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Abstract

Background: Racial disparities in COVID-19 incidence and outcomes have been widely reported. Non-Hispanic Black patients
endured worse outcomes disproportionately compared with non-Hispanic White patients, but the epidemiological basis for these
observations was complex and multifaceted.

Objective: This study aimed to elucidate the potential reasons behind the worse outcomes of COVID-19 experienced by
non-Hispanic Black patients compared with non-Hispanic White patients and how these variables interact using an explainable
machine learning approach.

Methods: In this retrospective cohort study, we examined 28,943 laboratory-confirmed COVID-19 cases from the OneFlorida
Research Consortium’s data trust of health care recipients in Florida through April 28, 2021. We assessed the prevalence of
pre-existing comorbid conditions, geo-socioeconomic factors, and health outcomes in the structured electronic health records of
COVID-19 cases. The primary outcome was a composite of hospitalization, intensive care unit admission, and mortality at index
admission. We developed and validated a machine learning model using Extreme Gradient Boosting to evaluate predictors of
worse outcomes of COVID-19 and rank them by importance.

Results: Compared to non-Hispanic White patients, non-Hispanic Blacks patients were younger, more likely to be uninsured,
had a higher prevalence of emergency department and inpatient visits, and were in regions with higher area deprivation index
rankings and pollutant concentrations. Non-Hispanic Black patients had the highest burden of comorbidities and rates of the
primary outcome. Age was a key predictor in all models, ranking highest in non-Hispanic White patients. However, for non-Hispanic
Black patients, congestive heart failure was a primary predictor. Other variables, such as food environment measures and air
pollution indicators, also ranked high. By consolidating comorbidities into the Elixhauser Comorbidity Index, this became the
top predictor, providing a comprehensive risk measure.
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Conclusions: The study reveals that individual and geo-socioeconomic factors significantly influence the outcomes of COVID-19.
It also highlights varying risk profiles among different racial groups. While these findings suggest potential disparities, further
causal inference and statistical testing are needed to fully substantiate these observations. Recognizing these relationships is vital
for creating effective, tailored interventions that reduce disparities and enhance health outcomes across all racial and socioeconomic
groups.

(JMIR Public Health Surveill 2024;10:e54421) doi: 10.2196/54421
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Introduction

The COVID-19 pandemic has exposed significant racial
disparities, with non-Hispanic Black populations experiencing
higher incidence rates and worse outcomes than non-Hispanic
White populations [1,2]. Previous research has suggested that
these disparities might be attributed to a higher burden of
comorbidities in non-Hispanic Black populations [3]. Additional
hypothesized contributing factors include systemic
socioeconomic disadvantages and the compounding impact of
chronic exposure to social and economic stressors, as well as
experiences of marginalization [4,5]. Furthermore, some studies
have raised the possibility of biological and genetic determinants
as contributory risk factors [6,7].

Analyzing racial health disparities solely through isolated data
can lead to misleading interpretations, such as attributing higher
disease rates to inherent biological factors or perpetuating racial
stereotypes, particularly concerning perceived health behaviors
[4]. Similarly, dissecting COVID-19 data by geography demands
caution to avoid reinforcing negative stereotypes about
marginalized communities and “territorial stigmatization” [8].
In the context of the COVID-19 pandemic, a comprehensive
framework is necessary that considers social determinants of
health (SDOH)—social, economic, and geographical—to
properly address the complexities surrounding disparities in
outcomes [9-11]. Gathering data at both the neighborhood and
individual level is crucial. Such an approach dispels myths
rooted in racial biology and highlights the significance of
socioeconomic factors, discrimination, and location-based risks
[4,5].

It has been recognized that the COVID-19 pandemic is a
syndemic involving interactions of multiple factors and
conditions [12] where advanced data-driven approaches are
needed to capture complex underlying association patterns.
Machine learning (ML) offers valuable tools for this complex
analysis. Unlike traditional methods, ML can handle vast
multidimensional datasets, enabling researchers to discern
intricate patterns and relationships that would be impossible to
discern using conventional statistical methods. Although many
studies have used ML in evaluating the outcomes of COVID-19
[13-18], few have applied these techniques specifically to
investigate racial disparities [9,19], which often result from
complex interplay among multiple stressors. Most studies
focused on a single stressor or a single domain of stressors or
were purely ecological, with only county-level COVID-19 data
[20].

The purpose of this study is to provide a more comprehensive
understanding of the factors contributing to these disparities by
analyzing large real-world data from the OneFlorida Research
Consortium, using 9-digit zip codes to link individuals to
measures of SDOH and other geospatial data related to the place
of residence. This will give insight into the importance or
relevance of each variable (feature) in predicting worse
outcomes of COVID-19. By incorporating comorbidities and
SDOH, we seek to explore potential reasons behind the worse
outcomes of COVID-19 experienced by non-Hispanic Black
patients compared with non-Hispanic White patients and how
these variables interact in an ML model.

