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Abstract
Background: The COVID-19 pandemic has revealed significant challenges in disease forecasting and in developing a public
health response, emphasizing the need to manage missing data from various sources in making accurate forecasts.
Objective: We aimed to show how handling missing data can affect estimates of the COVID-19 incidence rate (CIR) in
different pandemic situations.
Methods: This study used data from the COVID-19/SARS-CoV-2 surveillance system at the National Institute of Hygiene
and Epidemiology, Vietnam. We separated the available data set into 3 distinct periods: zero COVID-19, transition, and new
normal. We randomly removed 5% to 30% of data that were missing completely at random, with a break of 5% at each time
point in the variable daily caseload of COVID-19. We selected 7 analytical methods to assess the effects of handling missing
data and calculated statistical and epidemiological indices to measure the effectiveness of each method.
Results: Our study examined missing data imputation performance across 3 study time periods: zero COVID-19 (n=3149),
transition (n=1290), and new normal (n=9288). Imputation analyses showed that K-nearest neighbor (KNN) had the lowest
mean absolute percentage change (APC) in CIR across the range (5% to 30%) of missing data. For instance, with 15%
missing data, KNN resulted in 10.6%, 10.6%, and 9.7% average bias across the zero COVID-19, transition, and new normal
periods, compared to 39.9%, 51.9%, and 289.7% with the maximum likelihood method. The autoregressive integrated moving
average model showed the greatest mean APC in the mean number of confirmed cases of COVID-19 during each COVID-19
containment cycle (CCC) when we imputed the missing data in the zero COVID-19 period, rising from 226.3% at the 5%
missing level to 6955.7% at the 30% missing level. Imputing missing data with median imputation methods had the lowest bias
in the average number of confirmed cases in each CCC at all levels of missing data. In detail, in the 20% missing scenario,
while median imputation had an average bias of 16.3% for confirmed cases in each CCC, which was lower than the KNN
figure, maximum likelihood imputation showed a bias on average of 92.4% for confirmed cases in each CCC, which was the
highest figure. During the new normal period in the 25% and 30% missing data scenarios, KNN imputation had average biases
for CIR and confirmed cases in each CCC ranging from 21% to 32% for both, while maximum likelihood and moving average
imputation showed biases on average above 250% for both CIR and confirmed cases in each CCC.
Conclusions: Our study emphasizes the importance of understanding that the specific imputation method used by investiga-
tors should be tailored to the specific epidemiological context and data collection environment to ensure reliable estimates of
the CIR.
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Introduction
Surveillance data are vital for public health policy and
resource allocation [1]. During the COVID-19 pandemic,
the rapid analysis of incomplete data led to potential
biases, affecting our understanding of COVID-19 knowledge,
attitudes, and behaviors [2]. Additionally, a study using US
infectious disease surveillance data demonstrated that missing
data can impact measured health disparities, emphasizing the
need to consider this limitation when interpreting disparity
metrics [3].

The absence of standardized and systematically collec-
ted surveillance data during the COVID-19 outbreak has
necessitated the use of robust statistical tools and approaches
to address these data gaps. Despite the availability of various
analytical techniques, the application of statistical modeling
processes has been limited [4]. Moreover, when imputation
methods have been used, they have often lacked detailed
descriptions and transparency [5].

Addressing the problem of missing data in public health
surveillence systems requires system-level solutions, such
as collecting more complete laboratory data, improving
data linkage, and designing more efficient data collection
procedures [3]. The analytical challenges posed by the current
pandemic present an important opportunity to assess the
utility of available statistical methods. Regardless of data
quality, missing data and suboptimal analytical strategies can
reduce a study’s statistical power and lead to biased estimates,
resulting in erroneous conclusions. Robust statistical methods
are crucial to enhance future data collection efforts, data
interpretation, and their clinical and public health implications
[6,7].

Gaps in the existing literature lie in the inadequate use
of statistical modeling approaches to address the problem of
missing data in disease and risk factor monitoring systems,
particularly during public health emergencies such as the
COVID-19 pandemic [8]. This shortfall is critical because
missing data can significantly hinder the accurate monitor-
ing of disease trends and the formulation of effective public
health policies [9]. While various imputation methods exist,
their application in this context has been limited, leading to
uncertainties in disease trend forecasting and policy recom-
mendations. These limitations can result in skewed data
interpretations, which may, in turn, affect resource alloca-
tion, emergency response strategies, and overall public health
outcomes.

In the present study, we used several theoretical
approaches based on statistical modeling and epidemiolog-
ical concepts to address the challenge of using different
statistical methods for handling missing data in the interpreta-
tion of community surveillance information collected during
different pandemic periods. We evaluated the performance of
several imputation strategies to determine the best approaches
for dealing with missing data in disease monitoring, showing

how handling missing data can affect estimates of the
COVID-19 incidence rate (CIR) in different pandemic
situations.

