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Abstract

Background: Previous studies have highlighted the importance of viral shedding using cycle threshold (Ct) values obtained
via reverse transcription polymerase chain reaction to understand the epidemic trajectories of SARS-CoV-2 infections. However,
it is rare to elucidate the transition kinetics of Ct values from the asymptomatic or presymptomatic phase to the symptomatic
phase before recovery using individual repeated Ct values.

Objective: This study proposes a novel Ct-enshrined compartment model to provide a series of quantitative measures for
delineating the full trajectories of the dynamics of viral load from infection until recovery.

Methods: This Ct-enshrined compartment model was constructed by leveraging Ct-classified states within and between
presymptomatic and symptomatic compartments before recovery or death among people with infections. A series of recovery
indices were developed to assess the net kinetic movement of Ct-up toward and Ct-down off recovery. The model was applied
to (1) a small-scale community-acquired Alpha variant outbreak under the “zero-COVID-19” policy without vaccines in May
2021 and (2) a large-scale community-acquired Omicron variant outbreak with high booster vaccination rates following the lifting
of the “zero-COVID-19” policy in April 2022 in Taiwan. The model used Bayesian Markov chain Monte Carlo methods with
the Metropolis-Hastings algorithm for parameter estimation. Sensitivity analyses were conducted by varying Ct cutoff values to
assess the robustness of the model.

Results: The kinetic indicators revealed a marked difference in viral shedding dynamics between the Alpha and Omicron
variants. The Alpha variant exhibited slower viral shedding and lower recovery rates, but the Omicron variant demonstrated
swifter viral shedding and higher recovery rates. Specifically, the Alpha variant showed gradual Ct-up transitions and moderate
recovery rates, yielding a presymptomatic recovery index slightly higher than 1 (1.10), whereas the Omicron variant had remarkable
Ct-up transitions and significantly higher asymptomatic recovery rates, resulting in a presymptomatic recovery index much higher
than 1 (152.5). Sensitivity analysis confirmed the robustness of the chosen Ct values of 18 and 25 across different recovery phases.
Regarding the impact of vaccination, individuals without booster vaccination had a 19% higher presymptomatic incidence rate
compared to those with booster vaccination. Breakthrough infections in boosted individuals initially showed similar Ct-up
transition rates but higher rates in later stages compared to nonboosted individuals. Overall, booster vaccination improved recovery
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rates, particularly during the symptomatic phase, although recovery rates for persistent asymptomatic infection were similar
regardless of vaccination status once the Ct level exceeded 25.

Conclusions: The study provides new insights into dynamic Ct transitions, with the notable finding that Ct-up transitions toward
recovery outpaced Ct-down and symptom-surfacing transitions during the presymptomatic phase. The Ct-up against Ct-down
transition varies with variants and vaccination status. The proposed Ct-enshrined compartment model is useful for the surveillance
of emerging infectious diseases in the future to prevent community-acquired outbreaks.

(JMIR Public Health Surveill 2024;10:e54861) doi: 10.2196/54861
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Introduction

In the COVID-19 pandemic, one of the main reasons for the
fast spread of SARS-CoV-2 variants was the presymptomatic
and persistent asymptomatic infection caused by a group of
SARS-CoV-2 mutants, ranging from Wuhan D614G to variants
of concern (VOCs) such as Alpha, Beta, Gamma, Delta, and
Omicron [1]. Transmission modes, whether before or without
the onset of symptoms, are often occult and very hard to identify.
To reduce the spread of SARS-CoV-2 and the ascertainment of
both presymptomatic and asymptomatic cases, quarantine and
isolation with reverse transcription polymerase chain reaction
(RT-PCR) tests in the presence or absence of symptoms are
applied to suspected infected persons after contact tracing. There
are several mathematical models proposed for modeling such
an infectious process as susceptible, exposed, infective, and
recovering, like the susceptible-exposed-infectious-recovered
model and its variants [2-5]. Despite the usefulness of
susceptible-exposed-infectious-recovered models and their
variants in modeling infectious disease dynamics due to their
simplicity, flexibility, and historical success, they have several
limitations. These models often assume homogeneous mixing
within the population, which may not accurately reflect
real-world contact patterns and transmission dynamics. They
also use constant transition rates that may not capture the
variability and stochastic nature of disease transmission, and
they lack detailed individual-level dynamics, particularly in
distinguishing between presymptomatic and symptomatic phases
and also Ct levels. Our previous studies have also applied a
mathematical model to estimate the incidence of presymptomatic
and asymptomatic cases and the time required for the transition
from the presymptomatic phase to the presence of symptoms.
We developed a 4-state stochastic model specifically for data
on imported COVID-19 cases, which included parameters like
the presymptomatic incidence rate, the median of
presymptomatic transmission time to the symptomatic state,
and the incidence of asymptomatic cases. This model was
applied to empirical data from Taiwan, encompassing various
SARS-CoV-2 variants, to bridge the link between the natural
infectious properties and different disease phenotypes. The
results highlighted the dynamic nature of these parameters across
different strains and periods, providing insights into the impact
of public health interventions like quarantine and isolation
policies [6].