Methods

Design and Population
We conducted a retrospective cohort study of patients diagnosed
with COVID-19 infection who were followed prospectively for
outcomes. We derived patient-level data from the OneFlorida
Clinical Research Network, which includes Floridians enrolled
in Medicaid, and robust patient-level electronic health record
(EHR) data from public and private health care systems [21].
OneFlorida partners encompass hospitals, clinic settings, and
physicians, which provide care for 17 million patients across
all of Florida’s 67 counties [21,22]. The data query included
adult patients (≥18 years old) with laboratory-confirmed
COVID-19 diagnoses between December 1, 2019, and April
28, 2021. Then, using 9-digit zip codes, we linked patients to
neighborhood and geospatial variables, as established by
previous research [20]. These supplementary variables were
derived from several external publicly available datasets,
enabling a more comprehensive understanding of the impact of
socioeconomic and geospatial factors on outcomes of
COVID-19.

Study Variables (Features)

Exposure
We used self-reported race as our exposure variable. It is a
surrogate for many interconnected socioeconomic and
environmental factors. Race is recognized as a social construct,
not a biological determinant [23-25].

Outcome
We used a combined measure of severe outcomes of COVID-19.
This measure includes intensive care unit admission, intubation,
and mortality at the time of the first index encounter. Through
this composite outcome, we intended to capture a broader
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overview of the disease’s severity and short-term impacts. We
used encounter, procedures, and death common data model
domains in OneFlorida to assess outcomes [26].

Covariates

Individual-Level Variables
At the index encounter, we collected sociodemographic data,
including age, self-reported sex, race and ethnicity as
non-Hispanic Black or non-Hispanic White, and previous
insurance status. We also included 9-digit zip codes, BMI,
smoking, alcohol, and substance use status.

In line with the Centers for Disease Control and Prevention’s
compilation of medical conditions associated with an increased
risk for severe outcomes of COVID-19 [27], we examined
comorbidities during the encounters from January 1, 2012,
leading up to the COVID-19 index encounter. Conditions with
a less than 1% prevalence in our study population were
excluded. We derived COVID-19–related comorbid conditions
by mapping available International Classification of Diseases,
Ninth Revision and International Statistical Classification of
Diseases, Tenth Revision codes to the Healthcare Cost and
Utilization Project (HCUP) Clinical Classification Software
definitions [28]. We also used the well-established Elixhauser
Combined Comorbidity Index (ECI) to quantify the aggregate
burden of comorbid conditions. This index includes 31
comorbidities and reliably predicts outcomes like in-hospital
mortality, length of stay, adverse events, and hospital discharges
[29-32].

Group-Level Variables

Area Deprivation Index

The area deprivation index (ADI) evaluates community
deprivation, impacts health outcomes, and guides policy and

health care use patterns [33]. It has demonstrated that residing
in a disadvantaged area can be as detrimental to health as certain
chronic diseases [33]. The Centers for Medicare and Medicaid
Services (CMS) leverage the ADI in their strategies [34]. During
the COVID-19 pandemic, the ADI informed equitable resource
distribution, emphasizing the role of socioeconomic factors in
disease outcomes [35,36].

Using the 2018 ADI, we evaluated community-level disparities.
Calculated at the United States census block group level, it
reflects a “neighborhood” of approximately 600 to 3000
residents [33]. This granularity offers a localized view of
health-related social and geospatial determinants. We geocoded
patient addresses, assigning an ADI rank based on their Florida
residential census block group, sourced from their 9-digit zip
codes. Higher ADI ranks signify greater social disadvantage.

Geospatial Variables

We used an extensive exposome-wide association study to
identify additional external exposome elements that may
correlate with COVID-19 mortality. This study included 337
external exposome factors encompassing 9 distinct categories
[20]. It identified 4 external exposome factors at the county
level significantly associated with worse outcomes of
COVID-19. These included variables characterizing the natural
(criteria air pollutants and air toxicants), built (food
environment), and social environment (vacant land) [20]. The
results of this exposome study reaffirm the importance of
environmental and geospatial variables in understanding and
predicting outcomes of COVID-19. Our analysis incorporated
data relating to these 4 variables by linking them to patients’
places of residence in Florida (Table 1).

Table 1. Data sources, time periods, and spatial scales of environmental measures.