Methods
Study Context and Data Source
This study used data collected in Bac Ninh Province,
Vietnam, during the calendar year 2021 from the surveillance
system for patients with COVID-19/SARS-CoV-2 who were
admitted to the National Institute of Hygiene and Epidemiol-
ogy in Hanoi, Vietnam.

The database included information on 13,727 patients with
COVID-19 collected from the beginning of the 2021 outbreak
in Bac Ninh Province, from January 1, 2021, to December
31, 2021, without any missing data. Based on the information
contained in this data set, and because we wanted to restrict
our study population to cases that could be transmitted to the
broader community, we calculated the CIR only for con-
firmed cases of COVID-19 (n=10,599; this represents 77%
of the data set) that were diagnosed in each community from
each district in Bac Ninh Province (Multimedia Appendix 1).

We decided to focus exclusively on community cases
to understand the transmission dynamics in the broader
community. We focused on 3 specific variables in the data
set: the date of each community-acquired case of COVID-19
that was forwarded to the surveillance system, the community
code, and the number of daily cases at the community level
(Multimedia Appendix 2).
Overview
We conducted a simulation to calculate various statistical
and epidemiological indices of this community epidemic,
assessing the effectiveness of different methods for handling
missing data across differing missingness proportions and
pandemic periods for each of the 7 missing-data analytic
methods. The simulation steps began with generating a
reference data set by separating the data set into different
periods. Subsequently, for each missingness proportion in
each period, steps 2 through 4 were repeated, during which
statistical and epidemiological indices were calculated for the
7 missing-data handling methods.
Step 1: Separating by Period
We separated the COVID-19 pandemic that was occurring
in Bac Ninh Province into 3 distinct time periods using
the following working definitions: the first period, the zero
COVID-19 period, ran from January 1 to July 4, 2021. This
was when the local government had tightened prevention
policies and the primary goal was to stop the community
transmission of COVID-19. During this period, there were
multiple short-range waves of COVID-19 outbreaks, with the
peak CIR ranging from 150 to 250 cases daily [10].
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The next period, the transition period, took place between
July 5 and October 22, 2021. During this period, the local
government used a flexible pandemic policy with the goal
of controlling community transmission of COVID-19 and
minimizing the importation of new cases from affected
provinces while increasing the population level of COVID-19
vaccine coverage. During this period, the highest CIR was
more than 200 cases per day, but there were many days in
Bac Ninh province with no notification of cases (CIR=0),
with the longest range of zero notification days being more
than 2 weeks [10].

The final study period, the new normal, ran from October
23, 2021, until the end of the study on December 31, 2021.
During this period, the primary goal of public health officials
was to open social facilities and terminate all isolation
policies. The CIR in this period fluctuated, with multiple
long-range waves of outbreaks; during the highest peak, there
were more than 600 daily cases of COVID-19 [10].

Step 2: Generating Simulated Data Sets
We assumed that there were values missing completely at
random in our study, so that the data values missing in
our simulation data sets were unrelated to any observed or
unobserved data in the data set. In other words, the missing
data points did not depend on the values of other variables
or the values of the missing variable itself. Inasmuch, we
randomly changed the missing data percentage from 5% to
30%, with intervals of 5%, for each time point for the variable
“cases per day at the community level.” This was defined as
the total number of confirmed cases of COVID-19 that were
diagnosed and reported daily at each community in Bac Ninh
Province [8], resulting in 6 levels of cutoff percentages for
missing data sets during each of the 3 distinct periods. We
used the missMethods R package to generate missing values
based on previous research that has shown the effectiveness
of generating missing values in data sets [11]; 18 simulated
databases were created in our study.
Step 3: Handling the Missing Data
The methods for handling missing data were based on a
previous literature review of the techniques used in ecological
data sets [12]. We selected 7 methods that we deemed to be
suitable for imputing missing values from the number of daily
cases of COVID-19 occurring in each study community.

Backfill Imputation
We used the number of daily cases from the previous day
for each community unit as the value for imputation for the
missing values of that community. If there were no cases on
the previous day to impute, we assumed a missing value of 0
because when no data were available from the previous day,
assuming a value of 0 was a conservative approach, indicating
no new cases reported. We used the “na. locf()” function in
the zoo package of R to conduct this imputation process [13].

Moving Average
We used the mean of the last 14 days of COVID-19 as the
average for imputation. The cutoff time of 14 days served

as the reference for the minimum time for a COVID-19
containment cycle (CCC) [10]. We created a function to carry
out this process.

Median Imputation
We created a function in R to use the value of the number
of daily cases of COVID-19 during the last 14 days in each
community as the reference to find the median for imputing
missing values for that community.