While these models are valuable for providing new insight into
the dynamics of strength-based and speed-based infectious
processes by SARS-CoV-2 variants, there is a paucity of
mathematical models that are proposed for estimating the
dynamics of infectious processes associated with the evolution
of viral shedding from the time of exposure to infectives to the
presence of symptoms. Up to date, there have been few studies
so far that have made use of viral load information for
surveillance of outbreaks. For example, Hay et al [7] applied
the distribution of cross-sectional viral load measured by cycle
threshold (Ct) value through RT-PCR to estimate the
time-varying reproductive number of SARS-CoV-2 infection
and reflect its epidemic trajectory. This is the first study to report
the use of a cross-sectional quantitative measure of viral
shedding with a Ct value for inferring an epidemic’s trajectory.
Recently, Lin et al [8] investigated COVID-19 dynamics across
different epidemic waves in Hong Kong, highlighting changes
in Ct value distributions across various waves and variants and
analyzing the impact of vaccination on clinical outcomes.
Furthermore, Puhach et al [9] explored the application of
different surveillance methods in inferring epidemic dynamics,
particularly using Ct value distributions to estimate epidemic
progression. They compared various surveillance methods,
including traditional epidemiological data and Ct value-based
monitoring, finding that Ct values not only reflect individual
viral load changes but can also be used to infer overall epidemic
trends and transmission dynamics. These findings indicate that
Ct value distributions can serve as a critical tool for epidemic
surveillance, helping to timely adjust public health strategies
[9]. Dehesh et al [10] also demonstrated that population-level
Ct values can predict COVID-19 dynamics, showing a
significant negative correlation between average daily Ct values
and daily new positive cases, hospitalizations, and deaths,
suggesting that Ct values can be a useful indicator for epidemic
surveillance.

Regarding vaccination-related studies, Jung et al [11] compared
the transmission and viral shedding kinetics of SARS-CoV-2
in vaccinated versus unvaccinated individuals, discovering that
fully vaccinated individuals had shorter durations of viable viral
shedding and lower secondary transmission rates. Kissler et al
[12] analyzed viral dynamics in vaccinated versus unvaccinated
persons, showing faster viral clearance in vaccinated individuals
and comparing the impacts of different variants. Gowler et al
[13] emphasized the importance of viral shedding kinetics and
transmission, noting that different vaccination statuses and
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variants affect the virus's cultivability and transmission patterns,
suggesting these factors should be considered in study designs.

These studies underscore the importance of using Ct value
dynamics to infer epidemic progression, providing the
theoretical foundation for this study. However, there are gaps
in the existing research, including the limited focus on
variant-specific viral shedding kinetics, insufficient integration
of vaccination impact, a lack of comprehensive kinetic models
for presymptomatic and symptomatic phases, and the absence
of specific indicators to quantify the kinetic movement toward
recovery. Our previous studies used a 4-state stochastic model
to estimate the incidence of presymptomatic and asymptomatic
cases. However, the dynamics of Ct values within and across
presymptomatic to symptomatic has not been considered. It is
therefore of great interest to address these research gaps by
providing a more granular understanding of how different
SARS-CoV-2 variants and vaccination statuses influence the
kinetics of viral shedding and recovery, offering valuable
insights for public health interventions.

The aim of this study is therefore to propose a new Ct-guided
compartment model for deciphering the kinetics of viral
shedding during the infectious process of 3 compartments
(susceptible, presymptomatic, and symptomatic) before recovery
or death. A series of useful indicators are also developed to
quantify the kinetic movement of viral shedding toward
recovery. We applied the proposed Ct-guided model and the
developed recovery index to 2 community-acquired outbreaks,
including Alpha VOC infection and Omicron VOC infection,
with and without the “zero-COVID-19” policy.

Methods

Model Specification
Figure 1 shows a specific model for estimating the kinetics of
the viral shedding transition within and between the
presymptomatic phase and the symptomatic phase before

recovery or death for Alpha and Omicron VOCs. Subjects of
the underlying susceptible population are defined as an
uninfected state (state 1). Once infected, the symptom-based
phenotypes of viral shedding during the presymptomatic phase
and after the onset of symptoms are expressed by the Ct value
with the application of the RT-PCR test to the suspected infected
persons. The higher the Ct value, the less concern there is over
the transmissibility of SARS-CoV-2 variants. The transition of
viral shedding is captured by the change in Ct value in the
instantaneous potential (per day). The lower the Ct value, the
higher the viral shedding after infection. There are many ways
of classifying Ct values into different categories, ranging from
2 to 7 (6 states used in Figure 1). The more refined the Ct value,
the closer it is to the continuous property of the Ct value.
Different SARS-CoV-2 variants may elicit different cutoffs for
the viral shedding transition. Here, we first propose 3 categories
of Ct value according to the previous studies, using 18 and 25
as 2 cutoffs for the comparisons of Alpha and Omicron VOCs
[14,15]. We performed a sensitivity analysis by changing
different cutoffs to assess whether and how the alteration of the
cutoff changes the results.