Temporal scaleSpatial scaleTime periodData sourceSpatial variable

1 year0.01 degree in
lon and lat

2006-2018Atmospheric composition analysis group,

WUSTLa [37]

Particulate matter 2.5

1 yearCensus block
group

2006-2015The center for air, climate, and energy solutions
[38]

Nitrogen dioxide (air pollution)

Cross-sectionalCounty2007-2018Food environment atlas [39]Percent students eligible for reduced-price
lunch, 2015 (food environment)

3 monthsCensus tract2006-2019Aggregated USPSc administrative data on ad-

dress vacancies, HUDd [40]

Percent addresses in the previous quarter with

no-stat currently in service (vacant land)b

aWUSTL: Washington University in St Louis.
bTotal no-stat addresses are the addresses that can be classified as “No-Stat” for many reasons, including, (1) rural route addresses that are vacant for
90 days or longer and (2) addresses for businesses or homes under construction and not yet occupied addresses.
cUSPS: United States Postal Service.
dHUD: US Department of Housing and Urban Development.

This table outlines the data sources, time periods, and spatial
scales of various environmental measures used in our
retrospective cohort study of COVID-19 patients from the
OneFlorida Clinical Research Network. These environmental
variables, sourced from diverse national databases, were

analyzed at different spatial and temporal scales to assess their
impact on COVID-19 outcomes among Floridians. The study
encompasses adult patients (≥18 years old) with confirmed
COVID-19 diagnoses between December 1, 2019, and April
28, 2021.
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Statistical Analysis

Categorical variables were reported as frequencies and
percentages, while continuous variables were reported as means
with SDs or medians with IQR. We used the Chi-square test
for categorical variables. For continuous variables, we used the
t test for normally distributed data or the
Wilcoxon-Mann-Whitney U test when data were not normally
distributed. Appropriate transformations were applied to certain
continuous variables with skewness to achieve a normal
distribution. Following this, z score standardization was used
to establish a standard scale for interfactor comparison. We also
evaluated mixed correlation coefficients between all variables
included in our models.

K-nearest neighbors imputation was used when missing data
was present. This technique estimates the missing values based
on attributes of the most similar observations, where similarity
is calculated using a distance function [41]. K-nearest neighbors
imputation is frequently regarded as a more robust and sensitive
method for missing value estimation than conventional
techniques [42].

Machine Learning Model Development

We used Extreme Gradient Boosting (XGBoost), a robust ML
framework known for its efficiency, flexibility, and portability
[43]. It is an ensemble learning algorithm based on the gradient
boosting framework, in which models are built sequentially to
boost (increase) the performance of the previous models by

using the gradient descent algorithm to minimize errors [43].
Our selection of XGBoost is based on simplified interpretability
and the inclusion of feature selection as part of the
model-building process. XGBoost exhibits various advantages
that render it a compelling alternative to conventional statistical
techniques and other ML algorithms.

We developed and validated 3 consecutive ML models to
improve the understanding of the models’operational dynamics
and the incremental contribution of different sets of variables
to the outcome. Model 1 consisted exclusively of
individual-level variables, which included sociodemographic
data and individual comorbidities. Following this, the model
was extended to encompass variables at the group level;
specifically, we incorporated ADI and environmental measures
(particulate matter 2.5 [PM2.5], nitric oxide [NO2], vacant land
measure, and food environment measure), resulting in the
development of model 2. In our final model, model 3, instead
of individual comorbidities, we incorporated the ECI while
preserving the group-level variables from model 2.
Implementing a unidimensional singular numerical summary
of comorbidities facilitates the modeling and integration with
other covariates instead of requiring the modeling and
interactions between covariates and each constituent of the
comorbidity score, thereby enhancing computational efficiency.
All models incorporated baseline variables (age, sex, and BMI;
Figure 1).

Figure 1. Study flowchart and machine learning analytical framework. ADI: area deprivation index; AUC: area under the receiver operating characteristic
curve; EHR: electronic health record; KNN: k-nearest neighbors; SHAP: Shapley Additive Explanations.

The figure illustrates the study flowchart and the machine
learning analytical framework used in the retrospective cohort

study of COVID-19 patients from the OneFlorida Clinical
Research Network. It provides a visual summary of the study
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design, data sources, patient selection criteria, and the ML
models used to analyze the data, capturing adult patients (≥18
years old) diagnosed with COVID-19 between December 1,
2019, and April 28, 2021.

In addition, to ensure a comprehensive understanding of our
models’ performance, we initiated our analysis by constructing
a global model that includes the entire population. Subsequently,
we created individualized models for non-Hispanic White and
non-Hispanic Black populations across all 3 models. This
allowed us to compare the relative importance of features within
and between each demographic group.