Maximum Likelihood
We used maximum likelihood estimation (MLE), which is
based on a normal distribution. We created a function to
conduct this process. First, we calculated the MLE for the
mean (μ) and SD (σ) of the last 14 days of nonmissing values
in the input variable x. Then, for each missing value, we
randomly sampled a value from a normal distribution with
mean (μ) and SD (σ), effectively replacing the missing value.

Linear Interpolation
We use the “na_interpolation()” function in the imputed
package of R [14]. Missing values were replaced by values
estimated by linear interpolation, which created a linear
relationship between neighboring known data points (the last
day and the next day).

Autoregressive Integrated Moving Average
Model
We used the “auto. arima()” function in the forecast package
of R for calculating imputed missing values [15]. The
autoregressive integrated moving average (ARIMA) model
combines 3 key components: AR (the “autoregressive” term),
I (the “differencing” term), and MA (the “moving average”
term). The AR term refers to the past values used for
forecasting the next value while the MA term is used to define
the number of past forecast errors used to predict future
values. The order of “differencing” specifies the number of
times the differencing operation is performed on a series
to make it stationary. In the default figures, the maximum
number of historical observations was set to the last 5 days.
The ARIMA model subsequently determined the order of
these components (from 1 to 5 previous days might be
possibly related to the current data), and imputation val-
ues were chosen through data analysis and model selection
techniques.

K-Nearest Neighbor Imputation
We used the closest data points to the one with missing
values. In our study, we used the “kNN()” function in the
VIM package of R to fill in missing daily COVID-19 case
counts at the community level by K-nearest neighbor (KNN)
imputation [16]. This method estimates missing values based
on nearby data points. We applied KNN with a set number of
neighbors, in our example 14 days, representing the minimum
time for a CCC in each community [10].
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Step 4: Estimating the Effectiveness
To illustrate the efficacy of various missing data han-
dling methods in estimating the CIR, we implemented the
7 imputation techniques to address missing data during
different study periods and levels of missing data.

On the statistical side, to assess the extent to which
these missing data handling methods mitigated the effects
on estimating the CIR, we examined bias and the root
mean square error (RMSE) resulting from direct compari-
sons between the imputed and original values of the daily
CIR for a population of 1,000,000 people. We computed
the mean absolute crude bias (ACB) and the mean crude
RMSE (RMSE) as indicators of performance [8]. To quantify
the alterations in CIR between the original and the imputed
data sets, we employed the mean absolute percentage change
(APC) in the CIR, denoted as APCCIR (Multimedia Appendix
3).

From the epidemiological perspective, we used the average
number of confirmed cases in each CCC as the reference
index to measure the effectiveness of the imputation data.
The CCC consisted of several nonpharmacological control
strategies aimed at managing the COVID-19 pandemic within
each community in Bac Ninh Province [10]. We used the
mean APC of the mean of the average confirmed cases
of COVID-19 for each CCC, referred to as APCcases, to
discern differences in confirmed cases for each CCC at the
community level between the original and imputed data sets
(Multimedia Appendix 3).

R (version 4.2.2; R Foundation for Statistical Computing)
was used for all data analyses that were carried out.
Ethical Considerations
The study received approval in accordance with decision
4326/QD-DHYHN by the Institutional Review Board of
Hanoi Medical University. All methods were conducted in
compliance with the committee’s guidelines and regulations.
We received permission for all the data sets in this study from
the Vietnam National Institute of Hygiene and Epidemiology
for use and analysis. All personal information and identifiers
were removed from the data set prior to analysis.

Results
Zero COVID-19 Period
Figure 1 shows the results of the imputation methods used
to address missing data in the context of the CIR during
the zero COVID-19 period. Among these methods, KNN
imputation showed the lowest mean ACB and mean crude
RMSE values from 5% to 20% missing-data levels. In the
25% to 30% missing-data levels, while KNN imputation and
median imputation consistently yielded lower mean ACBs
than the other methods, linear interpolation imputation had
the lowest mean crude RMSE.

Figure 1. Mean absolute crude bias and mean crude root mean square error (RMSE) when using different imputation methods during the zero
COVID-19 period. ACB: the mean absolute crude bias of the COVID-19 incidence rate; ARIMA: autoregressive integrated moving average; RMSE:
mean crude RMSE of the COVID-19 incidence rate.

Table 1 provides an assessment of the mean APC in the CIR
and the average number of confirmed cases in each CCC
during the zero COVID-19 period using the 7 imputation

methods to address missing data. Median imputation and
KNN imputation consistently exhibited the lowest mean APC
values for both CIR and for the average number of confirmed
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cases during each CCC. The moving average imputation
method followed as the second-lowest performer for APC in
CIR, with the mean APC increasing gradually as the level of
missing data increased. Backfill imputation was the second-
lowest performer in APC in terms of the average number
of confirmed cases during each CCC, with the mean APC
value rising nearly similarly to the median imputation results.
Both backfill imputation and median imputation had APCs
on average for the number of confirmed cases of COVID-19

during each CCC higher than KNN imputation at all levels
of missing data. In contrast, the linear interpolation imputa-
tion method consistently exhibited the highest mean APC
values across the specified levels of missing data. Lastly,
the ARIMA model imputation and maximum likelihood
imputation methods demonstrated the second-highest mean
APC values when missing data levels increased; the ARIMA
model imputation had the highest APC on average for the
number of confirmed cases of COVID-19 during each CCC.

