each survey question.

Statistical Analysis Plan

In this manuscript, we present response rates for each step of
substudy participant recruitment and show demographic
characteristics (means and frequencies) compared to those of
thefull NHS3 and GUTS cohorts. Although datacollection was
ongoing, we also present preliminary statistics on compliance
with the GPS, accelerometer, and survey datacollection at both
participant and participant day levels.
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Participant Day-Level Compliance

Following the recommendation of a previous study that
examined accelerometer data collected by the Beiwe app [32],
we defined avalid second as onethat had at |east 9 observations
and a valid minute as one that had at least one valid second.
Similarly, for GPS data, we defined a 15-minute data collection
segment asvalid if at |east one observation with <50 meters of
horizontal accuracy was recorded. A valid day was defined as
one with at least 600 valid minutes (10 valid hours) for GPS
and accelerometer data, which is commonly used in physical
activity studies using GPS and accelerometer devices[29]. The
participant day—level compliance was calculated as the
percentage of valid daysout of thetotal potential data collection
days. Potential data collection days for each participant were
defined as the number of days between the date the participant
registered on the app and the data download date selected for
this study (if they had not yet completed ayear of sampling) or
the end date of the participant (if they had completed a year of
sampling). For sensitivity analysis, we aso calculated the
participant day—level compliance using each participant’'s
follow-up time instead, which excluded the days after the
participant deleted the Beiwe app. In addition, we calculated
noncollection prevalence for both GPS and accelerometer data
by calculating the percentage of days without data out of the
total potential days. We also performed sensitivity analysesfor
the aforementioned statistics using more stringent criteria, which
defined avalid day as one that had at least 1200 valid minutes
(20 valid hours), which may be a better indicator of how well
participants provided data for afull 24-hour period.

Participant-Level Compliance

At the participant level, GPS and accel erometer data collection
compliance was defined as follows: (1) “excellent” if the
participants had at least 75% of their potential data collection
days as valid days, (2) “good” if they had between 50% and
75% of their potential data collection days as valid days, (3)
“fair” if they had between 25% and 50% of their potential data
collection days as valid days, and (4) “poor” if they had <25%
of their potential data collection days as valid days. Regarding
survey data, we computed the response rate for each survey sent
over a year, which was equivalent to the total number of
participants who completed and submitted the survey over the
total number of potential surveysthat a participant would have
received. Finally, we also presented some preliminary statistics
(means, medians, and 1QRs) of some mobility and walking
behavior metrics derived from the processed datasets. For
mobility, we estimated daily time spent at home and on trips,
total distancetraveled, and total number of placesvisited derived
from the GPS data; for walking behavior, we calculated daily
steps (sum of steps at the minute level) and walking minutes
(sum of total secondswithin each minutein which weidentified
steps) derived from the accel erometer data; and, for the surveys,
we summarized the answers to a selective list of questions
asking about various environmental and behavioral drivers of
chronic diseases.

In this substudy, participants were drawn from 2 large
nationwide cohorts with potentialy disparate demographic
characteristics. In addition, evidence has indicated that
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smartphone apps installed on Android and iOS systems may
function differently during the collection of GPS, accel erometer,
and survey databecause of the heterogeneity of the smartphone
hardware and software[34]. Thus, to explore whether the cohort
or smartphone type affected the various compliance criteriathat
we were calculating, we also broke down the aforementioned
statistics by cohort and phone operating system (OS). All
statistical analyses were performed in AWS using Python and
the Forest library for raw Beiwe data processing and in R
(version 4.1.0; R Foundation for Statistical Computing) for
participant day— and participant-level data summaries and
compliance statistics.

Ethical Consider ations

All  procedures performed in studies involving human
participants were in accordance with the ethical standards of
the ingtitutional review boards of the Brigham and Women's
Hospital and the Harvard TH Chan School of Public Health
(protocol numbers 1999P002104 and 2006P000473). All
participants provided informed consent for data collection at
the beginning of the substudy. Participants were not
compensated. Raw data collected by the Beiwe app were
encrypted before being sent to the AWS production server.
Subsequently, the data were either securely transferred to the
analytical server (for GPS and survey data) or deleted from the
temporary storage of the analytical server after processing (for
accel erometer data). Both AWS production and analytics servers
were protected by 2-factor authentication and SSP keys. To
protect participant identity, no personal or health-related
information was entered through Beiwe.

Results

Participant and Data Characteristics

The invitations to participate in the substudy were sent out
starting on July 21, 2021. Intotal, weinvited 32,441 NHS3 and
GUTS participants to complete the eligibility screening. Of
those 32,441 participants invited, 3470 (10.7%) completed the
screener, and 3410 (98.27%) of these individuals were
determined to be €eligible (Multimedia Appendix 1). The
comparison of demographics of participants who consented to
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the study versusthose who did not, aswell as participantswhom
weinvited to complete eligibility screening versusthosewedid
not invite, are shown in Multimedia Appendix 4. Overall, there
was little difference across these groups. Of the 3410 eligible
individuals, 2796 (81.99%) completed the consent process and
received instructionsto downl oad the Beiwe app [36], and 2394
(70.21%) downloaded and registered on the app to participate
in the substudy.

The demographics of the substudy compared with those of the
entire NHS3 and GUTS cohorts are shown in Table 1. Overal,
the sample had a mean age of 41.8 (SD 8.1) years and was
predominantly female (2247/2394, 93.86%) and White
(2243/2394, 93.69%). Over half (1437/2394, 60.03%) of the
participants were married, and more than three-quarters
(1817/2394, 75.9%) were nonsmokers. Themean BMI was 27.4

(SD 6.7) kg/m?. When comparing the characteristics of the
substudy sampleto those of the active NHS3 and GUTS cohorts
at the beginning of the substudy, there were no major
differences. More specifically, compared with the active NHS3
cohort, the substudy participants were older, more likely to be
White individuals, and more likely to be nonsmokers and had
a higher BMI but a similar distribution of sex (Table 1). In
contrast, the substudy sample recruited from the GUTS were
more likely to be female and less likely to be married and had
ahigher BMI than the active GUTS cohort. However, they had
similar distributionsfor age, race, ethnicity, and smoking status
(Table 1).