Model Performance and Evaluation

We used nested cross-validation (CV) to evaluate our ML
models with 5 outer and inner folds (55 nested CV). A nested
CV can help ensure rigor and enhance confidence in model
generalizability and scalability [44] (Methods S1 in Multimedia
Appendix 1 [44-47]). We calculated and reported the following
measures of the models’ performance: the average value and
SD of the area under the receiver operating characteristic curve
(AUC), balanced accuracy, sensitivity, and specificity from the
5 outer folds (Figure 1). AUC measures the overall
discriminative ability, balanced accuracy gauges fair assessment
across classes, and sensitivity and specificity offer insight into
the model’s prediction accuracy for each class.

Model Interpretation and Feature Ranking

Interpreting complex models like XGBoost can be challenging
due to their reliance on numerous decision trees, making it
difficult to intuit the relationships between features and
outcomes. To address this, we used Shapley Additive
Explanations (SHAP) values, a method rooted in coalitional
game theory [48], which decomposes individual predictions to
quantify the influence of each feature (Methods S2 in
Multimedia Appendix 1 [44-47]) [45].

Finally, to assess the robustness of our findings, we conducted
a sensitivity analysis using a complete-cases-only approach,
excluding cases with missing data and without resorting to data
imputation (model 4). We also assessed the potential for
divergent feature importance rankings with alternative models
using light gradient boosting machine (LightGBM) algorithm
[49]. It is another high-performance, gradient-boosting
framework that uses tree-based learning algorithms (Figure 1)
[49]. Data analyses were performed using (R version 3.6.1; R
Core Team) and Python (Version 3.7; Python Software
Foundation). The data preprocessing, imputation, and grid search
steps were implemented using the Python Sklearn package. The

XGBoost algorithm was implemented using the XGBoost
package. We followed Enhancing the Quality and Transparency
of Health Research Network guidelines for reporting ML
analyses in observational studies [50,51].

Ethical Considerations
This study used a deidentified electronic health record dataset
provided by the OneFlorida Clinical Research Consortium. The
data were deidentified before analysis to ensure participant
privacy and confidentiality, with no identifying information
accessible to the researchers. The study was reviewed and
approved by the Institutional Review Board at the University
of Florida (Institutional Review Board 202001531), which
determined that informed consent was not required as this
research involved secondary analysis of existing, deidentified
data. No compensation was provided to participants as the study
did not involve direct interaction with individuals. In addition,
no images or supplementary materials in this manuscript could
potentially identify individual participants.

Results

Our initial data collection included 49,461 patients, of which
35% (n=17,311) were non-Hispanic White and 22.8%
(n=11,277) were non-Hispanic Black. After limiting our study
to only non-Hispanic White and non-Hispanic Black
populations, the final sample size for this analysis was 28,943
patients. Compared with non-Hispanic White patients,
non-Hispanic Black patients tended to be younger; had higher
BMI; had fewer outpatient visits; and had higher rates of no
insurance, visits to the emergency department, and hospital
admissions (Table 2). In the non-Hispanic Black group, the
burden of comorbidities and the total ECI scores were
significantly higher, especially hypertension, coronary artery
disease, congestive heart failure (CHF), and chronic kidney
disease. Geospatial and neighborhood variables revealed that
non-Hispanic Black populations resided in regions with higher
(hence less favorable) ADI rankings, NO2, and PM2.5

concentrations, as well as lower vacant land and food
environment measures. Finally, the non-Hispanic Black group
experienced the highest rates of the composite primary outcome
(Table 2). Correlation analysis revealed moderately high
correlations when insurance status was compared with PM2.5

and NO2 concentrations. Unsurprisingly, there were also high
correlations between ECI scores and most comorbidities (Figure
S1 in Multimedia Appendix 1 [44-47]).
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Table 2. Baseline characteristics and outcomes of the study population stratified by racea. The table presents the demographic characteristics of adult
patients (≥18 years old) diagnosed with COVID-19 within the OneFlorida Clinical Research Network between December 1, 2019, and April 28, 2021.

Total (N=28,944)Non-Hispanic Black
(n=11,293)

Non-Hispanic White (n=17,651)

51 (19.61)48.16 (18.22)52.82 (20.24)Age, (years), mean (SD)

16,281 (56.3)6791 (60.1)9490 (53.8)Sex (female), n (%)

31.31 (8.50)33.19 (9.22)29.96 (7.66)BMI, kg/m2, mean (SD)

Insurance status, n (%)

24,085 (83.2)8591 (76.1)15,494 (87.8)Medicare or private

3757 (13.0)2191 (19.4)1566 (8.9)Medicaid or no insurance

1100 (3.8)511 (4.5)589 (3.3)Unknown

Encounter type, n (%)

10,188 (35.2)2712 (24)7476 (42.4)Outpatient

9076 (31.4)4525 (40.1)4551 (25.8)EDb

8228 (28.4)3344 (29.6)4884 (27.7)Inpatient

1452 (5.0)712 (6.3)740 (4.2)ICUc

Comorbidities

2 (0-6)3 (1-6)2 (0-5)ECId, median (IQR)

13,768 (47.6)6123 (54.2)7645 (43.3)Hypertension, n (%)

9913 (34.2)3924 (34.7)5989 (33.9)Hyperlipidemia, n (%)

9888 (34.2)4615 (40.9)5273 (29.9)Diabetes mellitus, n (%)

4991 (17.2)1902 (16.8)3089 (17.5)Coronary artery disease, n (%)

3626 (12.5)1656 (14.7)1970 (11.2)Congestive heart failure, n (%)

2983 (10.3)1328 (11.8)1655 (9.4)Stroke or TIAe, n (%)

2282 (8.2)845 (7.7)1437 (8.6)Dementia, n (%)

4302 (14.9)1878 (16.6)2424 (13.7)Chronic liver disease, n (%)

837 (2.9)565 (5.0)272 (1.5)CKD-Vf/ESRDg, n (%)

17,298 (62.5)7436 (67.7)9862 (59.1)Respiratory disorders, n (%)

4948 (17.1)1833 (16.2)3115 (17.6)Smoking history, n (%)

7236 (25.0)3133 (27.7)4103 (23.2)Substance use, n (%)

1649 (5.7)747 (6.6)902 (5.1)Alcohol use, n (%)

8558 (30.9)3227 (29.4)5331 (32.0)Mental health disorders, n (%)

1660 (5.7)586 (5.2)1074 (6.1)Common solid cancer, n (%)

438 (1.6)147 (1.3)291 (1.7)Hematologic malignancies, n (%)

Geospatial variables, median (IQR)

6.0 (4-8)8 (6-9)5 (3-7)Florida ADIh

7.41 (6.94-7.86)7.45(7.05-7.96)7.35(6.88-7.77)Mean PM2.5
i, μg/m3

2.87 (1.69-4.63)3.17(1.88-4.62)2.73 (1.61-4.63)Mean NO2
j, ppbk

4.10 (1.85-4.25)3.68 (1.85-4.25)4.37 (1.85-4.56)Food environmentl

0.19 (0.10-0.40)0.16 (0.07-0.31)0.22 (0.11-0.48)Vacant landm

Unadjusted outcomes, n (%)

2656 (9.2)1233 (10.9)1423 (8.1)Composite outcome
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Total (N=28,944)Non-Hispanic Black
(n=11,293)

Non-Hispanic White (n=17,651)

489 (1.7)238 (2.1)251 (1.4)Death at index encounter

aAll P values were <.001 (except CAD and history of smoking (P=.148 and .002, respectively). Independent sample t test, Wilcoxon-Mann-Whitney
U test, or Pearson chi-square test were used wherever appropriate. Values are presented as means (SD), n (%), or median (IQR).
bED: emergency department.
cICU: intensive care unit.
dECI: Elixhauser Comorbidity Score.
eTIA: transient ischemic attack.
fCKD-V: chronic kidney disease stage 5.
gESRD: end-stage renal disease.
hADI: area deprivation index.
iPM2.5: particulate matter 2.5.
jNO2: nitrogen dioxide.
kppb: parts per billion.
lPercent students are eligible for reduced-price lunch, 2015.
mPercent addresses in the previous quarter with “no-stat” currently in service. “Total No-Stat Addresses” are addresses that can be classified as “No-Stat”
for many reasons, including, (1) rural route addresses that are vacant for 90 days or longer and (2) addresses for businesses or homes under construction
and not yet occupied addresses.

When examining the outcomes from the XGBoost modeling,
the first model, which solely included individual-level variables,
had an AUC value of 0.80, indicating reasonably good model
performance (Table 3). The balanced accuracy, sensitivity, and
specificity were all around the 0.72-0.74 range, suggesting a
well-balanced model capable of predicting both positive and
negative outcomes with similar accuracy. The outcomes of
model 1 subgroups constructed for non-Hispanic White and
non-Hispanic Black populations separately exhibited a
comparable performance to the overall model 1, suggesting the
racial factor has not significantly influenced these particular
model outcomes. In model 2, the performance slightly improved

when group-level variables were added. The AUC for the
general and race-specific models increased to 0.81-0.83.
Likewise, the balanced accuracy also increased. There was a
marginal reduction in sensitivity for the non-Hispanic White
demographic, implying this model predicted fewer true positives
for this subgroup. Finally, model 3, which included the ECI
(instead of individual comorbidities) and group-level variables
from model 2, demonstrated the most optimal performance
across all subgroups, with an AUC of 0.82-0.83. Balanced
accuracy was also highest for these models, particularly in
sensitivity, which indicates these models are better at predicting
true-positive outcomes (Table 3).