Table 1. Mean absolute percentage change in the daily COVID-19 incidence rate (APCCIR) and in the mean of the average of confirmed cases of
COVID-19 during each COVID-19 containment cycle (APCcases) when using different imputation methods during the zero COVID-19 period.
Imputation methods Level of missing data, mean (SE)

5% 10% 15% 20% 25% 30%
Backfill imputationAPCCIR 11.1 (8.2) 21.8 (11.1) 33.0 (13.3) 36.0 (13.3) 48.5 (19.4) 51.7 (19.6)APCcases 4.5 (1.6) 13.1 (2.6) 19.6 (3.0) 28.9 (4.4) 35.6 (4.7) 44.3 (5.4)
Moving average imputationAPCCIR 8.3 (2.0) 14.0 (2.4) 23.8 (3.9) 28.9 (4.8) 37.2 (6.5) 39.3 (6.6)APCcases 24.8 (8.3) 57.6 (15.8) 77.1 (23.6) 215.3 (76.1) 244.2 (78.4) 269.0 (80.4)
Median imputationAPCCIR 3.9 (1.0) 7.6 (1.4) 13.1 (2.2) 16.8 (2.6) 21.1 (3.1) 24.5 (3.2)APCcases 4.3 (1.3) 14.3 (4.9) 18.6 (5.4) 64.5 (43.1) 36.0 (11.8) 42.5 (11.9)
Maximum likelihood imputationAPCCIR 13.2 (4.2) 24.1 (7.2) 41.3 (10.7) 39.9 (8.0) 45.9 (7.6) 53.5 (11.0)APCcases 24.8 (8.3) 57.6 (15.8) 77.1 (23.6) 215.3 (76.1) 244.2 (78.4) 269.0 (80.4)
Linear interpolation imputationAPCCIR 15.5 (12.8) 26.9 (14.3) 33.6 (14.6) 39.5 (14.9) 48.8 (18.5) 56.2 (19.1)APCcases 6.1 (2.2) 18.1 (3.8) 24.3 (4.0) 37.2 (6.1) 49.8 (6.6) 56.9 (7.0)
Autoregressive integrated moving average model imputationAPCCIR 10.2 (1.4) 17.5 (2.4) 27.5 (3.7) 36.5 (4.9) 46.5 (6.4) 53.9 (7.7)APCcases 226.3 (27.0) 544.4 (51.6) 1473.9 (238.7) 3295.6 (434.8) 5126.4 (551.1) 6955.7 (622.4)
K-nearest neighbor imputationAPCCIR 3.7 (1.0) 6.9 (1.4) 10.6 (1.7) 10.3 (1.4) 15.8 (1.9) 17.8 (2.1)APCcases 3.6 (0.7) 9.3 (1.7) 14.1 (2.1) 19.9 (2.7) 23.4 (3.4) 29.0 (3.2)

Transition Period
Figure 2 shows the results of the different imputation methods
used to address missing data in the context of the CIR during
the transition period. The ARIMA model and KNN imputa-
tion methods consistently demonstrated the lowest mean ACB
across all levels of missing data; the ARIMA model and
median imputation methods had the same results in terms
of the mean ACB and mean RMSE. With regards to the
mean crude RMSE, the moving average and ARIMA model
imputation methods consistently yielded lower values than
the other methods across varying levels of missing data. On
the other hand, the maximum likelihood imputation method
generally resulted in higher mean ACBs and mean crude
RMSEs compared with alternative methods. The backfill

imputation method exhibited the second-highest mean crude
RMSE, particularly at the 20% to 30% level of missing data.

Table 2 presents an overview of the 7 imputation methods
used to address missing data in the CIR and the aver-
age number of confirmed cases during each CCC. The
median and ARIMA model imputation methods consistently
displayed relatively lower mean APC values for both the
CIR and average of confirmed cases in each CCC than the
other analytic methods. The backfill imputation and KNN
imputation methods provided the second-lowest mean APC
values as the level of missing data increased. In contrast, the
maximum likelihood and moving average imputation methods
displayed comparatively higher mean APC values than the
other methods of imputation.
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Figure 2. The mean absolute crude bias and mean crude root mean square error (RMSE) when using different imputation methods during the
transition period. ACB: the mean absolute crude bias of the COVID-19 incidence rate; ARIMA: autoregressive integrated moving average; RMSE:
mean crude RMSE of the COVID-19 incidence rate.