After entering the presymptomatic phase, the transitions between
3 states are determined by 4 transition parameters that govern
back and forth movements before entering the symptomatic
phase or recovery without showing signs of symptoms, the latter
of which would be defined as persistent asymptomatic cases
who would be distinct from those presymptomatic cases detected
by RT-PCR tests that are often defined as nonpersistent
asymptomatic cases. The 4 corresponding transition parameters
are also applied to the viral shedding transition within the
symptomatic phase before recovery or death. A total of 3
transition parameters are required for bridging the movements
from the presymptomatic to the symptomatic phase by 3
categories of viral shedding level. Absorbing parameters
included the recovery of persistent asymptomatic cases after
departure from the presymptomatic phase, symptomatic cases,
and also death.
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Figure 1. The Ct-guided multistate compartment model for SARS-CoV-2 infection.

The Kinetic Mechanism of Transition Parameters
Following Figure 1, there are 3 main compartments, including
the uninfected, presymptomatic, and symptomatic, for depicting
the entire infectious process on an individual level. The category
of Ct level after the RT-PCR test is further incorporated into
the presymptomatic phase and the symptomatic phase. It is
therefore important to decipher the kinetic mechanism for the
transition rates of Ct level within 2 phases after infection and
the transition from the presymptomatic compartment to the
symptomatic compartment, and also the departure rates for the
recovery or death from the 2 main compartments. The first
transition parameter from uninfected to presymptomatic
infection is called presymptomatic incidence, denoted by Ipre.
The higher the incidence, the higher the transmissibility of
SARS-CoV-2. It is postulated that the presymptomatic incidence
for Omicron would be higher than that for Alpha. As far as the
presymptomatic compartment, the transition parameters
governing the underlying kinetic mechanism can be considered
as a pair of up-down Ct values within the presymptomatic phase
or symptomatic phase and the symptom-surfacing transition
from the presymptomatic phase to the symptomatic phase. The
first pair of parameters pertaining to the first level of Ct is
composed of the Ct-up transition from the lowest level of Ct to
the middle level of Ct, defined as the first Ct-up transition rate

denoted by u1
(1), the first Ct-down transition rate denoted by

d1
(1), the opposite of the Ct-up transition, and the first

symptom-surfacing transition (s1). The same logic would be
applied to the second pair of parameters on the second level of

Ct, denoted by u2
(1), d2

(1), and s2. For generalizability, suppose
we have m categories of Ct, the jth pair of parameters is

determined by uj
(1), dj

(1), sj (j=1, 2,…,m–1). The smaller the
value of j, the lower the Ct level and the higher the viral load.
Regarding the symptomatic compartment model, the pair of
transition parameters consist of up-down Ct transitions denoted

by uj
(2) and dj

(2) and death denoted by deathj. When reaching
the highest level of Ct, there are 2 transition parameters for the
highest level of Ct within the presymptomatic compartment,
including the departure rate for the recovery as defined as the
recovery rate of persistent asymptomatic cases (Ra) and the
symptom-surfacing transition (Sm). There are only 2 transition
parameters: the departure rate for the recovery (Rs) and the death
rate (D). The total parameters required for estimation are
generalized to 1+c[2(m–1)]+m+c, where 1 represents the initial
compartment, c is the number of infectious compartments, and
m is the number of Ct categories. The last 2 elements are related
to death and recovery. In Figure 1, c=2 and m=3 are applied.

Indicators for the Incidence of Infection and the
Kinetics of Viral Shedding Toward Recovery
There are 3 indicators proposed here for quantifying the
occurrence of infection and the transition of viral shedding
leading to recovery. The first indicator for the incidence of
infection is the incidence of presymptomatic infection, denoted
as Ipre. The larger the value of Ipre, the higher the transmissibility
and the more frequent contact with infectives.