Table 3. Comparative performance metrics of predictive models by racea.

SpecificitySensitivityBalanced accuracyAUCbModels

Model 1, mean (SD)

0.71 (0.01)0.75 (0.02)0.73 (0.01)0.80 (0.01)All

0.71 (0.01)0.74 (0.03)0.72 (0.01)0.80 (0.01)Whites

0.72 (0.01)0.74 (0.01)0.73 (0.01)0.80 (0.01)Blacks

Model 2, mean (SD)

0.75 (0.01)0.74 (0.02)0.74 (0.01)0.83 (0.01)All

0.75 (0.01)0.72 (0.03)0.73 (0.01)0.82 (0.01)Whites

0.74 (0.01)0.74 (0.01)0.74 (0.01)0.82 (0.01)Blacks

Model 3, mean (SD)

0.72 (0)0.81 (0.01)0.77 (0.01)0.84 (0.01)All

0.72 (0.01)0.81 (0.02)0.76 (0.01)0.84 (0.01)Whites

0.71 (0.01)0.81 (0.01)0.76 (0.01)0.84 (0.01)Blacks

aThe table presents comparative performance metrics of predictive models by race, derived from a retrospective cohort study of COVID-19 patients
within the OneFlorida Clinical Research Network. The data encompasses adult patients (≥18 years old) diagnosed with COVID-19 between December
1, 2019, and April 28, 2021.
bAUC: the area under the receiver operating characteristic curve.
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SHAP value analysis in model 1 provided insight into the impact
of individual-level variables on predicting COVID-19 outcomes
(Figures S2 and S3 in Multimedia Appendix 1 [44-47]). Overall,
comorbid conditions such as diabetes mellitus type 2,
hypertension, CHF, respiratory disorders, and chronic liver
disease consistently ranked the highest across the models and
contributed positively to predicting the outcome.
Sociodemographic factors such as age and sex ranked
consistently high in all models; old age and being female
contributed positively to predicting the outcome. BMI and
smoking history were important predictors but ranked lower
than age and sex. Notably, comorbid conditions such as CHF,
rheumatological disorders, and chronic kidney disease stage
5/end-stage renal disease were more significant predictors in
the non-Hispanic Black population model, with CHF being the
leading predictor.

The incorporation of group-level variables in model 2 yielded
additional nuanced findings. Discernible patterns were noted
within specific racial subgroups. Comorbid conditions such as
diabetes mellitus type 2, hypertension, CHF, and respiratory

disorders remained highly ranked and contributed positively to
predicting the outcome. Sociodemographic factors such as age
and sex remained important predictors, but BMI and smoking
history became less important. Group-level variables such as
the food environment measure and air pollution measure, PM2.5,
were among the top predictors. Notably, CHF remained the top
predictor for the non-Hispanic Black population model. In
addition, Florida ADI ranked relatively higher in the overall
and the non-Hispanic White population models compared with
the non-Hispanic Black population model. However, the food
environment measures ranked higher in the non-Hispanic Black
population model than in other models (Figures S4 and S5 in
Multimedia Appendix 1 [44-47]).

Model 3 incorporated comorbidities previously distributed
across individual conditions in models 1 and 2, consolidating
them into the ECI. This provided a more comprehensive risk
measure, where the ECI emerged as the topmost predictor,
followed by age, sex, air pollution, and food environment
measures. Finally, race generally ranked relatively lower than
other predictors in all models (Figures 2 and 3).

Figure 2. SHAP feature importance model results for outcomes of the COVID-19 pandemic (model 3). ADI: area deprivation index; NO2: nitrogen
dioxide; PM2.5: particulate matter 2.5; SHAP: Shapley Additive Explanations.

JMIR Public Health Surveill 2024 | vol. 10 | e54421 | p. 8https://publichealth.jmir.org/2024/1/e54421
(page number not for citation purposes)

Dasa et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Heat map ranking of Shapley Additive Explanations features importance for outcomes of the COVID-19 pandemic in model 3. ADI: area
deprivation index; NO2: nitric oxide; PM2.5: particulate matter 2.5.

The diagrams represent feature importance, arranged from top
to bottom. Higher priority features are displayed at the top due
to their greater influence on model prediction (having higher
predictive power). Color coding indicates the value of the
feature: red signifies a higher feature value, while blue
represents a lower one. Points to the right of the 0 midline
suggest a higher likelihood of the predicted outcome, while
those to the left indicate a lower probability of the outcome.
Figure 2A displays results for the whole study population. Figure
2B displays results for the non-Hispanic White population.
Figure 2C displays results for the non-Hispanic Black
population.