Table 2. Mean absolute percentage change in the daily COVID-19 incidence rate (APCCIR) and in the mean of the average number of confirmed
cases of COVID-19 during each COVID-19 containment cycle (APCcases) when using different imputation methods during the transition period.
Imputation methods Level of missing data, mean (SE)

5% 10% 15% 20% 25% 30%
Backfill imputationAPCCIR 2.8 (1.1) 12.3 (6.6) 15.9 (6.7) 16.7 (6.7) 19.1 (6.8) 26.0 (8.6)APCcases 8.7 (2.4) 16.7 (3.3) 24.6 (4.0) 31.6 (4.4) 40.7 (5.3) 48.9 (5.3)
Moving average imputationAPCCIR 11.4 (2.4) 20.0 (3.8) 30.4 (5.7) 31.4 (5.6) 34.9 (6.3) 42.7 (7.7)APCcases 30.1 (3.4) 33.7 (4.4) 49.7 (11.4) 98.2 (17.8) 118.7 (19.0) 167.0

(25.3)
Median imputationAPCCIR 3.0 (1.3) 3.6 (1.3) 6.6 (1.9) 8.7 (2.1) 10.6 (2.3) 12.43

(2.43)APCcases 3.8 (1.4) 9.4 (2.6) 13.5 (3.0) 16.3 (3.2) 22.8 (3.8) 25.7 (3.9)
Maximum likelihood imputationAPCCIR 18.6 (3.9) 32.6 (9.7) 51.9 (11.1) 54.4 (11.6) 58.3 (14.0) 48.8 (11.4)APCcases 31.6 (3.6) 37.5 (6.1) 57.3 (12.9) 92.4 (19.3) 134.0 (22.3) 158.4

(24.9)
Linear interpolation imputationAPCCIR 8.4 (3.6) 16.4 (5.4) 22.4 (7.5) 24.0 (7.5) 28.4 (7.8) 32.0 (9.5)APCcases 9.8 (2.0) 18.8 (2.8) 25.5 (3.3) 30.8 (3.6) 37.2 (4.2) 44.4 (4.4)
Autoregressive integrated moving average model imputationAPCCIR 3.0 (1.3) 3.7 (1.3) 6.7 (1.9) 8.7 (2.1) 10.6 (2.3) 12.4 (2.4)APCcases 3.8 (1.4) 9.4 (2.6) 13.5 (3.0) 16.3 (3.2) 22.8 (3.8) 25.7 (3.9)
K-nearest neighbor imputationAPCCIR 5.9 (2.0) 5.4 (1.7) 10.6 (2.5) 9.7 (2.0) 17.7 (3.9) 16.9 (3.1)APCcases 5.6 (1.9) 8.8 (2.5) 13.5 (2.8) 17.0 (3.3) 12.7 (2.8) 22.3 (3.5)
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New Normal Period
Figure 3 illustrates the mean ACB and mean crude RMSE
of the 7 imputation methods used to address missing data
in the CIR during the new normal period. Both the back-
fill and linear interpolation imputation methods consistently
demonstrated the lowest mean ACB across all levels of
missing data. The ARIMA model imputation and KNN
imputation methods provided the second-lowest absolute
mean ACB and mean crude RMSE compared with the other
analytic methods across different levels of missing data. On
the other hand, the maximum likelihood and moving average
imputation methods showed the highest mean ACB and mean
crude RMSE as the level of missing data increased.

Table 3 displays the mean APC between the original
and imputation data sets when we addressed varying levels

of missing data in the CIR and in the average number
of confirmed cases in each CCC during the new normal
period. Three statistical methods, namely the backfill, linear
interpolation, and KNN imputation methods, consistently
exhibited relatively lower mean APC values compared with
the other imputation methods. While the ARIMA model
imputation method provided the second-lowest mean APC
in CIR values as the level of missing data increased, median
imputation had the second-lowest mean APC in terms of the
average number of confirmed cases in each CCC at all levels
of missing data. In contrast, the maximum likelihood and
moving average imputation methods consistently displayed
higher mean APC values in the CIR and in the average
number of confirmed cases during each CCC than the other
methods of imputing missing data.

Figure 3. Mean absolute crude bias and mean crude root mean square error (RMSE) when using different imputation methods during the new normal
period. ACB: the mean absolute crude bias of the COVID-19 incidence rate; ARIMA: autoregressive integrated moving average; RMSE: mean crude
RMSE of the COVID-19 incidence rate.