JMIR Public Health Surveill 2024 | vol. 10 | e54861 | p. 4https://publichealth.jmir.org/2024/1/e54861
(page number not for citation purposes)

Lin et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The second indicator is the recovery index for presymptomatic
infection. We proposed the following recovery index for the
downstaging of viral load toward the recovery from
presymptomatic infection until persistent asymptomatic infection
without the manifestation of apparent symptoms, which is
expressed by

uj
(1)/(dj

(1)+sj) (1)

This recovery index is used as the kinetic force toward a lower
viral load during the presymptomatic phase. Note that the
recovery index is changed to Ra/(dm–1+sm) when reaching the
status of recovery. The higher the value of this indicator, the
faster the recovery would be expected for such persistent
asymptomatic cases.

The third indicator is symptomatic infection-recovery or death.
The indicator for the kinetic force toward the lower viral load
of a symptomatic infection is proposed as follows:

uj
(2)/(dj

(2)+deathj) (2)

Note that the indicator is changed to Rs when reaching the final
destination of recovery.

Data Collection
We collected data on 2 epidemic cohorts in Changhua, the
middle county of Taiwan, between May 14 and July 24, 2021,
dominated by the Alpha variant, and between April 1 and May
16, 2022, dominated by the Omicron variant. Figure 2 shows

the 2 epidemic outbreaks. The former was only limited to a
small-scale community-acquired outbreak under the
“zero-Covid-19” policy with strict nonpharmaceutical
interventions (NPI) alert levels but without an available vaccine,
whereas the latter resulted in large-scale community-wide
outbreaks under the lifting of the “zero-Covid-19” policy with
high coverage booster vaccination. Accordingly, the susceptible
population related to both collected data is different. The former
is limited to people under contact tracing, and the latter involves
the entire population at risk. However, in these 2 periods, the
Alpha and early Omicron periods before the massive
community-acquired outbreak in Taiwan, information on contact
tracing through in-person interviews of people with infections,
a 14-day quarantine record of close contacts, and repeated
measurements of RT-PCR during quarantine and isolation
periods for diagnosis, surveillance, and recovery (discharge
from hospital if applicable) were available. Data on vaccination
status, the date of exposure, symptoms, and repeated measures
of viral shedding for each individual were also collected. Table
1 shows the descriptive data on the distribution of Ct for both
the Alpha VOC and Omicron VOC.

Accordingly, we are able to distinguish 3 types of data modes,
including symptomatic, presymptomatic, and asymptomatic
cases upon RT-PCR diagnosis, in light of the abovementioned
model (state 2-state 9) based on information on the timeline of
exposure, quarantine, symptoms, and diagnosis. Figure 3 and
Textbox 1 show 3 hypothetical cases for the corresponding
scenarios.
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Figure 2. The daily confirmed cases of the 2 outbreaks in Changhua. (A) Alpha. (B) Omicron.
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Table 1. Presymptomatic, asymptomatic, and symptomatic cases and their distributions of RT-PCR repeated measurements for Alpha VOC and Omicron
VOC infections.

OmicronAlpha

1,288,561—aPopulation, n

—8018Contact tracing, n

1118269Infection, n

291 (26%)24 (8.9%)Asymptomatic, n, %

827 (73.9%)245 (91.1%)Symptomatic, n, %

1306963Repeated measurement of RT-PCR, n, %

Asymptomatic or presymptomatic

335109Total, n

40 (11.9%)23 (21.1%)<18, n, %

216 (64.5%)26 (23.9%)18-25, n, %

79 (23.6%)60 (55.0%)>25, n, %

Symptomatic

971854Total, n

150 (15.4%)165 (19.3%)<18, n, %

673 (69.3%)177 (20.7%)18-25, n, %

148 (15.2%)512 (60.0%)>25, n, %

aNot applicable.

Figure 3. Data realizations of 3 hypothetical cases corresponding to 3 different detection modes.
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Textbox 1. Hypothetical cases for different scenarios.

• The symptomatic case (Figure 3A) refers to one diagnosed (first RT-PCR positive result) after the onset of symptoms. This case went through
an unobserved presymptomatic phase (state 2-state 4), stayed in state 5 at day 6 and state 7 at day 10, and moved to state 9 at day 13.

• A presymptomatic case showed no symptoms before the first positive RT-PCR test but developed symptoms afterwards (Figure 3B). The trajectory
of this case was state 2 at day 3, states 5 and 6 at days 10 and 14, respectively, and finally moved to state 9 at day 17.

• A persistent asymptomatic case again had no symptoms before the first positive RT-PCR test and never had any symptoms until the end of the
quarantine period (Figure 3C). This case first showed up in state 3 at day 3, stayed in state 4 at day 8, and reached recovery in state 8 at day 11.

Multistate Markov Model and Bayesian Markov Chain
Monte Carlo for Parameter Estimation
We developed a ten-state multistate Markov model for fitting
the proposed model in Figure 1 to the empirical data on Ct
repeated measurements, as mentioned earlier. The details of
defining transition probabilities between ten states and the
development of likelihood functions and Bayesian posterior
distributions are derived and given in Multimedia Appendix 1.
All the parameters encoded in Figure 1 and the intensity matrix
in equation (1) of Multimedia Appendix 1 were estimated using
the Bayesian Markov chain Monte Carlo method with the
Metropolis-Hastings sampling algorithm for simulating the
approximate samples based on the posterior distribution, which
was derived from the prior information on all relevant
parameters in combination with the likelihood function formed
by the empirical data with transition probabilities between
Ct-enshrined up-down transitions and recovery or death. The
details are given in Multimedia Appendix 1.

Ethical Considerations
The study was approved by the Institutional Review Board of
Taipei Medical University (TMU-JIRB: N202007018) for the

authors to have permission to use the original data. The
provision of individual information, including health data, travel
history, occupation, contact history, and cluster information
was mandatory during the outbreak period as justified by the
Taiwan Communicable Disease Control Act. According to the
act, consent for the retrieval of individual information related
to the containment of EID outbreaks can be waived under
government auspices.

Results

Estimated Transition Parameters
Table 2 shows the detailed estimates of transition parameters
governing the kinetics of viral shedding within and between 2
(presymptomatic and symptomatic) compartments of Alpha and
Omicron infection. As far as the first susceptible compartment,
the expected presymptomatic incident cases per day for Alpha
VOC cluster infection were 326 (8018×0.047) among 8018
contact tracing persons and 2319 (1,288,561×0.0018) for the
county-wide spread of the Omicron VOC among 1,288,561
residents.
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Table 2. Estimated daily transition rates by variants and vaccination status.

OmicronAlpha

VaccinatedUnvaccinatedOverall

0.00160.00190.00180.0407Presymptomatic incidence (Ipre)

0.26130.29880.29050.1693Presymptomatic first Ct-up transition rate (u1
(1))

0.58500.63970.61520.2693First symptom-surfacing transition (s1)

0.00520.03500.02390.1186Presymptomatic first Ct-down transition rate (d1
(1))

0.30000.25850.28030.2041Presymptomatic second Ct-up transition rate (u2
(1))

0.03990.03990.05230.1266Second symptom-surfacing transition (s2)

0.02800.04270.02500.0159Presymptomatic second Ct-down transition rate (d2
(1))

0.00110.00110.00060.0482Third symptom-surfacing transition (s3)

0.10080.10550.09570.0512Recovery rate of persistent asymptomatic cases (Ra)

0.24240.41930.30330.2229Symptomatic first Ct-up transition rate (u1
(2))

0.02430.18770.07560.0273Symptomatic first Ct-down transition rate (d1
(2))

0.29540.26510.27670.2780Symptomatic second Ct-up transition rate (u2
(2))

0.01200.02100.01640.0279Symptomatic second Ct-down transition rate (d2
(2))

0.13650.15340.14310.0705Departure rate for the recovery (Rs)

———0.0013Death1

———0.0046Death2

———0.0026Death3

aNegligible.

Figure 4 shows the approximate Bayesian Markov chain Monte
Carlo Metropolis-Hastings samples for the estimated transition
parameters, as shown in Table 2. In assessing the convergence
of the estimated parameters, we used the standard diagnostics,
as illustrated in Figure 4, which presents the Metropolis-Hastings
approximate samples for the estimated parameters of all

posterior distributions. The trace plots demonstrate stability,
consistency, and low autocorrelation, indicating that the samples
reach a stationary distribution and that the chains are mixing
adequately. The results show very good convergence of the
estimated parameters.
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Figure 4. Metropolis-Hastings approximate samples for the estimated parameters of posterior distributions.

Kinetics of the Ct-Up-Down Infectious Process of
Alpha VOC
Table 3 shows the kinetics toward the reduction of viral load
with the proposed indicator in light of the estimated transition
rates shown in Table 2 for Alpha VOC. The kinetic indicator
for the Ct-up transition to reduce viral load increased from 0.44
(0.17/(0.27+0.12)) for the first de-escalation to 1.49
(0.20/(0.13+0.016)) for the second de-escalation. The final

recovery rate against the symptom-surfacing transition for an
asymptomatic infection was 1.10 (0.051/0.048).

The bottom panel of Table 3 shows that once surfacing to
symptoms, the Ct-up transition increased from 8.71 (0.22/0.03)
at the first de-escalation to 10.15 (0.28/0.027) at the second
de-escalation of Ct. The final recovery rate was 0.07 per day.
Note that the death rate was smaller compared with the recovery
rate.
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Table 3. Estimated recovery index by variants and vaccination status.