At the conclusion of our data collection period (June 2023), we
had received 11.1 TB of data from 2394 participants, including
10.5 TB of accelerometer data, 243.5 GB of GPS data, and
23,682 survey submissions. By leveraging our cloud-based
processing approach and customized Python-based algorithms
(described in the M ethods section), we were ableto process our
data, including GPS data processing and imputation, walking
recognition, and cleaning of survey data. Our efforts eliminated
the need to store alarge amount of raw datalocally and resulted
in a much smaller processed dataset (eg, 1.9 GB of processed
accelerometry datavs 10.5 TB of raw data), which substantially
reduced data storage and processing time and costs.
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Table 1. Demographic characteristics of active Nurses' Health Study 3 (NHS3) and Growing Up Today Study (GUTS) cohorts at the beginning of the
substudy (July 2021) and of participants enrolled in the Beiwe Smartphone Substudy.

Variable Active GUTS cohort at

Active NHS3 cohort at

Beiwe Smartphone Substudy

the beginning of the sub-  the beginning of the sub-

study (n=10,554) study (n=35,567)

All substudy partici-  Participantsfromthe  Participantsfrom the

pants (n=2394)

GUTS (n=691)

NHS3 (n=1703)

Age (y), mean (SD) 34.3(3.5) 42.6(7.8)
Sex, n (%)
Male 3453 (32.72) 474 (1.33)
Female 7101 (67.28) 35,003 (98.67)
Race, n (%)
American Indianor 43 (0.41) 456 (1.28)
Alaska native
Asian 214 (2.03) 1195 (3.36)
Black or African 71 (0.67) 1159 (3.26)
American
Native Hawaiian or 40 (0.38) 148 (0.42)
other Pecific Is-
lander
White 10043 (95.16) 32002 (89.98)
Ethnicity, n (%)
Hispanic or Latinx 249 (2.36) 1602 (4.5)
Not Hispanicor Lat- 10249 (97.11) 33804 (95.04)
inx
Married, n (%) 6594 (62.48) 20,646 (58.05)
Smoking status, n (%)
Never 7932 (75.16) 26,682 (75.02)
Current 346 (3.28) 1792 (5.04)
Former 2276 (21.56) 6809 (19.14)
BMI (kg/m?), mean (SD) 26.7 (6) 26.7 (6.4)
Phone OS2, n (%)
Android _b —
i0S — —
Both® - -

41.8(8.1) 345 (3.5) 44.8 (7.5)
147 (6.14) 115 (16.64) 32(1.88)
2247 (93.86) 576 (83.36) 1671 (98.12)
22 (0.92) 5(0.72) 17 (1)

45 (1.88) 8 (1.16) 37(2.17)
51(2.13) 6 (0.87) 45 (2.64)
7(0.29) 2(0.29) 5 (0.29)
2243 (93.69) 663 (95.95) 1580 (92.78)
80 (3.34) 20 (2.89) 60 (3.52)
2307 (96.37) 669 (96.82) 1638 (96.18)
1437 (60.03) 392 (56.73) 1045 (61.36)
1817 (75.9) 528 (76.41) 1289 (75.69)
103 (4.3) 29 (4.2) 74 (4.35)
468 (19.55) 134 (19.39) 334 (19.61)
27.4(6.7) 27.2(6.7) 27.5(6.7)
645 (26.94) 217 (31.4) 428 (25.13)
1743 (72.81) 472 (68.31) 1271 (74.63)
6 (0.25) 2(0.29) 4(0.23)

80S: operating system.
BNot applicable.

CSome participants switched smartphones during the year-long data collection period, which resulted in a different OS.

Participant and Data Collection Compliance

Overview

Overall, participants provided digital phenotyping data (at least
one observation in a day) for an average of 53% (SD 39%;
median 58%) of the total potential data collection days (ie, 1
year). On average, participants were followed up for 213 (SD
148; median 246) days, defined as the difference in days
between the date of app registration and either the date when
the participant deleted the app or the data download date,
whichever came first. When breaking down by phone OS, the
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averagefollow-up timewasdightly longer for iOSthan Android
users (223 days, SD 146 vs 187days, SD 149). A total of 77.99%
(1867/2394) of the participants had at least 1 month of
follow-up, 69.72% (1669/2394) of the participants had at least
3 months of follow-up, and 57.27% (1371/2394) had at least 6
months of follow-up. Table 2 provides a full list of metrics for
the participant follow-up days. To explore the potential bias of
our data due to participant attrition, we also compared the
demographic characteristics of participants who had at least 1,
3, and 6 months of follow-up (Multimedia Appendix 5). The
results indicated no major differences across groups.
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At the participant day level, we collected an average of 14.8
(SD 5.9; median 14.3) valid hours of GPS data per day and 13.2
(SD 4.8; median 13.2) valid hours of accelerometer data per
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day. Android users had more valid hours of data per day than
iOS usersfor both datatypes. Multimedia Appendix 6 provides
details of smartphone device compliance.

Table 2. Percentages of participants who had follow-up lengthsa that were at least 7 days, 2 weeks, 1 month, 3 months, and 6 months (N=2394).

Overal, n (%)

By phone OSb, n (%)

Android (n=645) i0S (n=1743) Both® (n=6)
At least 7 days 2039 (85.17) 523 (81.09) 1510 (86.63) 6 (100)
At least 2 weeks 1954 (81.62) 501 (77.67) 1447 (83.02) 6 (100)
At least 1 month 1867 (78) 472 (73.18) 1390 (79.75) 5(83.33)
At least 3 months 1669 (69.72) 405 (62.79) 1259 (72.23) 5(83.33)
At least half ayear 1371 (57.27) 324 (50.23) 1042 (59.78) 5(83.33)

8Follow-up length was defined as the difference in days between the app registration date and either the |ast date on which the participant provided any
data via the Beiwe app or the data download date of this study—November 1, 2022—whichever came first.

bos: operating system.

CSome participants switched smartphones during the year-long data collection period, resulting in a different OS.

GPS and Accelerometer Data

Table 3 presents smartphone-based GPS and accel erometer data
collection compliance statistics at the participant day level based
on total potential data collection days. We found that 40.38%
(351,520/870,525) of observation days with GPS data and
40.02% (348,394/870,525) of observation days with
accelerometer data were valid using a commonly applied
criterion (=10 valid hours). Broken down by phone OS,
compliance with GPS and accelerometer data collection was
nearly identical for data collected via Android and iOS devices
at the participant day level (90,410/234,695, 38.52% vs
259,838/633,640, 41.01% for GPS data and 91,960/234,695,
39.18% vs 255,333/633,640, 40.3% for accelerometer data),
although missing rates (ie, days with zero data) were lower for
iOS devices than for Android devices for both data streams
(291,756/633,640, 46.04% vs 134,395/234,695, 57.26% for
GPS data and 290,141/633,640, 45.79% vs 118,368/234,695,
50.43% for accelerometer data). Figure 1 illustrates the GPS
coordinates every 15 minutes over a 12-month period based on
data collected from a test participant during protocol
development.

Compliance rates at the participant day level were higher when
calculated based on participant follow-up periods excluding
attrition days after the Beiwe app was deleted from the
participants  phones  (351,520/511,161, 68.77% vs
351,520/870,525, 40.38% for GPS data and 348,394/511,161,
68.16% vs 348,394/870,525, 40% for accelerometer data),
suggesting that a substantial portion of our noncompliance was

https://publichealth.jmir.org/2024/1/€55170

due to deletion of the app from participants phones before the
end of the follow-up periods (participants might choose to
unenroll from the study earlier and stop providing data) rather
than to other possible reasons, such as a dead phone battery or
app malfunction. Details of compliance calculated based on
participant follow-up periods and the breakdown of rates by
phone OS are provided in Multimedia Appendix 7. As a
sensitivity analysis, we also compared participant day—level
compliance for smartphone-based GPS and accelerometer data
using a 10-hour cutoff and a more stringent 20-hour cutoff
(Multimedia Appendix 8). The results indicate a substantial
decrease in valid days (from 351,520/870,525, 40.38% to
99,694/870,525, 11.45% for GPS data and from
348,394/870,525, 40.02% to 38,613/870,525, 4.44% for
accelerometer data).

Table 4 shows participant-level compliance with the smartphone
GPS and accelerometer data collection using a 10-hour cutoff.
GPS data showed that 39.52% (946/2394) of the participants
had “excellent” compliance (=75% of data collection days out
of the total potential days were valid) and 11.95% (286/2394)
had “good” compliance (between 50% and 75% of data
collection days out of the total potential days were valid). For
accelerometer data, 42.65% (1021/2394) of the participants had
“excellent” compliance, and 10.61% (254/2394) had “good”
compliance. The compliance proportions also varied by phone
OS. For both the GPS and accelerometer data, Android users
had a lower “excellent” or “good” compliance than iOS users
(281/645, 43.6% vs 946/1743, 54.27% for GPS data and
317/645, 49.2% vs 953/1743, 54.68% for accel erometer data).
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Table 3. Smartphone GPS and accelerometer data collection compliance at the participant day level by phone operating system (OS) for the Beiwe
Smartphone Substudy of the Nurses' Health Study 3 and Growing Up Today Study (N=870,525 total potential data collection days).

Overdl, n (%) By phone OS, n (%)

Android (n=234,695) i0S (n=633,640)

Both? (n=2190)

Participant day—level compliance rates—GPS data

Valid daysP 351,520 (40.38) 90,410 (38.52) 259,838 (41.01)

Invalid days 92,270 (10.6) 9890 (4.21) 82,046 (12.95)

Noncollection days® 426,735 (49.02) 134,395 (57.26) 291,756 (46.04)
Participant day—level compliance rates—accelerometer data

Valid daysd 348,394 (40.02) 91,960 (39.18) 255,333 (40.3)

Invalid days 113,090 (12.99) 24,367 (10.38) 88,166 (13.91)

Noncollection days® 400,041 (46.99) 118,368 (50.43) 290,141 (45.79)

1272 (58.08)

334 (15.25)
584 (26.67)

1101 (50.27)

557 (25.43)
532 (24.29)

350me participants switched smartphones during the 1-year data collection period, which resulted in a different OS.

bA valid day was defined as one with at least 600 valid minutes (10 valid hours) per day for GPS and accelerometer data. The participant day—level
compliance was calcul ated as the percentage of valid days out of thetotal potential datacollection days. Potential data collection daysfor each participant

were defined as 365 days from the date the participant registered on the app.

®Missing days were defined as days without data. In this study, the primary reason for missing days was attrition (ie, the app was deleted from a
participant’s phone before the 1-year study completion date because the partici pant unenrolled from the substudy). Another reason was sensor noncollection,
which could be due to a participant forgetting to charge their phone or disabling the GPS or a major update from the OS causing the Beiwe app to

malfunction temporarily, among other reasons.

Figure 1. A visualization of GPS coordinates every 15 minutes across 4 seasons within the 1-year sampling period.
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Table 4. Smartphone GPS and accelerometer data collection compliance at the participant level by phone operating system (OS) for the Beiwe
Smartphone Substudy of the Nurses' Health Study 3 and Growing Up Today Study (N=2394).

Overal, n (%) By phone OS, n (%)
Android (n=645) i0S (n=1743) Both? (n=6)

Compliancerates b__GPSdata

Excellent (275%) 946 (39.52) 172 (26.67) 769 (44.12) 5(83.33)

Good (approximately 50%-75%) 286 (11.95) 109 (16.9) 177 (10.16) 0(0)

Fair (approximately 25%-50%) 328(13.7) 94 (14.57) 234 (13.42) 0(0)

Poor (<10%) 834 (34.84) 270 (41.86) 563 (32.3) 1(16.67)
Compliancerates b__accelerometer data

Excellent (275%) 1021 (42.65) 241 (37.36) 775 (44.46) 5(83.33)

Good (approximately 50%-75%) 254 (10.61) 76 (11.78) 178 (10.21) 0(0)

Fair (approximately 25%-50%) 311 (12.99) 79 (12.25) 232(13.31) 0(0)

Poor (<10%) 808 (33.75) 249 (38.60 558 (32.01) 1(16.67)

8Some participants switched smartphones during the 1-year data collection period, which resulted in a different OS.

bCompliance rates were defined as the percentage of valid days out of the potential data collection days for each participant. Potential data collection
days for each participant were defined as the number of days between the date on which the participant registered on the app and the data download
date (ie, November 1, 2022) selected for this study (if they had not yet completed a year of sampling) or the study end date of each participant (if they
had completed a year of sampling). A valid day was defined as a day with =10 valid hours (600 valid minutes) of data records.

Survey Data

At the conclusion of the substudy, 87.72% (2100/2394) of the
participants had completed 23,682 surveys. The average number
of surveys completed per participant was 11 (SD 11; median
7) out of atotal of 36 potential surveys that the participants
were asked to complete. On average, Android users completed
more surveys than iOS users (16, SD 13 vs 9, SD 10). A total
of 41.62% (874/2100) of the participants completed at least
25% (10/37) of the surveys sent, 25.86% (543/2100) completed
at least 50% (19/37) of the surveys sent, and 11.52% (242/2100)
completed at least 75% (28/37) of the surveys sent. The average
time to complete a survey since the participant opened it on the
app was 53 (SD 197; median 21) seconds, which varied based

https://publichealth.jmir.org/2024/1/€55170

on the number of questions in each survey. Table 5 shows the
response rate for each of the substudy surveys sent to
participants from the beginning to the end of the study except
for the “pets’ survey, which was administered at baseline and
had a response rate of 82.71% (1980/2394). The average
response rate for al the other surveys was 36% (SD 16%;
median 41%), and the rate steadily declined after 1 year since
the substudy began. Looking at the survey topics, 2 surveyson
mental health had the lowest average response rates (average
of 37% for “emotions’ among 6 surveys administered and
average of 38% for “stress/enjoyment” among 6 surveys
administered), whereas all surveys on food intake (“fruits,”
“nuts and dairy,” “beverages,” “meats,” and “vegetables’) had
the highest response rates (>42% in al cases).
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Table 5. Survey response rates for the Beiwe Smartphone Substudy of the Nurses' Health Study 3 and Growing Up Today Study. Participants also
completed the pet survey at the time of Belwe app registration, with aresponse rate of 82.71% (1980/2394).

Survey date Survey name Response rate (%) Survey submitted, n Survey sent, N
August 5, 2021 Emotion 26.67 44 165
August 15, 2021 Stress and enjoyment 36.57 132 361
August 25, 2021 Physical activity 481 203 422
September 4, 2021 Green space 47.55 233 490
September 14, 2021 Sleep 51.22 273 533
September 26, 2021 Sitting 51.49 346 672
October 5, 2021 Emotion 79.83 562 704
October 15, 2021 Stress and enjoyment 52.04 433 832
October 25, 2021 Physical activity 50.88 461 906
November 4, 2021 Fruit 52.53 519 988
November 14, 2021  Vegetable 46.96 509 1084
November 24,2021  Green space 52.1 595 1142
December 7, 2021 Sleep 45.36 562 1239
December 14,2021  Sitting 47.95 597 1245
December 24, 2021 Emotion 18.97 233 1228
January 13, 2022 Stress and enjoyment 47.19 587 1244
January 13, 2022 Beverage 47.95 584 1218
January 22, 2022 Mesat 47.88 588 1228
February 2, 2022 Green space 47.3 623 1317
February 13, 2022 Physical activity 47.33 629 1329
February 2, 2022 Sleep 47.76 629 1317
March 4, 2022 Sitting 45.25 590 1304
March 14, 2022 Nut dairy 46.69 648 1388
March 24, 2022 Fruit 4.7 624 1396
April 3, 2022 Vegetable 42.77 589 1377
April 13, 2022 Emotion 47.79 637 1333
April 23, 2022 Stress and enjoyment 52.7 703 1334
May 3, 2022 Physical activity 42.16 567 1345
May 13, 2022 Green space 43.08 607 1409
May 23, 2022 Sleep 45.67 649 1421
June 2, 2022 Sitting 46.84 667 1424
June 12, 2022 Nut dairy 43.97 616 1401
June 22, 2022 Beverage 42.56 589 1384
July 2, 2022 Mesat 41.69 567 1360
July 12, 2022 Fruit 41.43 556 1342
July 22, 2022 Vegetable 42.50 561 1320
August 4, 2022 Emotion 32.21 411 1276
August 14, 2022 Stress and enjoyment 11.93 142 1190
August 26, 2022 Physical activity 37.49 391 1043
September 6, 2022 Green space 33.44 327 978
September 16, 2022  Sleep 21.21 183 863
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Survey date Survey name Response rate (%) Survey submitted, n Survey sent, N
September 26, 2022 Sitting 19.04 155 814
October 6, 2022 Emotion 24.97 187 749
October 16, 2022 Stress and enjoyment 26.63 184 691
October 26, 2022 Physical activity 24.47 149 609
November 5, 2022 Fruit 24.68 134 543
November 15, 2022  Vegetable 251 122 486
November 25,2022  Green space 26.92 112 416
December 5, 2022 Sleep 25.48 93 365
December 15,2022  Sitting 24.53 78 318
December 25,2022  Emotion 24.91 72 289
January 4, 2023 Stress and enjoyment 24.34 65 267
January 14, 2023 Beverage 26.32 65 247
January 24, 2023 Mesat 24.48 59 241
February 4, 2023 Green space 2311 52 225
February 14, 2023 Physical activity 24.44 44 180
February 24, 2023 Sleep 25 41 164
March 6, 2023 Sitting 2357 37 157
March 15, 2023 Nut dairy 11.81 17 144
March 27, 2023 Fruit 20 20 100
April 7, 2023 Vegetable 16.85 15 89
April 17, 2023 Emotion 37 3 81
April 27, 2023 Stress and enjoyment 17.95 14 78
May 8, 2023 Physical activity 19.05 12 63
May 18, 2023 Green space 10 5 50
June 1, 2023 Sleep 10 1 10

Preliminary Summary Statistics of Participant
Mobility, Walking Behavior, and Chronic Disease

Drivers

7.9-61.6) km, and the median number of locations visited was
3. Time spent at home and on trips, distance traveled, and the
number of places visited differed only dightly by phone OS.

GPS and Accelerometer Data

Table 6 presents the preliminary summary statistics of
participant mobility and walking behavior metrics obtained
from processed GPS and accel erometer data. After applying the
missing data imputation agorithm [37], we found that
participants spent an average of 14.6 (SD 7.5; median 15.1)
hours per day at home and 1.6 (SD 1.6; median 1.2) hours per
day ontripson 439,907 participant days. In addition, themedian
distance that participants traveled per day was 26.6 (IQR

https://publichealth.jmir.org/2024/1/€55170

For walking behavior, we sampled an average of 1046 (SD
1029; median 761) steps per day and 9.4 (SD 9.2; median 6.9)
minutes of walking per day within the 8-hour daily observation
periods (the app was configured so that the smartphone collected
30 seconds of accelerometer data every 90 secondsto conserve
smartphone battery) over 456,485 participant days. When
comparing phone OS, iOS users had more daily steps and
minutes of walking than Android users (1125 vs 805 steps and
10.2 vs 7.3 minutes). Figure 2 shows hourly walking steps per
month over a 12-month period based on data collected during
protocol development from arandomly selected participant.
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Table6. Preliminary mobility and walking behavior metrics derived from processed smartphone GPS and accel erometer datafrom the Beiwe Smartphone
Substudy of the Nurses' Health Study 3 and Growing Up Today Study.

Overall By phone 0S?
Android i0S Both?
Participant mobility©
Time spent at home (hours)
Mean (SD) 14.6 (7.5) 14.6 (7.8) 14.6 (7.4) 12.4 (7.9)
Median (IQR) 15.1 (10.5-21.0) 15.1 (10.2-21.5) 15.1 (10.5-20.8) 12.4(6.6-19.2)
Time spent on trips (hours)
Mean (SD) 1.6 (1.6) 14(1L3) 1.6 (1.6) 1.8(18)
Median (IQR) 1.2 (0.6-2.0) 1.2(0.7-1.8) 1.2 (0.6-2.1) 1.3(0.7-2.3)
Total distancetraveled per day (km)
Mean (SD) 84.8 (379.0) 80.3(315.4) 86.0 (395.7) 132.3 (408.7)
Median (IQR) 26.6 (7.9-61.6) 27.0(7.7-65.7) 26.4 (7.9-60.3) 35.8(6.4-84.3)
Number of significantd locations visited per day
Mean (SD) 34(2.1) 3.1(2.0) 35(2.2) 3.9(2.3)
Median (IQR) 3.0(2.0-4.0) 3.0(2.0-4.0) 3.0(2.0-5.0) 4.0 (2.0-5.0)
Participant walking behaviors®
Total daily walking minutes
Mean (SD) 9.4(9.2) 7.3(8.4) 10.2 (9.4) 10.5 (11.6)
Median (IQR) 6.9 (3.1-12.9) 45(1.6-9.9) 7.7(3.8-13.7) 8.2 (4.1-13.5)
Total daily step counts’
Mean (SD) 1045.6 (1029.4) 805.2 (940.6) 1125.0 (1044.0) 1136.1 (1258.0)
Median (IQR) 760.7 (341.3-1421.6) 4925 (175.1-1092.4) 847.2 (416.5-1513.7) 886.2 (449.3-
1455.8)

30S: operating system.

bSome participants switched smartphones during the 1-year data collection period, which resulted in a different OS.
COverall: n=439,907; Android: n=99,699; iOS: n=338,604; and both: n=1605.
dSignificant locations were defined as distinct locations visited that were at least 50 meters away and whose visit lasted at least 15 minutes.
€Overall: n=456,485; Android: n=113,399; iOS: n=341,443; and both: n=1512.

The walki ng behavior metrics shown reflect only what the smartphone accelerometer observed during the day when it was on (the accelerometer was
configured to be on for 30 seconds during the 90-second cycle to conserve the smartphone battery). If we extrapolate thetime at aratio of 1:3 (ie, 8 out
of 24 hours per day), we expect approximately 27 minutes of daily walking time and approximately 3000 steps per day recorded by the smartphone.

https://publichealth.jmir.org/2024/1/€55170

RenderX

JMIR Public Hedlth Surveill 2024 | val. 10 | €55170 | p. 12
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR PUBLIC HEALTH AND SURVEILLANCE

Yietd

Figure 2. Hourly walking steps by month over 12 months using the accelerometer data of arandomly selected participant.
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Survey Data

In addition to walking behavior and maobility, we obtained the
prevalence of important environmental and behavioral factors
from 22,783 survey responses, including park visits, leisure-time
walking, fruit and vegetable consumption, timing and duration
of sleep, and daily sitting time. Figure 3 shows the distribution
of the responses to a selected list of survey questions. For
example, regarding participants physical activity and sedentary
behavior, alittle less than two-thirds of the survey submissions
(1609/2539, 63.37%) reported visiting a park in the previous
week, approximately 50% (1222/2447) reported walking for at
least 1 hour for exercise in the previous week, and >50%
(1274/2463, 51.73%) reported sitting for at least 8 hoursin the
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previous day. In addition, more than four-fifths of the survey
submissions (1970/2419, 81.44%) reported having afairly good
or very good quality of sleep. To cite some examples of food
intake, 86.86% (1554/1789) of survey submissions reported
eating half a cup of broccoli at least 1 to 3 times per month in
the previous 4 months, 85.89% (1041/1212) reported eating
eggs (including egg yolks) at least 1 to 3 times per month inthe
previous 6 months, and dightly less than 70% (861/1237,
69.6%) reported drinking caffeinated coffee (8-0z cup) at least
1 to 3 times per month in the previous 6 months. Figure 4
illustrates an example survey schedule alongside the GPS and
accelerometer data for a substudy participant at the participant
day, participant week, and participant year levels.
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Figure3. Thedistribution of responsesto selected questions on behavioral factorsin the smartphone-based surveysfor the Beiwe Smartphone Substudy

of the Nurses' Health Study 3 and Growing Up Today Study. NA: not applicable.
Visiting park in the past week

%

Y

<1 h3ir

NA 1

2-3 per day 1

1 per day

5-6 per week 1

2-4 per week 1

1 per week 1

1-3 per month

Never, or less than once per month 4

NA

2-3 per day

1 per day

5-6 per week

2-4 per week

1 per week

1-3 per month

Never, or less than once per month

NA

=6 per day

4-5 per day

2-3 per day

1 per day

5-6 per week

2-4 per week

1 per week

1-3 per month

Never, or less than once per month

A

!
T

T
0% 20%

Daily time spent walking for exercise

o

40% 60%

0% 10%

Rate the quality of your last sleep

20% 30%

e :

0% 20%

Total time spent sitting in the past 24 hours

40% 60%

1

0% 5%

10% 15%

Intake of half a cup of broccoli during the past 4 months

0% 10%

20% 30%

Regular egg including yolk intake during the past 6 months

0% 10%

20%

Coffee with caffeine (8-oz cup) intake during the past 6 months

——

————

0% 10%

https://publichealth.jmir.org/2024/1/€55170

XSL-FO

RenderX

20% 30%

JMIR Public Health Surveill 2024 | vol. 10 | €55170 | p. 14
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR PUBLIC HEALTH AND SURVEILLANCE

Yietd

Figure4. A visudization of 3 streams (GPS, accelerometer, and survey) of digital phenotyping data from a participant in the Beiwe substudy at the
participant day, participant week, and participant year levels, with red dots representing the step count at each minute, black dots representing latitude
as aproxy for GPS availability at each minute, and orange dots representing each submitted survey.
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Discussion

Principal Findings

Physical inactivity, prolonged sitting, and poor dietary habits
are important behavioral risk factors for chronic diseases that
are prevaent in the United States and can be influenced by
environmental factors. Simultaneously, mHealth technology
such as digital phenotyping offers unique insights into
individuals behavioral and physiological traits, including
geographic locations, movements, and lifestyle choices, which
can be used to derive environmental exposures and behavioral
drivers of chronic diseases. In this study, we integrated
smartphone-based digital phenotyping into 2 well-established
nationwide prospective cohorts, the NHS3 and GUTS, and
described our approach to manage and analyze a vast amount
of digital phenotyping data collected at a high spatial and
temporal resolution. Our initial assessment of adherence to
smartphone-based data collection protocolsover 1 year indicates
that adherence rates in our study were either higher or similar
to those of most previous studies with much shorter follow-up
periods and smaller sample sizes. In addition, we presented
preliminary summary statistics on participant mobility, walking
behavior, and potential environmental and behavioral drivers
of chronic diseases derived from 1 year of smartphone data.
These location-stamped behavior data can be linked to
environmental datasets (eg, air pollution, temperature, and
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greenness) to examine associations between momentary (eg,
greenness) or transient (eg, extreme heat) environmental
exposures and health behaviors (eg, physical activity) or other
outcomes (eg, mental health) in this population. Furthermore,
the participants in this study were members of the ongoing
NHS3 and GUTS prospective cohorts, so thereisrich covariate
history from previous questionnaires to derive insights on how
demographics, comorbidities, and other health behaviors affect
exposures and behaviors. Moreover, these participants will be
followed for decades for chronic disease incidence, so these
digital phenotyping data can serve as baseline exposure and
behavior data for future analyses.

Our low-burden and cost-effective digital phenotyping data
collection protocols achieved overall device data compl eteness
and survey response rates (ie, valid data collection hours per
day, percentage of participants meeting the compliance cutoff,
and percentage of surveys answered) that were on par with, if
not higher than, other recent smartphone-based digital
phenotyping studies [25,28,30,39-42] despite the fact that most
of these studies had much smaller sample sizesand shorter data
collection lengths. According to a recent review by Lee et a
[43] of studies that used digital phenotyping to understand
health-related outcomes, the sample sizesfor such studieswere
generally <100, and the duration was usually between 10 and
14 days. There were a few studies with larger samples
[30,31,44-49], for example, the Interventions, Research, and
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Action in Cities Team cohort study designed by Kestens et a
[31], which applied “Ethica’ (another popular digital
phenotyping platform) to follow approximately 2000 participants
within the 5-year period to investigate changes in health
behavior and mental health outcomes before and after the
changes made to the built environment [30,31]. However, most
of these studies had shorter sampling periods of 2 to 6 weeks
(eg, 30 consecutive days for the aforementioned study), unlike
our study, where more than three-quarters of participants
provided data for >6 weeks. However, despite our
longer-than-usual data collection length, we also found that
many participants deleted the app before the end of the 1-year
follow-up period. Unfortunately, we did not conduct afeedback
survey at the end of the substudy to ask about the reasons for
dropping out. This could have helped us to gather user
experience data and understand participants’ willingness to
provide data over along follow-up period (1 year in our case).
We hope to do thisin future studies.