Table 3. Mean absolute percentage change in the daily COVID-19 incidence rate (APCCIR ) and in the mean of the average number of confirmed cases
of COVID-19 during each COVID-19 containment cycle (APCcases) when using different imputation methods during the new normal period.
Imputation methods Level of missing data, mean (SE)

5% 10% 15% 20% 25% 30%
Backfill imputationAPCCIR 7.9 (5.7) 15.6 (8.1) 19.8 (9.6) 23.9 (10.1) 28.9 (10.2) 39.3 (12.5)APCcases 8.3 (1.8) 14.1 (2.2) 21.5 (3.1) 29.9 (4.0) 38.36 (5.12) 45.84 (5.79)
Moving average imputationAPCCIR 80.9 (30.0) 189.7 (79.2) 301.2 (117.2) 390.3 (144.4) 491.7 (194.2) 578.1

(212.3)APCcases 54.6 (6.6) 102.2 (11.3) 142.7 (14.8) 220.7 (17.9) 259.7 (19.4) 303.2 (21.4)
Median imputation
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Imputation methods Level of missing data, mean (SE)

5% 10% 15% 20% 25% 30%APCCIR 58.5 (25.0) 134.7 (65.0) 215.0 (89.8) 279.8 (111.6) 359.3 (152.0) 439.1
(171.7)APCcases 25.5 (5.2) 45.4 (8.3) 66.2 (10.6) 104.3 (14.9) 124.2 (16.6) 158.1 (20.8)

Maximum likelihood imputationAPCCIR 92.1 (33.8) 213.8 (89.7) 289.7 (107.0) 321.3 (141.7) 472.5 (187.5) 605.7
(235.9)APCcases 58.6 (7.6) 105.5 (11.5) 145.0 (15.8) 221.8 (19.5) 262.5 (20.9) 313.7 (24.2)

Linear interpolation imputationAPCCIR 4.8 (2.9) 8.6 (3.6) 10.9 (4.3) 13.4 (4.6) 29.6 (10.8) 35.7 (11.3)APCcases 9.2 (2.4) 15.8 (3.0) 23.6 (3.7) 31.2 (4.3) 41.3 (5.4) 44.8 (5.6)
Autoregressive integrated moving average model imputationAPCCIR 22.0 (7.0) 43.5 (15.3) 62.7 (21.2) 72.6 (24.0) 58.4 (17.7) 69.5 (20.9)APCcases 50.5 (5.7) 87.9 (9.4) 118.4 (12.8) 174.5 (15.0) 169.3 (13.2) 190.1 (14.1)
K-nearest neighbor imputationAPCCIR 4.5 (1.6) 8.5 (1.9) 9.7 (1.4) 11.3 (1.5) 23.0 (3.1) 21.2 (2.8)APCcases 4.2 (0.8) 12.7 (2.3) 16.6 (1.8) 25.0 (2.4) 24.7 (2.2) 32.6 (2.7)

Discussion
Principal Results
In examining our study’s primary objective, which was to
demonstrate how different methods of handling missing data
affect estimation of the CIR, we highlight how the ongoing
pandemic, as well as the preventive measures and health
policy recommendations that were used to control future
cases of COVID-19 in the community, could affect the
effectiveness of different analytical methods. After examining
7 imputation approaches, we found that KNN and median
imputation performed the best during the zero COVID-19
period, with KNN also having the lowest mean APC in
terms of the CIR. ARIMA and median imputation were
the most successful analytic approaches used during the
transition period, whereas backfill, linear interpolation, and
KNN performed the best during the new normal phase.
Inasmuch, our findings show that one’s selection of the
different imputation methods that could be used must take
into account the specific pandemic conditions to increase the
accuracy of predicted incidence rate estimates.
Comparisons With Prior Work
Several of our findings differ from those of a study that
was designed to find the best way to handle missing data
for estimating a wellness index over the lifetime based on
panel data from smart devices that collected various types
of life logs, such as steps walked and sleep duration [17].
Our findings also differ from a study that examined how
well artificial neural networks handle missing data collec-
ted in a pediatric intensive care unit [18]. The differences
between our results and these previous studies were due to
the performance of different imputation methods and a focus
on different pandemic time periods. This underscores the

importance of understanding the particular pandemic situation
and developing and using health policy measures consider-
ing the potential biases and effectiveness of these analytic
techniques. During periods of strict population-based control,
such as the zero COVID-19 period, simpler methods, such as
KNN and median imputation methods, which rely on recent
data, could be used. In contrast, during more volatile periods
of viral infections, such as the transition and new normal
periods, methods that model temporal dependencies or use
neighboring data points, namely the ARIMA model and KNN
imputation methods, are more effective.

Our results also highlight the limitations of certain analytic
methods, such as the maximum likelihood and moving
average, which generally showed higher mean ACB and
crude RMSE values, indicating less robustness in handling
variability in the extent of missing data during different
pandemic phases. These methods are, however, often used
to handle missing data in medical data sets. For exam-
ple, in a study involving 50 individuals selected from a
2 × 2 randomized controlled trial, the moving average
method showed the best agreement with observed values
[19]. This study compared various data imputation methods
for calculating body weight variability using both linear
and nonlinear approaches. Moreover, maximum likelihood
imputation methods have been used for handing missing
data at random in a number of randomized controlled trials
[20]. The limitations of these methods in our study may be
attributed to their underlying assumptions, which might not
hold in the rapidly changing context of a pandemic, leading to
increased bias and error in the calculation and interpretation
of imputed data and illness incidence rates.