OmicronAlphaRecovery index

VaccinatedUnvaccinatedOverall

Presymptomatic-asymptomatic infection-recovery

0.44

(0.42-0.46)

0.44

(0.41-0.48)

0.45

(0.44-0.47)

0.44

(0.31-0.52)
Presymptomatic recovery index 1: u1

(1)/(s1+d1
(1))

4.42

(4.27-4.57)

3.14

(2.86-3.41)

3.63

(3.53-3.73)

1.49

(0.88-2.28)
Presymptomatic recovery index 2: u2

(1)/(s2+d2
(1))

93.5

(79.13-107.3)

97.81

(84.4-111.3)

152.5

(129.6,177.2)

1.10

(0.61-1.65)

Presymptomatic recovery index 3: Ra/s3

Symptomatic infection-recovery or death

10.25

(7.08-13.67)

2.24

(2.00-2.46)

4.01

(3.99-4.04)

8.71

(4.94-13.64)
Symptomatic recovery index 1: u1

(2)/(d1
(2)+death1)

24.79

(21.18-28.65)

12.74

(10.57-15.03)

16.88

(16.6-17.2)

10.15

(7.93-13.04)
Symptomatic recovery index 2: u2

(1)/(d2
(2)+death2)

0.14

(0.14-0.14)

0.15

(0.15-0.16)

0.14

(0.14-0.15)

0.07

(0.06-0.08)

Symptomatic recovery index 3: Rs

Kinetics of the Ct-Up-Down Infectious Process of
Omicron VOC
Regarding the Omicron infection, Table 3 shows the kinetic
indicator for the Ct-up transition to reduce viral load increased
from 0.45 (0.29/(0.62+0.02)) for the first de-escalation to 3.63
(0.28/(0.05+0.03)) for the second de-escalation. The final
recovery rate for asymptomatic infection against the
symptom-surfacing transition was 152.5 (0.0957/0.0006).

The bottom panel of Table 3 shows that once symptoms
surfaced, the Ct-up transition increased from 4.01 (0.30/0.076)
at the first de-escalation to 16.88 (0.28/0.016) at the second
de-escalation of Ct. The final recovery rate per day was 0.14.
Compared with the recovery rate, the death rate was almost
negligible.

Kinetics of the Ct-Up-Down Infectious Process by
Vaccination for Omicron
Table 3 also shows each transition parameter by Alpha and
Omicron infection, classified by booster vaccination or no
vaccination. It is interesting to note that the presymptomatic
incidence rate among persons without booster vaccination was
higher by 19% than among persons with booster vaccination.
Those with booster vaccination who once had vaccine
breakthrough infection had identical Ct-up transition at first
de-escalation compared with those in the absence of booster
vaccination, whereas the kinetics of Ct-up transition at second
de-escalation were higher among those with booster vaccination
than those in the absence of booster vaccination. The estimated
Ct-up transition rates were higher for those with booster

vaccination compared with those without booster vaccination
when reaching the symptomatic phase. However, once the Ct
level exceeded 25, there was a similar higher recovery rate for
persistent asymptomatic infection and also similar recovery
rates after the onset of symptoms, regardless of booster
vaccination.

Ct-Guided Kinetics Curves of Alpha and Omicron
Infectious Processes
Based on these estimated transition parameters for both Alpha
and Omicron VOCs, a series of dynamic presymptomatic (in
light color) and symptomatic curves (in deep color) from days
of infection (–4 days), through onset of symptoms (day 0), until
recovery or death during 1 month are presented in Figure 5.
Once infected, the viral shedding manifested from the high
(Ct<18 in red), medium (18-25 Ct in brown), and low (>25 Ct
in blue) levels, and 2 recovery modes, persistent asymptomatic
recovery (in light green) and symptomatic recovery (in deep
green). The dynamic of viral shedding was faster for Omicron
VOC infection than Alpha VOC infection because of the
following findings. The Omicron infection had a higher
proportion of persistent asymptomatic recovery (light green)
compared with the Alpha infection. In contrast, the low viral
load level in the symptomatic phase (deep blue) was higher for
the Alpha infection than that for the Omicron infection. Both
results were attributed to the faster de-escalation from high viral
load level to medium and low viral load level before surfacing
to the symptomatic phase for Omicron infection (see red and
brown curves), which were consistent with the findings from
Table 2.
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Figure 5. Dynamic curves since infection. (A) Alpha. (B) Omicron. PS: presymptomatic; S: symptomatic.

Sensitivity Analysis for Lower and Upper Cutoff of Ct
Figures 6 and 7 show the sensitivity analysis of changing the
cutoffs of the lower and upper bounds of Ct-defined states for
up-down transitions in Figure 1. The results are robust between

14 and 20 Ct values for the lower bounds and greater than 25
Ct values for the upper bound for both presymptomatic recovery
and the symptomatic index. Both findings lend support to our
choice of 18 and 25 Ct values used in Figure 1.
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Figure 6. Sensitivity analysis of the lower bound cutoff for the Ct-guided multistate compartment model.
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Figure 7. Sensitivity analysis of the upper bound cutoff for the Ct-guided multistate compartment model.

Discussion

Principal Results
This is the first study to elucidate the kinetics of up-down viral
shedding enshrined within and between presymptomatic and
symptomatic compartments in the light of Alpha and Omicron
infections. The proposed recovery indices are very useful for
the surveillance of the force toward the reduction (de-escalation)
of viral load and further toward the state of recovery when facing
emerging infectious diseases in the future. The effect size of
multiple recovery indices would reflect intrinsic characteristics
of effective reproductive number in terms of contact rate,
transmissibility, and infectiousness period and would also be

determined by containment measures (including NPIs, anti-viral
therapy, and vaccination) for various emerging variants such
as SARS-CoV-2 and different containment measures and scales
of community-acquired outbreaks. With the current data on the
Taiwan scenario, vaccines had not yet been available for
administration and were implemented with very strict NPIs by
Alert Level 3 during the COVID-19 Alpha VOC period. During
the COVID-19 Omicron BA.2 period, primary booster
vaccination and booster vaccination had already reached at least
70%, although Omicron infections are not fully prevented by
the uptake of the vaccine. However, the proposed model for the
surveillance of the kinetics of up-down viral shedding can be
flexibly accommodated to various scenarios of emerging
infectious disease.
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The usefulness of the proposed surveillance indicators is
therefore 2-fold. First, it is very helpful for elucidating the
dynamics of 2 pathways leading to recovery: one is related to
the recovery of persistent asymptomatic cases (state 8), and the
other is related to symptomatic recovery (state 9). From Figure
1, the underlying mechanism for the pathway leading to the
recovery of persistent asymptomatic cases is mainly determined
by 3 recovery indices with the findings shown in Table 2. When
the presymptomatic recovery index is greater than 1, the force
of moving toward recovery is likely. The larger the
presymptomatic recovery index, the faster the recovery. The
larger presymptomatic recovery index would imply a higher
possibility of precluding presymptomatic transmission from
further widespread community-acquired outbreaks. Whether
the magnitude of the index is greater than 1 is determined by
whether the Ct-up transition rate is larger than the 2 opposing
rates of competing transition, the Ct-down transition, and the
first symptom-surfacing rate.

In the current Taiwan scenario, the first recovery index, the first
de-escalation of a high viral load level (Ct18), for both Alpha
and Omicron infections is smaller than 1, as the first Ct-up
transition rate was lower than the sum of 2 opposing forces, the
first symptom-surfacing rate and the first Ct-down transition
rate. Most importantly, the second recovery index, the second
de-escalation of the medium viral load level (Ct 25-18), for both
Alpha and Omicron is larger than 1 as the second Ct-up
transition rate was larger than 2 opposite forces, the second
Ct-down transition rate and the second symptom-surfacing rate.
The third recovery index for both variants is also larger than 1.
More importantly, the second recovery index, the de-escalation
of the medial viral load level, plays a crucial intermediate role
in facilitating persistent asymptomatic recovery. It is very
interesting to note that both Alpha and Omicron VOC infections
have the same first recovery index that is smaller than 1, whereas
the second recovery index and, particularly, the third recovery
index are larger for the Omicron VOC compared with the Alpha
VOC. These findings suggest that as both second and third
recovery indices are larger for Omicron compared with Alpha
during the presymptomatic phase, the odds of persistent
asymptomatic cases for the Omicron VOC were 138-fold higher
compared with the Alpha VOC. The remarkable contrast of the
second and third recovery indexes between 2 variants also
reveals the susceptible-infective-recovery process in
commensuration with the “zero-COVID-19 policy during the
Alpha VOC pandemic and with the lack of a “zero-COVID-19”
policy during the Omicron pandemic.

Information provided from the symptomatic recovery index
may represent transmissibility and the duration of infectiousness
of the symptomatic cases; the higher the symptomatic recovery
index, the lower the transmissibility and the shorter the period
of infectiousness during hospitalization, which would bring the
effective reproductive number down to less than 1 sooner
following a community-acquired outbreak. However, the effect
size of symptomatic recovery indices may not be comparable
between variants or subvariants, although the findings indicate
that all of them are larger than 1. This is mainly because the
containment measures of various variants or subvariants may
vary from place to place. In our scenario, when the outbreak of

Alpha VOC infection occurred, vaccines were not available,
and only NPIs like isolation together with hospitalization
following the “zero-COVID-19” policy could be strictly
controlled and provided. The strict policy of isolation prompts
symptomatic recovery indices to become larger for faster
recovery. This also accounts for why community-wide Alpha
epidemic outbreaks could be controlled in Taiwan at that time.
However, it should be noted that the symptomatic recovery
index may not be as large as noted here when the proposed
Ct-up-down-transition model is applied to other settings with
a community-wide epidemic outbreak.

During the Omicron BA.2 period, “zero-COVID-19” has been
gradually lifted, and the main contrast between the 2 variants
is mainly manifested in the presymptomatic recovery index, as
mentioned earlier. The main highlight during the Omicron
pandemic period is the vaccination. Those with booster
vaccination during the Omicron BA.2 period had larger recovery
indices compared with those without booster vaccination.
Therefore, the second usefulness of the proposed surveillance
indicators is that those recovery indices can be used for decoding
the effectiveness of booster vaccinations associated with
Ct-up-down transitions and recovery or death. In our Omicron
scenario, booster vaccination brings down 29% for
presymptomatic recovery index 2, 78% for symptomatic
recovery index 1, and 49% for symptomatic recovery index 2,
but it does not affect presymptomatic recovery index 1 and 3
as well as symptomatic recovery index 3. Such findings provide
a new insight into why and how booster vaccination can make
a greater contribution to moderate-to-severe COVID-19 cases
than recovery, as demonstrated in several studies of the
effectiveness of booster vaccination [16,17].

Comparison With Prior Literature
Our study provides a detailed examination of the kinetics of
viral shedding for both Alpha and Omicron variants, introducing
recovery indices to quantify the de-escalation of viral load
toward recovery. Previous research has emphasized the
importance of Ct values in monitoring and predicting epidemic
dynamics. For example, Hay et al [7], Puhach et al [9], and
Dehesh et al [10] demonstrated the utility of cross-sectional
viral load distributions measured by Ct values to estimate
reproductive numbers and reflect epidemic trajectories. These
studies effectively highlighted the use of Ct values for epidemic
monitoring and showed significant correlations between average
daily Ct values and new cases, hospitalizations, and deaths
[7,9,10].

However, while these studies provided valuable insights into
general epidemic trends and transmission dynamics, they did
not differentiate between the presymptomatic and symptomatic
phases of viral shedding, nor did they provide detailed kinetic
models that capture the transition within and between these
phases. Our study addresses these gaps by offering a
comprehensive kinetic model for not only distinguishing the
presymptomatic phase from the symptomatic phase but also
eliciting specific recovery indices to monitor the effectiveness
of containment measures and vaccination. This allows for a
more granular understanding of how viral load dynamics evolve
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over the trajectory of infection and recovery, providing practical
tools for epidemic monitoring and intervention evaluation.

In terms of vaccination impact, studies by Jung et al [11], Kissler
et al [12], and Gowler et al [13] focused on comparing viral
shedding kinetics between vaccinated and unvaccinated
individuals, highlighting shorter durations of viable viral
shedding and faster viral clearance in vaccinated individuals.
These observations are consistent with our findings, which also
demonstrate that vaccinated individuals, particularly those who
received booster doses, exhibit shorter durations of viral
shedding and faster recovery rates. These studies emphasized
the importance of considering vaccination status and variant
differences but did not integrate these observations into a kinetic
model for considering different infection stages and specific
recovery trajectories. Our study extends their methodology by
incorporating vaccination status into our kinetic framework,
thereby providing insights into how vaccination influences the
entire infectious process, including the likelihood of recovery
and reduction in viral load [11-13].

Limitation
The major limitation of this study is that we do not have the
opportunity to apply the proposed Ct-up-down transition model
to external data. However, as mentioned earlier, the empirical
findings are highly dependent on the real-world data pertaining
to the strain of the new emerging infectious disease and also
the policy of containment measures and the coverage of
vaccination. Therefore, the external validation of the proposed

model is impracticable and can only be subjected to real-world
data applications. It is therefore suggested that the simulated
kinetic curves with different combinations of the estimated
parameters for new emerging infectious diseases as shown in
Figure 4 using artificial intelligence and machine learning are
highly recommended to project the trajectory of kinetic viral
shedding.

Conclusions
In conclusion, the proposed Ct-enshrined compartment model
effectively deciphers the kinetics of viral shedding, making it
a valuable tool for the surveillance of emerging infectious
diseases. By analyzing both Alpha and Omicron variants, the
model highlights significant differences in viral shedding
dynamics, with Omicron exhibiting faster viral shedding and
higher recovery rates compared to Alpha.

Additionally, the model demonstrates the impact of vaccination,
showing that vaccinated individuals, especially those with
booster doses, experience shorter viral shedding durations and
quicker recovery. These findings align with previous studies
and underscore the importance of incorporating vaccination
status into kinetic models to better understand and manage
infectious disease outbreaks.

The flexibility of the model allows it to be adapted to various
scenarios, enhancing its utility in real-time epidemic surveillance
and intervention evaluation. Overall, this study provides a robust
framework for tracking viral load dynamics and assessing the
effectiveness of public health measures.
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