Our findings on differences in device compliance according to
phone OS contribute to the growing literature on this topic.
Specifically, we found that iOS users in the study had lower
noncollection rates and higher participant-level compliancethan
Android users for both GPS and accelerometer data. These
findings are partially consistent with those of Kiang et a [40],
who examined GPS and accelerometer data noncollection rates
in 6 digital phenotyping studies using the Beiwe platform and
found that iOS users had lower GPS data noncollection rates
than Android users. Kiang et al [40] further investigated whether
GPS and accelerometer data noncollection rates differed by
sociodemographic characteristics as differences in participant
demographics by iPhone and Android phones have recently
been reported [50]; however, they ultimately reported null
results. To investigate thisissue in our study, we compared the
sociodemographic characteristics of the 2 groups (Multimedia
Appendix 9). In contrast to Kiang et al [40], we found that iOS
usersinour study in general had higher household incomesthan
Android users. Therefore, we speculate that the differencesin
compliance by phone OSin our study may be dueto differences
in the socioeconomic status (SES) of the participants. We
suggest that future studies with more diverse populations are
needed to further investigate whether participants SES at the
individual or area level could account for the difference in
adherence to smartphone data collection according to phone
os.

Regarding the preliminary statistics of participant mobility and
walking behavior derived from GPS and accelerometer data,
we found that the values were lower than those in previous
studies using wearabl e devices. For example, we found that the
average number of steps per day was much lower than that in
another NHS3 study [39]. Thisdiscrepancy isdueto difference
in wear patterns between wearables (ie, Fitbit) and the
smartphone-only design used in our study, as well as the fact
that our protocol samples GPS and accelerometer data
noncontinuoudly by design[51]. A recent study by Straczkiewicz
et a [52] found similar discrepancies in walking outcomes by
comparing step counts obtained from smartphone-based
accelerometers and Fitbit devices, which is consistent with our
findings. It isimportant to point out that, if we extrapolate the
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total number of steps to the 24-hour period (average of 996
steps over 400,000 participant days at 8 hours per day), we
estimate that we would obtain approximately 3000 steps per
day. This does not consider that approximately 70% of the
participants in our sample (1703/2394, 71.13%) were nurses
who may not have always had a smartphone with them during
their daily activities. In addition, in this case, the extrapolated
number was closer to the lower end of the average number of
steps taken by American adults, as the latest study of
smartphone-based physical activity data shows [53]. Despite
the aforementioned limitations, the method we used to quantify
walking activity was found to be a reliable approach for
identifying walking bouts and deriving step counts and walking
minutes [32]. In the future, we plan to compare smartphone
surveys to objective smartphone-based accelerometer
measurements to further explore this topic.

The high spatial and temporal resolution of GPS and
accelerometer data allowed us to examine variations (minute
by minute and daily) in environmental exposure and physical
activity within each participant (see an examplein Figure 4), a
resolution that conventional large epidemiological studies often
faill to achieve. Our data collection over a year offers an
advantage over the short duration (typically 7-14 days) of data
collection in many intensive longitudinal studies, which often
rely on GPS devices and accelerometersto collect location and
movement data[29] and place agreater burden on participants.
Smartphone-based location data may be particularly
advantageous over dedicated GPS devices at the day or survey
level asrecent studies have reported small differences between
activity space measures derived from location data collected by
these 2 types of devices [26]. In addition, most people have
their smartphones with them throughout the day and charge
their phone every night [54]. We believe that our data have
enormous potential to advance the field of environmental
exposure assessment and behavioral measurement in cohort
studies and provide new insightsinto how the environment and
behavioral factors drive chronic disease outcomes. In the
following paragraphs, we discuss potential applications of our
data

To start, with minute-level GPS data collected from >2400
participants across a 12-month period (see Figure 1 for an
exampleillustration of the richness of our GPS data), our study
can assess and compare personalized exposures to various
environmental characteristics (eg, air pollution, green spaces,
walkability, and noise) at distinct temporal resolutions (eg, 7
days, 1 month, 3 months, and the entire year) accounting for
exposure as participants move through time and space and across
a year. This can then be used to examine how these
smartphone-based measurements compare to traditional
residential-based environmental and self-reported behavioral
measurements. For example, we can compare participants
greenness exposure in their residential neighborhoods with
exposureintheir activity spaces aggregated at different temporal
scales [21]. The results of this study will enable us to develop
regression calibration methods that can be applied to correct
residential-based measures of environmental exposure and
self-reported physical activity in the larger NHS3 and GUTS
cohorts. This may mitigate the potential bias and
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misclassification that could affect associations between these
exposures and health behaviors or outcomes.

In addition, the highly personalized exposure metrics give us a
better position to answer important research questions in the
field of activity space—based health research, such asthe number
of days of GPS monitoring required to adequately capture an
individual’s environmental exposure or behavioral patterns[55].
In addition, the minute-by-minute walking data of our
participants allowed us to examine their physical activity
patterns at daily or diurnal levels (see Figure 2 for an example
of the high-resolution step data over a year). Both examples
illustrate how our data are better suited for determining the
effects of environmental and behavioral drivers of many chronic
diseases at both the intraindividual (eg, dayswithin aparticipant)
and interindividual levels.

More importantly, the 3 streams of smartphone-based digital
phenotyping data collected in our study can belinked at different
gpatial and temporal resolutions to quantify the relationships
between environmental factors and health behaviors. For
example, 2 recent studies reported nonlinear minute-level
relationships among greenness exposure, walkability, and
physical activity outcomes [21,56]. However, both studies
spanned only 7 days, which may not fully capture the typical
environmental exposures in an individual’s activity space and
physical activity behavior. In this regard, our study adds a
valuable longitudinal perspective that may capture routine
behaviors over long periods and complements existing intensive
longitudinal studiesthat observe participantsfor between 7 and
14 days without compromising data resolution. Finaly, we
could examine noncontemporaneous effects of environmental
exposure, such as time-lagged responses, on health behaviors
[14], for example, whether environmental exposure from the
previous day affects self-reported stress scores from surveys.
Investigating the association with different temporalities (eg,
time-lagged relationships in the previous example or the
same-day relationship), of environmental exposureisacritical
step toward understanding the various mechanisms that may
influence health-related outcomes [44].

Challenges, Limitations, and Strengths

We encountered 2 major challenges in conducting this study.
First, the steep learning curve for exploring, setting up, and
fine-tuning an optimized computing infrastructure for managing,
processing, and analyzing the vast amount of digital phenotyping
data from smartphones can be an obstacle for researchers who
may lack the technical skills required to manage this quantity
of data. In our study, we adopted a cloud-based approach using
AWSfor data storage and processing. Other studies may benefit
from other computing infrastructures depending on their design,
datacharacteristics, and data processing budgets. Asthe number
of digital phenotyping studies increases, further discussion on
the advantages and disadvantages of each approach isrequired.
Second, privacy concernsremained. The personally identifiable
information collected in this study, such as high-resolution
location data collected through GPS, may revea sensitive
information, such as the participants’ home and work location
and daily travel activities. In this study, we addressed thisissue
by encrypting data during transmission and storing the processed
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datain an ingtitutional review board—-approved AWS structure.
We also restricted data access so that the personally identifiable
information was only accessed when needed and was never
shared with other parties.

Our study had certain limitations that should be considered.
First, the participants were selected from 2 prospective cohort
studies, which primarily consisted of White female individuals
of arelatively high SES. Therefore, it isimportant to note that
our findings may not be applicable to other populations. In
addition, the ratio of male to female individuals invited to
participate in the substudy was slightly higher than in the group
that we did not invite because we started recruiting male
participants in later data collection cyclesin the NHS3, which
may result in aslightly less representative sample of the whole
cohort. Second, the GPS and accelerometer data missingness
may affect the representativeness of the data collected (eg, GPS
trajectoriesrecorded vsactua trajectories). Much of themissing
data could be due to our study design as we configured our
Beiwe app to collect data in preprogrammed on-off cycles. In
addition, alarge proportion of our participantswere nurseswho
may not be permitted to use their personal smartphones during
work hours. This may have contributed to lower adherence to
the study protocol. Unfortunately, we did not collect information
on whether participantswere allowed to carry their smartphones
during working hours; therefore, we could not investigate how
this affected our results. We also did not conduct a feedback
survey at the end of the substudy to ask about the reasons for
dropping out, which could have hel ped us gather user experience
data and better understand participants’ willingness to provide
data within a long follow-up period (1 year in our case). To
reduce the missingness of smartphone-based survey data, we
shortened the questions we asked in each smartphone survey
to minimize the overall risk of burdening participants. However,
we did not conduct a feedback survey to allow participants to
comment on the experience and content of the smartphone
surveys, therefore, we were unable to eval uate the effectiveness
of our strategy. Overall, the missingness in the aforementioned
datasets may affect our ability to answer research questions
related to associations between environmental exposures and
health behaviors and their roles as potential drivers of chronic
diseases [51]. Nevertheless, the data of our study are still
substantially larger in volume than those from most previous
mHealth studies.

Degpite the challenges and limitations, our study is one of the
largest digital phenotyping efforts conducted to date in terms
of both the number of participants and duration of data
collection. Setting up a cloud-based computing infrastructure
that leverages the powerful capabilities of AWS proved
cost-effective  in  handling the immense amount of
smartphone-based digital phenotyping data that we received
daily. This, together with the fact that the Beiwe app is an
open-source research platform for smartphone-based
high-throughput digital phenotyping that can be accessed
worldwide [36], indicates that our approach is scalable and
could prove particularly beneficial for future studieswith similar
goals. Most importantly, the high spatial and temporal resolution
of the data from the GPS and accelerometers allows us to
examinevariationsin environmental and behavioral risk factors
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at multiple spatial and temporal scales and explore the complex
rel ationships between exposures and behaviors. Thisultimately
helps shed light on their roles as drivers of many chronic
diseases that are prevalent in the United States.

Conclusions

In summary, despitetherelatively high dropout rates during the
1-year data collection period and the representativeness of our
data due to noncontinuous data collection, our assessment of
adherence to data collection protocols in the 1-year Beiwe
Smartphone Substudy of the NHS3 and GUTS revealed an
overall device data completeness and survey response rates
comparable to, if not higher than, those of other current
smartphone-based digital phenotyping studies with smaller

Yietd

participant numbers and much shorter data collection periods.
As mHealth technologies grow in popularity and collect vast
amounts of data, this substudy lays the groundwork for further
development of techniques to extract meaningful information
from the noise of the vast amount of streamed smartphone-based
digital phenotyping data. We will also be able to assess the
length of time required to devel op reliable measures of activities.
These highly granular spatially and temporally resolved mohility
and health behavior data could complement the annual
guestionnairesin large epidemiological cohortsto provide new
insights into the impact of mobility-based exposure to air
pollutants, noise, and green spaces on physical inactivity, poor
dietary habits, inadequate sleep, and mental well-being, all of
which are important risk factors for chronic diseases.
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