The effectiveness of each imputation method that we used
in this study was influenced by the underlying data struc-
ture and characteristics of missingness during each pandemic
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period. For example, the backfill method, which assumes
that the last observed value can be carried forward, may
work during periods of low variability but can introduce
significant bias during high variability periods, such as the
new normal period. Similarly, moving average methods
might not capture true variability in the number of cases of
disease that may occur during rapid changes in transmission
dynamics. Our findings differ from an observational study
in 2023 that used moving average imputation for 3 public,
completed time-series data sets that were collected from
power equipment [21]. This study aimed to create a custom-
ized methodology that combined an asymmetric denoising
autoencoder and a moving average filter to impute missing
data in time-series monitoring data. When choosing different
imputation methods, it is crucial to consider epidemic-spe-
cific and contextual factors. Data may be missing due to
overwhelmed health care systems or reporting delays in the
number of cases of confirmed illness, leading to errors in
data interpretation and policy recommendations to contain the
spread of disease. In addition, the stage of the epidemic and
extent of use and effectiveness of public health interventions
can impact the suitability of different imputation techniques.
Understanding these factors is essential to selecting methods
that minimize bias and accurately reflect underlying trends in
disease magnitude and health-related outcomes.

These findings emphasize the need for transparency and
detailed reporting in the application of data imputation
methods. The lack of detailed descriptions and transparency
in the reporting and application of these methods in previous
studies has been a significant limitation in interpreting the
published literature. By providing a comprehensive analy-
sis of various imputation techniques and their performance
across different pandemic phases, this study contributes to
a better understanding of how to more effectively handle
missing data in disease surveillance. The detailed compari-
son of methods and the consideration of different pandemic
phases provide valuable insights for future research and
public health practice.
Study Strengths and Limitations
The main strength of this study is that we used individual
data to calculate the number of new cases of COVID-19 that

were diagnosed and reported to public health authorities on
a daily basis in each of the communities studied. Moreover,
we were able to compare the original values with the imputed
estimates that were collected during the 3 periods of this
ongoing epidemic in a large Vietnamese province.

There are some limitations of our study, however, that
need to be kept in mind in the interpretation of our principal
study findings. Because we targeted an extensive range of
missing values greater than 5%, we did not use any methods
to ignore missing data or delete the missing values, such as
listwise deletion or pairwise deletion. In addition, we used
large imputed data sets and did not use methods useful for
handling missing data in studies with small sample sizes,
such as data augmentation [22]. Furthermore, our results
are primarily limited to handling missing data with missing
completely at random patterns without a need to account for
potential biases that may have been introduced by nonrandom
missing data. Scenarios in which data were missing at random
or missing not at random were not addressed in this study
[23]. Future investigations will be needed to analyze these
types of missing-data scenarios. Another limitation is that
our study did not account for unexpected cases, as the data
were produced based on existing data and therefore may not
represent some unforeseen phenomena.
Conclusions
This study illustrates that the choice of imputation method
used should be tailored to the specific epidemiological
context and data collection environment. Statistical modeling
and a thorough understanding of local pandemic dynamics
are essential for improving the accuracy of incidence rate
estimates and, in turn, public health responses to ongoing
disease trends and the development and application of disease
control measures. Future research should continue to refine
these methods, ensuring that they can adapt to the evolving
challenges of disease surveillance in public health emergen-
cies. By improving currently available imputation methods,
we can facilitate more accurate and dependable public health
responses in future situations, ultimately contributing to
better resource allocation, emergency response strategies, and
community health outcomes.

Acknowledgments
Assessment of data from patients who were diagnosed with COVID-19 in Bac Ninh Province in 2021 from the surveillance
system of COVID-19/SARS-CoV-2 patients was provided by the National Institute of Hygiene and Epidemiology. The
research reported in this paper was supported by the Fogarty International Center of the US National Institutes of Health
(award D43 TW011394-01). This research did not involve animal or human participants, nor did it take place in any private or
protected areas. No specific permissions were required for corresponding locations.
Data Availability
The data sets generated and analyzed during this study are available in the open access GitHub repository [24].
Authors’ Contributions
HTP and TD conceived the idea for this study. HTP, QTP, and CKN conducted the data collection for the study. HTP and TD
developed the theory and performed the data analysis. HTP and JB verified the analytical methods and supervised the findings
of this research. HTP, JB, and TD wrote the manuscript with input from all authors. JB, HLN, RG, QLP, and LMG provided
critical feedback and helped shape the research, analysis, and manuscript.

JMIR PUBLIC HEALTH AND SURVEILLANCE Pham et al

https://publichealth.jmir.org/2024/1/e53719 JMIR Public Health Surveill 2024 | vol. 10 | e53719 | p. 9
(page number not for citation purposes)

https://publichealth.jmir.org/2024/1/e53719


Conflicts of Interest
None declared.
Multimedia Appendix 1
Study population characteristics according to the study period.
[DOCX File (Microsoft Word File), 18 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Example of data sets and characteristics of study variables.
[DOCX File (Microsoft Word File), 17 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Study formulas.
[DOCX File (Microsoft Word File), 19 KB-Multimedia Appendix 3]
References
1. Nsubuga P, White ME, Thacker SB, et al. Public health surveillance: a tool for targeting and monitoring interventions.

In: Jamison DT, Breman JG, Measham AR, editors. Disease Control Priorities in Developing Countries. 2nd ed. The
World Bank; 2006. URL: http://www.ncbi.nlm.nih.gov/books/NBK11770/ [Accessed 2024-08-06]

2. Weiss PS, Waller LA. The impact of nonrandom missingness in surveillance data for population-level summaries:
simulation study. JMIR Public Health Surveill. Sep 9, 2022;8(9):e37887. [doi: 10.2196/37887] [Medline: 36083618]

3. Ansari B, Hart-Malloy R, Rosenberg ES, Trigg M, Martin EG. Modeling the potential impact of missing race and
ethnicity data in infectious disease surveillance systems on disparity measures: scenario analysis of different imputation
strategies. JMIR Public Health Surveill. Nov 9, 2022;8(11):e38037. [doi: 10.2196/38037] [Medline: 36350701]

4. Masconi KL, Matsha TE, Echouffo-Tcheugui JB, Erasmus RT, Kengne AP. Reporting and handling of missing data in
predictive research for prevalent undiagnosed type 2 diabetes mellitus: a systematic review. EPMA J. 2015;6(1):7. [doi:
10.1186/s13167-015-0028-0] [Medline: 25829972]

5. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research:
potential and pitfalls. BMJ. Jun 29, 2009;338:b2393. [doi: 10.1136/bmj.b2393] [Medline: 19564179]

6. Kang H. The prevention and handling of the missing data. Korean J Anesthesiol. May 2013;64(5):402-406. [doi: 10.
4097/kjae.2013.64.5.402] [Medline: 23741561]

7. Lu FS, Nguyen AT, Link NB, et al. Estimating the cumulative incidence of COVID-19 in the United States using
influenza surveillance, virologic testing, and mortality data: four complementary approaches. PLoS Comput Biol. Jun
2021;17(6):e1008994. [doi: 10.1371/journal.pcbi.1008994] [Medline: 34138845]

8. Feng S, Hategeka C, Grépin KA. Addressing missing values in routine health information system data: an evaluation of
imputation methods using data from the Democratic Republic of the Congo during the COVID-19 pandemic. Popul
Health Metr. Nov 4, 2021;19(1):44. [doi: 10.1186/s12963-021-00274-z] [Medline: 34736462]

9. Liu M, Li S, Yuan H, et al. Handling missing values in healthcare data: a systematic review of deep learning-based
imputation techniques. Artif Intell Med. Aug 2023;142:102587. [doi: 10.1016/j.artmed.2023.102587] [Medline:
37316097]

10. Toan DTT, Pham TH, Nguyen KC, et al. Shift from a zero-COVID strategy to a new-normal strategy for controlling
SARS-COV-2 infections in Vietnam. Epidemiol Infect. Jul 4, 2023;151:e117. [doi: 10.1017/S0950268823001048]
[Medline: 37401482]

11. Santos MS, Pereira RC, Costa AF, Soares JP, Santos J, Abreu PH. Generating synthetic missing data: a review by
missing mechanism. IEEE Access. 2019;7:11651-11667. [doi: 10.1109/ACCESS.2019.2891360]

12. Hossie TJ, Gobin J, Murray DL. Confronting missing ecological data in the age of pandemic lockdown. Front Ecol Evol.
Aug 2021;9:669477. [doi: 10.3389/fevo.2021.669477]

13. Zeileis A, Grothendieck G. Zoo: S3infrastructure for regular and irregular time series. J Stat Soft. 2005;14(6):1-27. [doi:
10.18637/jss.v014.i06]

14. Moritz S, Bartz-Beielstein T. ImputeTS: time series missing value imputation in R. R J. 2017;9(1):207. [doi: 10.32614/
RJ-2017-009]

15. Hyndman RJ, Khandakar Y. Automatic time series forecasting: the forecast package for R. J Stat Soft. 2008;27(3):1-22.
[doi: 10.18637/jss.v027.i03]

16. