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Abstract
Background: Syndromic surveillance represents a potentially inexpensive supplement to test-based COVID-19 surveillance.
By strengthening surveillance of COVID-19–like illness (CLI), targeted and rapid interventions can be facilitated that prevent
COVID-19 outbreaks without primary reliance on testing.
Objective: This study aims to assess the temporal relationship between confirmed SARS-CoV-2 infections and self-reported
and health care provider–reported CLI in university and county settings, respectively.
Methods: We collected aggregated COVID-19 testing and symptom reporting surveillance data from Cornell University
(2020‐2021) and Tompkins County Health Department (2020‐2022). We used negative binomial and linear regression models
to correlate confirmed COVID-19 case counts and positive test rates with CLI rate time series, lagged COVID-19 cases or
rates, and day of the week as independent variables. Optimal lag periods were identified using Granger causality and likelihood
ratio tests.
Results: In modeling undergraduate student cases, the CLI rate (P=.003) and rate of exposure to CLI (P<.001) were signifi-
cantly correlated with the COVID-19 test positivity rate with no lag in the linear models. At the county level, the health care
provider–reported CLI rate was significantly correlated with SARS-CoV-2 test positivity with a 3-day lag in both the linear
(P<.001) and negative binomial model (P=.005).
Conclusions: The real-time correlation between syndromic surveillance and COVID-19 cases on a university campus suggests
symptom reporting is a viable alternative or supplement to COVID-19 surveillance testing. At the county level, syndromic
surveillance is also a leading indicator of COVID-19 cases, enabling quick action to reduce transmission. Further research
should investigate COVID-19 risk using syndromic surveillance in other settings, such as low-resource settings like low- and
middle-income countries.
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Introduction
SARS-CoV-2 continues to be one of the most significant
causes of morbidity and mortality, with over 697,000,000
total COVID-19 cases and 6,900,000 deaths recorded
worldwide as of November 1, 2023 [1]. Although rates of
COVID-19 infection, hospitalizations, and mortality have
significantly declined due to global vaccination efforts [2],
the emergence of the highly mutated Omicron variant and
following subvariants continue to fuel spikes in COVID-19
cases [3].

National public health programs have primarily relied
on diagnostic testing to gauge COVID-19 case trends.
While useful for tracking the incidence of COVID-19 cases,
large-scale polymerase chain reaction–based surveillance
testing programs have high supply and labor costs. Coupled
with the shift to at-home testing—a practice that mainly grew
in the first Omicron wave beginning in December 2021—
which is largely unreported [4], this has led to a substantial
decline in reported daily tests in the United States. Shifting
the responsibility of case reporting from health care facilities
to patients has led to the underestimation of true COVID-19
trends and has challenged public health measures such as
isolation and quarantine of individuals who are infected, as
well as the measurement of negative effects or financial
costs of COVID-19. Furthermore, May 11, 2023, marked
the expiration of the US federal COVID-19 Public Health
Emergency declaration, along with authorizations to collect
certain public health data [5]. This triggered a pivot from
COVID-19 case-based surveillance to COVID-19–associated
hospital admissions as the leading indicator of COVID-19
trends, with many national COVID-19–reporting platforms
like the Centers for Disease Control and Prevention (CDC)
removing case-based metrics from their websites. Looking at
hospitalization data as an indication of the current state of
COVID-19, over 16,000 hospitalizations were reported in the
week of October 15, 2023 [6].

As endemic COVID-19 seems to be the likely future of
the pandemic [7], sustainable disease monitoring systems
are warranted. Syndromic surveillance, or the detection and
recording of symptoms before a diagnosis is confirmed, could
serve as a less resource-intensive method to monitor trends
in COVID-19–like illness (CLI) for public health departments
and health care facilities. The National Syndromic Surveil-
lance Project of the CDC defines CLI as “fever and cough or
shortness of breath or difficulty breathing with or without the
presence of a coronavirus diagnosis code. Visits meeting the
CLI definition that also have mention of flu or influenza are
excluded” [8].

Syndromic surveillance has already been used in a few
ways throughout the pandemic. The National Syndromic
Surveillance Project pivoted to reporting on CLI using local,
academic, and private partnerships [9], while county health
departments like Seattle and King County of Washington
State have reported CLI trends from hospitalizations and
emergency department (ED) visits [10]. COVID Control, a
Johns Hopkins University study, piloted a symptom reporting

app in 1019 counties and identified loss of taste or smell
to be a leading predictor of SARS-CoV-2 rates, appearing
5 days before confirmatory diagnostic tests [11]. Limita-
tions of these prior syndromic surveillance studies include
reliance on ED data [10], which may exclude patients with
COVID-19 who are asymptomatic or have mild symptoms.
Although COVID-19 hospitalizations are ongoing, they have
significantly declined since the onset of the pandemic and
subsequent Omicron spikes, and are largely composed of
populations older than 70 years [6], making surveillance
that relies exclusively on ED admissions and hospitaliza-
tions biased. Additionally, the COVID Control study selected
participants experiencing CLI, which does not indicate
how rates of symptoms relative to the total community or
population track true SARS-CoV-2 positivity rates [11]. To
date, there is still limited information on how CLI surveil-
lance can be used to accurately monitor community transmis-
sion, including asymptomatic and mild infections.

Cornell University and Tompkins County Health
Department (TCHD) each developed a CLI surveillance
system and a robust tracking system for confirmed
COVID-19 cases. In the university setting, surveillance
testing and daily symptom reporting were enforced among all
individuals on campus, resulting in a daily record of testing,
symptom reporting, and exposure data. In contrast, the county
recorded CLI data from patients who voluntarily sought out
practitioner-based care, and they had a robust free COVID-19
testing program. In this paper, we assess whether levels
of reported COVID-19 symptoms are correlated with test
positivity levels during the Delta and B.1 variant predominant
period in a county and university setting. We identify the
optimal temporal lag between changes in symptom reporting
and increases in COVID-19 cases, and which symptom or
health screening questions had the strongest association with
test positivity rates. We provide recommendations that can
be used by institutions of higher education and local county
health departments to improve SARS-CoV-2 surveillance in
the endemic phase of the pandemic.

Methods
Study Design and Population
During the 2020‐2021 academic year, Cornell University
students (n=12,988 undergraduates, n=6549 graduate and
professional students), faculty (n=1332), and staff (n=6739)
participated in a robust COVID-19 testing program and daily
syndromic surveillance, called the Daily Check. Undergrad-
uate and professional students were tested twice a week,
and graduate students, faculty, and staff were tested weekly
for SARS-CoV-2 via anterior nares swab and polymerase
chain reaction [12], as described elsewhere [13,14]. Sup-
plemental SARS-CoV-2 testing occurred at the request of
individuals and when increased case counts were noted in
specific subpopulations. For the Daily Check, all on-cam-
pus students were asked to report daily whether they had
COVID-19–like symptoms or had potential exposures to a
confirmed SARS-CoV-2 case or a person with CLI. Each
day, students who answered “yes” to any of these questions
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were labeled with a “red” status until cleared by Cornell
Health with either a SARS-CoV-2 test or follow-up questions.
A flowchart with the labeling logic is provided in Multime-
dia Appendix 1. Cornell University’s Office of Institutional
Research and Planning provided aggregated data on the daily
number of students, faculty, and staff who were flagged as
“red,” experiencing CLI themselves, had been exposed to a
confirmed COVID-19 case, had been exposed to someone
experiencing CLI, and tested positive for SARS-CoV-2. The
daily total number of SARS-CoV-2 tests conducted at Cornell
and Daily Checks was also provided [15]. For this study,
we analyzed data collected between August 17, 2020 (the
first day of data collection for both the syndromic surveil-
lance and testing programs) and February 3, 2021 (the last
date before questions on the Daily Check survey changed
substantially) from undergraduate students. Days with fewer
than 100 SARS-CoV-2 tests conducted in the undergraduate
population were excluded from the analysis.

Starting in June 2020, local health practitioners in
Tompkins County were encouraged by the health depart-
ment to record how many patients they saw each day and,
of those patients, how many presented with CLI. TCHD
defines CLI as “cough and/or shortness of breath OR at least
two of the following: fever; chills; repeated shaking with
chills; myalgias; headache; sore throat; new loss of sense of
taste or smell.” Practices were excluded from this study if
they reported fewer than 50 times between June 2020 and
March 2022. A pediatric practice was excluded because the
prevalence of CLI varies greatly in children relative to adults,
and children also experience differing clinical presentations
of COVID-19 [16,17]. Data from the remaining practices
were aggregated by the date of data collection. CLI data
reported on weekends were excluded because most practices
were not open on the weekends. This resulted in a data set of
total patient encounters, CLI encounters, and the number of
practitioners who contributed to reporting each day.

Free SARS-CoV-2 testing has been available to Tompkins
County residents since March 2020. A record of new positive
results, cumulative total positive results, and cumulative total
tests were kept between March 14, 2020, and December 20,
2022, and is publicly available on TCHD’s website [18]. As
Cornell University is within Tompkins County, surveillance
and diagnostic testing data from the university were inclu-
ded in the data set provided by Tompkins County. Starting
December 1, 2020, the number of daily laboratory tests
was also reported. Our analysis focused on the period from
December 1, 2020 (after the number of tests was available
to calculate the proportion of positive SARS-CoV-2 tests) to
March 11, 2022, the last week of surveillance before the BA
2.2.12.1 variant (Omicron subvariant) exceeded more than
50% of new cases in New York State [19]. The predominant
variants within our study were Delta and BA.1 [19], which
minimizes possible variation due to increased transmissibility
or different predominant symptoms caused by BA.2. Dates
when fewer than 300 SARS-CoV-2 tests were conducted
were excluded.

Ethical Considerations
This study was determined to not meet the definition of
human subject research by the Cornell University Institu-
tional Review Board because the data were deidentified
and aggregated. The original data were collected as part of
public health surveillance activities by the TCHD and Cornell
University, and therefore did not meet the definition of human
subject research.
Data Analysis
Within both the Cornell and TCHD data sets, the rate of
SARS-CoV-2 positivity was calculated by dividing the count
of new daily positive test results by the number of daily tests
conducted within the undergraduate or county setting. For
Cornell undergraduates, rates of CLI, exposure to CLI, and
exposure to COVID-19 were calculated as the sum of each
Daily Check variable over the total number of Daily Checks
completed that day. The CLI rate in Tompkins County
was the sum of patients experiencing CLI divided by the
total number of patients seen that day. The rate of county
CLI encounters on weekends was imputed as the average
of Friday and Monday rates. The county CLI rate on US
holidays was imputed in the same manner, by averaging rates
from the two nearest dates before and after the holiday. In
addition, a variable for the day of the week was encoded
based on the date of data collection for both data sets.

All variables defined for the statistical analysis are detailed
in Supplemental Tables 1 and 2 in Multimedia Appendix 1.
For the initial descriptive analysis, the moving 7-day averages
of the CLI and SARS-CoV-2 positivity rate time series were
plotted. The moving average was symmetrical; the values of
each variable from ±3 days and at present were summed and
divided by 7.

The autocorrelation of SARS-CoV-2 positivity rates and
the cross-correlation between the CLI and SARS-CoV-2
positivity time series were plotted at up to 10-day lags to
identify the optimal lag period between independent variables
and the outcome of SARS-CoV-2 positivity. The Granger
causality test assesses whether previous values of variable x
are useful for forecasting current values of variable y [20].
The grangertest function of the lmtest R package compares an
autoregressive model of y that only uses previous values of y
as independent variables with a model that includes previous
values of x and y as independent variables [21]. We used the
Granger causality test to determine if the addition of CLI rates
(x) forecasted SARS-CoV-2 positivity rates (y) better than
autocorrelation of y alone. The temporal lag of the CLI rate
to be included in subsequent models was selected based on
which previous days of x had the smallest P values in the
Granger causality test.

Based on the findings of the autocorrelation and cross-cor-
relation plots, two types of models were built to assess the
association between CLI rates at present and from the prior
1-6 days, and the current SARS-CoV-2 positivity measure.
The linear model used the SARS-CoV-2 positivity rate as the
outcome. Independent variables included CLI rates at present
(day 0) and from the prior 1-6 days, day of the week, and

JMIR PUBLIC HEALTH AND SURVEILLANCE Wass et al

https://publichealth.jmir.org/2024/1/e54551 JMIR Public Health Surveill 2024 | vol. 10 | e54551 | p. 3
(page number not for citation purposes)

https://publichealth.jmir.org/2024/1/e54551


the SARS-CoV-2 positivity rate from the prior 1-6 days. In
the university setting, two linear models were constructed
with independent variables including either the rate of CLI or
rate of exposure to CLI from up to 6 days prior. Significant
variables were identified if their associated P value was less
than .05.

SARS_CoV_2 rate  = ϕ0 + i = 1
7 ϕiCLI ratet − i + 1

+ i = 1
6 ϕiSARS_CoV_2 ratet − i +  weekday

where i=0, ..., I, and I is the selected maximum number of
days prior.

Next, the county data was tested for overdispersion,
and a negative binomial model was fitted to the data. In
the negative binomial model, counts of daily SARS-CoV-2
positive tests were the outcome. CLI rates (day 0 through
6 days prior), day of the week, and counts of SARS-CoV-2
infection from the prior 1-6 days were independent variables.
The CLI variable was transformed to a (0, 100) scale for the
model estimates to be interpreted as percentage changes in
the outcome variable of SARS-CoV-2 counts. To account for
variation in the number of positive tests caused by the daily
number of tests administered, an offset of the log of daily
tests conducted was included in the model.

log SARS_CoV_2 count =  ϕ0
+ i = 1

7 ϕilog CLI rate t − i + 1  +

i = 1
6 ϕilog SARS_CoV_2 count t − i  +  weekday 
+  log daily tests

where i=0, ..., I, and I is the selected maximum number of
days prior.

The significance of independent variables was assessed
by comparing the P value associated with each input with
an α of 0.05. As the negative binomial model applies a log
transformation to both independent and outcome variables,
the incident rate ratio estimates of the model were exponenti-
ated to undo the log transformation.

Models within the same class were compared using the
likelihood ratio test to determine whether the addition of CLI
information and the day of the week yielded a significantly
better fit than a model based on previous measurements of
SARS-CoV-2 positivity alone.

Data were analyzed using R version 4.1.0 (R Foundation
for Statistical Computing) in the RStudio environment [22].

Results
Analysis of CLI and Cases in University
Setting
We collected 124 days of Daily Check and surveillance
testing data between August 17, 2020, and February 3, 2021,
from Cornell University. The symmetrical 7-day moving
average of SARS-CoV-2 positivity rates and the rate of “red”
flagged students are plotted in Figure 1.

Figure 1. Seven-day symmetrical mean of the “red” daily check rate, shown by the solid line, and the SARS-CoV-2 test positivity rate, shown by the
dotted line, from August 17, 2020, to February 3, 2021, among Cornell University undergraduate students. Date indicates day of data collection.

The SARS-CoV-2 test positivity rate ranged between 0 and
0.021 with an average of 0.002. The maximum number of
SARS-CoV-2 positive cases on a single day was 20. On
average, 1893 tests were conducted daily. The CLI rate

ranged from 0 to 0.005 with a maximum of 58 students
reporting CLI in one day. The rate of exposure to CLI
ranged from 0 to 0.006, with a daily maximum of 69 students
reporting exposure to CLI. Finally, the rate of exposure to
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a confirmed COVID-19 case ranged from 0 to 0.008 with a
maximum count of 87 exposures reported in one day.