The heat map ranks features in model 3 (all population, White
population, and Black population) by importance, with number
1 being the most important feature. The food environment
measure is the percentage of students eligible for reduced-price
lunch, 2015; vacant land measure is the percentage of addresses
in the previous quarter with “no-stat” currently in service.

Results from the sensitivity analysis (complete cases only
without imputation) showed minor differences compared with
the primary analysis. ECI, age, and sex remained the top
predictors. In the White population, ADI and vacant land
measure ranked higher than PM2.5, while in the Black
population, no change was noted in feature ranking (Figures S6
and S7 in Multimedia Appendix 1 [44-47]). Similarly, when
retraining the model using LightGBM, minimal variations were
noted compared with the XGBoost model (Figures S8 and S9
and Table S1 in Multimedia Appendix 1 [44-47]).

Discussion

Principal Findings
The COVID-19 pandemic exposed substantial racial disparities.
Our study explored the intricate relationship between
comorbidities, SDOH, and poor outcomes of COVID-19 in
non-Hispanic Black patients. We analyzed real-world data using
explainable ML methods to better understand these disparities
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while acknowledging the need for further causal inference and
statistical testing to fully substantiate our findings.

Comorbid conditions and ECI were the most important
predictors of outcomes of COVID-19, demonstrating the critical
role of baseline comorbidities in predicting poor outcomes of
COVID-19, irrespective of race. Mainly, CHF was the most
important predictor in non-Hispanic Blacks; the reasons for that
are multifaceted and complex [52,53]. Patients with CHF who
are diagnosed with COVID-19 infection are often older,
predominately Black or Hispanic, have a higher prevalence of
diabetes and kidney disease, and use more health care resources.
This may serve as a proxy for broader health disparities; Black
patients, for example, are generally diagnosed with CHF at later
stages and experience worse outcomes despite similar symptoms
to their White counterparts [54]. Such disparities can be traced
back to limited access to preventive care, higher prevalence of
CHF risk factors like hypertension and diabetes, and
socioeconomic barriers that hinder effective CHF management
among Black communities [54].

Similarly, the food environment measure (county-level percent
of students eligible for reduced-price lunch) [39] emerged as
one of the top 3 predictors of adverse outcomes among Black
individuals. This finding aligns with earlier research [20] and
may be partly attributed to historically discriminatory US
policies that have resulted in lasting economic and ethnic
segregation, manifesting as present-day health disparities [55].
Such inequities are evident in the prevalence of “food deserts,”
areas with limited access to healthy food, and the increased risk
of repeated hospitalizations, including those due to CHF [56].
Despite adjusting for traditional cardiovascular risk factors,
residents of these deprived, racially segregated neighborhoods
still faced heightened risk for CVD and CHF [57,58].
Contributory factors include limited recreational facilities [59];
poor walkability [60,61]; and scarce availability of fresh,
nutritious foods, particularly in low income and predominantly
Black neighborhoods [62].

The feature importance analysis indicated that “race” has the
lowest ranking, which may seem counterintuitive at first glance.
Nonetheless, this implies that the racial disparities in outcomes
of COVID-19 are predominantly linked to inequalities in health
conditions, socioeconomic status, and geospatial factors rather
than solely to racial identity [2]. This finding should not be
construed as minimizing the importance of race; instead, it
suggests that the disparities observed across races may be
primarily attributable to the unequal distribution of these
conditions across racial groups [63]. Race is accepted as a social
construct rather than a biological one [64,65]. Health disparities,
such as with COVID-19 infection, often arise from enduring
inequalities affecting racial and ethnic minorities, notably
non-Hispanic Black individuals [63]. Societal and structural
dynamics, more than biological distinctions, reinforce these
disparities [63]. These discrepancies remain even after
considering biological factors and personal health behaviors
[2]. The primary drivers are likely the socioeconomic and
environmental conditions experienced by diverse racial and
ethnic groups. Our model underscores the dominant role of
socioeconomic and environmental factors in health outcomes
and disparities.

Building on the understanding of race as a key determinant,
PM2.5 exposure emerged as a notable predictor of health
outcomes, ranking fourth for the White population and third for
the Black population, ahead of food environment metrics.
Previous research links maintained exposure to air pollutants,
like PM2.5 and NO2, with increased COVID-19 mortality
[66-68]. Originating mainly from fossil fuel burning, PM2.5

could signify heightened pollution exposure in certain
demographics, exacerbating outcomes of COVID-19.
Environmental findings report greater short- [69] and long-term
[70] PM2.5 exposure in racial minorities, especially Black
individuals, than in White individuals. Following closely is the
food environment measure, emphasizing the combined effects
of socioeconomic challenges and prolonged PM2.5 exposure on
health. It highlights the multifaceted roots of health disparities,
emphasizing the urgency to tackle both socioeconomic and
environmental factors for enhanced public health [71]. Such a
holistic perspective is pivotal in understanding spatial variations
in outcomes of COVID-19 due to interconnected biological,
clinical, socioeconomic, and environmental factors [9,72].

Interestingly, the ADI ranked last in the Black-only model,
whereas it came sixth in the White-only model (model 3). This
discrepancy does not inherently imply that ADI is
inconsequential for the black population but rather that it may
interact with other determinants in complex ways. It suggests
that although socioeconomic factors are crucial in determining
health outcomes, their significance may vary by race. These
differences emphasize the importance of considering
race-specific factors when analyzing outcomes of COVID-19
and the need for individualized interventions. The higher ranking
of the ADI for the White population reflects the well-established
relationship between socioeconomic status and health outcomes
[34,35]. As measured by the ADI, lower socioeconomic status
may contribute to poor health outcomes in this group due to
limited access to health care, poorer education, and increased
exposure to environmental pollutants and stressors [34,35].
However, the lower ranking of the ADI in the model for the
Black population suggests that other factors may be more
predictive of outcomes of COVID-19 in this racial group.
Another possible explanation is that there is less variation in
ADI among Black populations and a greater proportion of Black
populations with higher ADIs. The varying ADI values across
different socioeconomic levels enable ADI to serve as a strong
predictor of outcomes in White populations. In contrast, the
higher concentration of individuals with higher ADIs limits the
discriminatory power of ADI in this model for Black
populations.

Furthermore, in the model focusing on Black individuals, the
food environment measure, indicative of food security and
nutrition, ranked higher than ADI, a typical socioeconomic
marker. This suggests that factors like food insecurity and
neighborhood conditions may have a heightened influence on
health outcomes in predominantly Black communities [56].
Research also points to racial differences in stress responses,
further influencing health outcomes [73]. Importantly, the
persisting impact of systemic racism could contribute to poorer
health in Black communities [74], irrespective of socioeconomic
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factors, which may account for the lower ranking of ADI in the
Black-specific model.

Limitations
The study has several limitations. The findings in this study
should be considered as part of a broader discussion on racial
disparities in health. We acknowledge the need for further causal
inference and statistical testing to fully substantiate our
observations. The data might not necessarily apply to other
states with different demographics or health disparities than
Florida. Using EHR data for research is subject to informatic
challenges and disadvantages [75]. Race, as used in our study,
was self-reported and extracted from EHR. While this method
of racial identification is standard in epidemiological research,
it comes with inherent challenges that may affect the accuracy
and interpretability of the findings. The study could not assess
the outcomes of patients who did not require hospitalization or
experienced mortality outside the clinical setting. Furthermore,
although the XGBoost algorithm has a low risk of overfitting,
the lack of an external validation cohort undermines the
generalizability of our model.

Similarly, interpreting features’ importance from ML models,
such as XGBoost, presents inherent challenges compared with
traditional statistical approaches. These outputs do not offer
conventional statistical significance measures and can be highly
sensitive to model specification and training data characteristics.

Also, the models’evaluation metrics have limitations. The AUC
might not fully capture the model’s performance when there is
a significant class imbalance or different types of
misclassifications vary. Balanced accuracy might not always
reflect the practical significance of prediction errors. Sensitivity
and specificity can provide a misleading picture of model
performance if not considered together, especially in datasets
with imbalanced class distributions.

Finally, associations obtained from part of the data at the county
level may not reflect individual associations.

In conclusion, our study demonstrates the critical role of model
constructs and assumptions in estimating health-related
associations, advocating for frameworks that better account for
data behaviors. Using a comprehensive ML approach that
integrates individual- and group-level exposomic health
associations, we used sequential modeling and universal Shapley
effect plots for objective comparisons. Our findings emphasize
the complexities of health inequalities, particularly persistent
racial disparities, and stress the need for multidimensional
strategies to address them. Interpretable ML serves as a valuable
adjunct to traditional statistical methods, revealing nuanced
patterns that can inform resource allocation and policy
development for outcomes of COVID-19. Further research is
required to clarify the influence of these variables and their
contributions to racial health disparities.
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AUC: area under the receiver operating characteristic curve
CHF: congestive heart failure
CV: cross-validation
ECI: Elixhauser combined comorbidity index
HCUP: Healthcare Cost and Utilization Project
ML: machine learning
NO2: nitrogen dioxide
PM2.5: particulate matter 2.5
SDOH: Social Determinants of Health
SHAP: Shapley Additive Explanations
XGBoost: Xtreme Gradient Boosting
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