The rate of SARS-CoV-2 test positivity from 1 to 4
days prior and 7 days prior was significantly autocorrela-
ted with the SARS-CoV-2 test positivity rate at present
(Supplemental Figure 1 in Multimedia Appendix 1). We
observed significant cross-correlation coefficients between
the present-day SARS-CoV-2 positivity rate and lagged rates
of students experiencing COVID-19 symptoms, contact with
someone experiencing COVID-19 symptoms, and contact
with a confirmed COVID-19 case (Supplemental Figure 2 in
Multimedia Appendix 1).

The results of Granger causality test, comparing autore-
gression of the rate of positive tests with and without previous
daily rates of CLI or exposure among undergraduates, are
shown in Figure 2. The rate of COVID-19 symptoms from
up to 6 days prior was found to improve forecasting of the
test positivity rate relative to prior values of the positivity
rate alone (P<.001). Similarly, including the rate of newly
exposed students to CLI from up to 6 days prior significantly
improved the forecasting of test positivity (P=.02). How-
ever, the addition of data regarding exposure to a confirmed
COVID-19 case from up to 6 days prior did not signifi-
cantly improve forecasting relative to an autoregression of
the test positivity variable alone (P=.51). The results of the

regressions used in the Granger test can be seen in Supple-
mental Tables 3-5 in Multimedia Appendix 1.

Based on the linear models, a 1 percentage point (pp)
increase in the rate of undergraduates experiencing CLI was
significantly associated with a 1.36 (95% CI 0.46-2.26) pp
increase in the rate of SARS-CoV-2 test positivity on the
same day (P=.003). A 1 pp increase in the rate of students
reporting new contacts with people experiencing CLI was
significantly associated with a 1.66 (95% CI 0.83-2.50) pp
increase in the SARS-CoV-2 positivity rate on the same
day as well (P<.001; Table 1). The full model outputs can
be found in Supplemental Tables 6 and 7 in Multimedia
Appendix 1.

The rate of CLI and exposure to CLI had the largest
statistically significant model coefficients in their models,
even compared to previous rates of SARS-CoV-2 positivity
(Supplemental Tables 6 and 7 in Multimedia Appendix 1).
Using the likelihood ratio test, models were found to be
significantly different from the nested model that removed
the time series of CLI or exposure to CLI (P<.001). The
likelihood ratio test also showed that the addition of the day
of the week did not significantly improve the rate of the CLI
model (P=.15) but did significantly improve the exposure
to the CLI model (P=.02) and was therefore included as an
independent variable for both models.

Figure 2. Granger causality test P values for models including the proportion of undergraduate students with new COVID-19 symptoms (blue),
students newly in contact with people who have COVID-19 symptoms (red), and students newly in contact with a confirmed COVID-19 case
(yellow) from up to 6 days prior as independent variables, with the SARS-CoV-2 positivity rate as the outcome variable, relative to the autoregressive
model of the positivity rate alone. Values below the green dotted line are significant (α=.05). pos: positive test results.

Table 1. Optimal lag time between previous rates of surveillance indicators (x) and current SARS-CoV-2 positivity (y), and regression coefficient for
the optimal lag. A lag time of 1 indicates COVID-19–like illness (CLI) data are taken from 1 day prior to the COVID-19 testing data, a lag of 2 is
from 2 days prior, and so on.

Indicator (model type) Optimal lag timea (days)
Largest model coefficient
(95% CI) P value for model

P value for Granger
causality

CLI rate among undergraduates
(linear)

0 1.36 (0.46-2.26) .003 —b
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Indicator (model type) Optimal lag timea (days)
Largest model coefficient
(95% CI) P value for model

P value for Granger
causality

CLI exposure rate among
undergraduates (linear)

0 1.66 (0.83-2.50) <.001 —

CLI rate in Tompkins County (linear) 3 0.20 (0.10-0.30) <.001 <.001
CLI rate in Tompkins County
(negative binomial)

3 1.04 (1.01-1.07) .005 <.001

aOptimal lag time is selected based on the largest model coefficient for linear models and largest incidence rate ratio for negative binomial models
that is significant at α=.05.
bGranger causality assesses correlation of previous days of CLI with current measures of positivity; therefore day 0 is not included.

Analysis of CLI and Cases in the County
Setting
In the Tompkins County setting, 403 days of CLI and
SARS-CoV-2 testing data between December 1, 2020, and
March 11, 2022, were included after data cleaning. The 7-day
moving averages of the CLI rate and SARS-CoV-2 positivity
rate are plotted in Figure 3.

The SARS-CoV-2 positivity rate ranged from 0.00 to 0.64,
with the maximum value observed around the peak of the
first Omicron (BA.1.1) wave [23] on December 19, 2021.
The average positivity rate was 0.02. The minimum daily
SARS-CoV-2 positive count was 0, while the maximum
was 523 cases. On average, 3235 SARS-CoV-2 tests were
conducted daily. The CLI encounter (CLI encounters per
total patient encounters) rate ranged from 0 to 0.71; the most
patients with CLI seen on a single day was 60 with an average
of 15 patients with CLI seen daily.

There was substantial autocorrelation of SARS-CoV-2
positivity rates; 1- through 5-day lags of the SARS-CoV-2
positivity rate had autocorrelation coefficients greater than
0.20, after which values declined (Supplemental Figure 3 in
Multimedia Appendix 1). The cross-correlation plots revealed

nonzero correlation coefficients between CLI rates up to
10 days prior and current rates of SARS-CoV-2 positiv-
ity (Supplemental Figure 4 in Multimedia Appendix 1).
However, the highest correlation coefficients were observed
in the 4-day lag (β=0.295) and 6-day lag (β=0.346) of the
CLI rate. This result was confirmed by Granger causality,
which revealed that including CLI rates from 3 to 6 days prior
yielded the smallest P values (Figure 4). For CLI rates from
1 week prior (lags 1-6), minimum Granger causality P values
were observed at a lag of 4 and 6 days (P<.001; Supple-
mental Table 8 in Multimedia Appendix 1). Based on these
results, rates of CLI from 1 to 6 days prior were selected to
be included in subsequent models. Previous rates of SARS-
CoV-2 positivity from up to 6 days were included based on
the significant autocorrelation observed (Supplemental Figure
3 in Multimedia Appendix 1). Significant autocorrelation and
Granger causality of rates from 7 days prior and at present
were observed, but 7-day lagged variables were not included
to account for the variation that the day of the week may
cause in surveillance testing and CLI reporting capabilities.
Instead, the weekday variable was included to account for
possible variation due to the day of the week that data was
collected.

Figure 3. Seven-day symmetrical mean of the CLI encounter rate, shown by the solid line, and SARS-CoV-2 positivity rate, shown by the dotted
line, from December 1, 2020, to March 11, 2022, in Tompkins County. CLI: COVID-19–like illness.
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Figure 4. Granger causality test P values for a model using the COVID-19–like illness rate from 1 to 6 days prior as independent variables, with
present-day SARS-CoV-2 positivity rates as the outcome variable. All values are significant at α=.05; however, P values decline sharply upon
including lags from up to 3 or more days prior. Values below the dashed green line are significant at α=.05.

In the linear regression model (Supplemental Table 9 in
Multimedia Appendix 1), a 1 pp increase in the rate of CLI
3 days prior was significantly associated with a 0.20 (95% CI
0.10-0.30) pp increase in the current SARS-CoV-2 positiv-
ity rate (P<.001). Similarly, a 1 pp increase in the rate of
CLI 4 and 6 days prior was significantly associated with a
0.15 (95% CI 0.04-0.26) pp and 0.19 (95% CI 0.08-0.30) pp
increase in current SARS-CoV-2 positivity rates (P=.01 and
P<.001), respectively. The rate of CLI from up to 3 days prior
had the largest regression coefficient across all linear model
independent variables (Supplemental Table 8 in Multimedia
Appendix 1).

In the negative binomial model (Supplemental Table 10 in
Multimedia Appendix 1), a 1 pp increase in the rate of CLI
encounters at a 3-day lag was significantly associated with
a 4% (95% CI 1.01-1.07) increase in the number of SARS-
CoV-2 positive tests at present (P=.005). The rate of CLI
from up to 3 days prior had the highest incidence rate ratio
across all numeric independent variables, including previous
counts of SARS-CoV-2 positive results (Supplemental Table
10 in Multimedia Appendix 1).

Both full models were found to be significantly different
from the nested model, which excluded all CLI independ-
ent variables, using the likelihood ratio test (linear model:
P<.001; negative binomial model: P=.02). In addition, the
likelihood ratio test also found that the inclusion of the day
of the week variable significantly improves the model (linear
model: P<.001; negative binomial model: P<.001). Therefore,
this variable was included in the final model output (Supple-
mental Tables 9 and 10 in Multimedia Appendix 1).

Discussion
Overview
Tompkins County and the Cornell University community
presented a unique opportunity to investigate the utility of

CLI syndromic surveillance as an indicator of COVID-19
cases due to required testing and CLI reporting at Cor-
nell University, in addition to widespread free testing and
robust reporting of CLI by health practitioners encouraged
by TCHD. We looked for congruence in rates of CLI and
SARS-CoV-2 positivity to understand whether CLI trends
were temporally correlated with measures of SARS-CoV-2–
positive tests.
Principal Findings
Significant autocorrelation of the SARS-CoV-2 positivity
variable was observed in the university and county setting,
suggesting current test positivity is influenced by levels of
test positivity from earlier in the week. Cross-correlation
analysis also revealed CLI to lead and lag SARS-CoV-2
rates in both settings, indicating that the two measures
can offer valuable insights into each other. This reflects
the expected nature of infectious disease transmission in a
population without complete immunity, in which exponential
growth of infections can lead to more exposures, symptoms,
and positive SARS-CoV-2 tests. Given our interest in the
potential use of CLI to monitor SARS-CoV-2 positivity,
we demonstrate that the addition of CLI and CLI exposure
data can improve efforts to assess SARS-CoV-2 positivity
in low-resource settings (ie, when large-scale testing is
not possible). However, the rate of exposure to confirmed
COVID-19 cases was not significantly associated with the
SARS-CoV-2 test positivity rate and may not be a use-
ful measure of COVID-19 risk in universities. A possible
explanation for COVID-19 exposure not being a significant
variable in our analysis is that confirmed exposure to a
COVID-19 case is dependent on testing capacity to deliver a
quick test result. In the university’s syndromic surveillance,
students could have already been flagged as “red” based
on reporting exposure to CLI before a positive test result
has confirmed the case. Depending on testing capacity and
availability, possible exposure to COVID-19 could be a
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stronger variable than confirmed exposure to COVID-19 for
tracking SARS-CoV-2 in real time.

In the university setting, linear models demonstrated that
reporting of CLI and exposure to CLI among students
track changes in the SARS-CoV-2 positivity rate in real
time. Within Tompkins County, both the linear and nega-
tive binomial model indicated that the strongest variable
associated with present-day SARS-CoV-2 positivity is the
rate of CLI from up to 3 days prior. This discrepancy in
the lag time of the CLI indicator could reflect the difference
in adherence to the two programs. The university surveil-
lance program was strictly enforced for the entire on-cam-
pus population and may have been able to identify changes
in SARS-CoV-2 cases immediately. By comparison, the
testing and CLI reporting of Tompkins County was volun-
tary. This may have caused lags between when symptoms
appeared and diagnosis by a positive test result due to
delays in testing based on appointment availability, patients’
work schedules, access to transportation, and other conflict-
ing factors. Cornell University demonstrates how mandatory
symptom and exposure reporting could track SARS-CoV-2
positivity in real time. However, with mandatory surveillance
programs being unrealistic to implement, Tompkins County
illustrates how the utilization of existing infrastructure like
local practitioners is also able to effectively measure CLI,
which is associated with cases. Practitioners were asked to
count CLI cases each day, a process that could be applied
to larger practitioner and hospital networks. We demonstra-
ted that CLI rates from practitioner-based surveillance track
SARS-CoV-2 positivity rates with a small lag. Trends such as
spikes in COVID-19 identified from syndromic surveillance
programs could then be validated by brief surveillance testing
or distribution of at-home tests.
Limitations
The study findings should be carefully interpreted within the
context of the study population. Cornell University is located
in a small county in upstate New York, with a population
of 105,162 in 2021 [24]. Tompkins County is somewhat
isolated geographically, so these results may not generalize
to denser urban areas or more rural areas. While influenza
rates substantially decreased during the 2020‐2021 flu season
[25], some presentations of CLI in the study population are
inevitably due to flu and other respiratory illnesses. This may
explain a spike in university cases of CLI during Novem-
ber and December 2021 that was not accompanied by an
increase in SARS-CoV-2 positivity, as flu rates did increase
in New York State during this period [26]. On the other
hand, given that both flu seasons included in our study
period were less severe than usual, it is possible that the
associations we observed may not be as strong when other
common respiratory illnesses are in wider circulation. In
addition, participating practitioners of our study voluntarily
partook in syndromic surveillance without reimbursement. To

apply this model of surveillance on a larger scale, financial
incentives should be considered to ensure robust reporting—a
cost that would need to be considered before implementation.
Finally, as this was an observational study, we can only infer
relationships and not their underlying cause.
Significance
Our findings are contextualized by the shift away from robust
SARS-CoV-2 testing and reporting in the United States.
At-home tests are now commonly used and typically are
not included in COVID-19 case count reporting [4]. Federal
funding for SARS-CoV-2 testing is diminishing [27], and
COVID-19 response teams of health departments are being
scaled back. On May 11, 2023, the US federal government
ended the COVID-19 Public Health Emergency declaration
[5]. As a result, the CDC and other reporting platforms
no longer publish metrics related to COVID-19 community
transmission like case counts [5]. This significantly limits
the ability of health departments to identify and mitigate
increases in cases. Low-resource alternatives like syndromic
surveillance could help to fill this gap in our knowledge of
SARS-CoV-2 local transmission and build on the currently
favored methods of hospital-based surveillance. Alternatives
to resource-intensive testing are especially important for
detecting outbreaks in low-resource settings where diagnostic
testing infrastructure is poor [28,29]. This includes low- and
middle-income countries as well as impoverished communi-
ties in the United States.
Conclusions
Finally, we emphasize that the estimates of our regressions,
both linear and negative binomial, should not necessarily
be interpreted as definite predicted changes in the rate of
SARS-CoV-2. Our goal was not to build a predictive model
but to instead investigate associations between the outcome,
current levels of SARS-CoV-2 cases and test positivity,
and recent measures of CLI. We focused on the statisti-
cally significant lagged CLI rate variables that demonstrate
changes in CLI rates can lead SARS-CoV-2 rates by a
few days, as confirmed by both the negative binomial and
linear models in the county setting. The university setting
models the advantage of an enforced daily health question-
naire whose measures of CLI and exposure to CLI appear
to track on-campus SARS-CoV-2 positivity in real time. The
strongest takeaway from our results is that the two variables,
CLI and SARS-CoV-2 positivity, are correlated, and CLI
should be further explored as a low-resource way to monitor
the risk of SARS-CoV-2 in the absence of robust testing. Our
results support the push to integrate CLI symptom reporting
into the routine services of health practitioners as a potentially
easy and cost-effective approach to monitoring SARS-CoV-2
transmission. This forms a foundation for future research
that should further characterize the relationship between
COVID-19 symptoms and SARS-CoV-2 positivity rates.
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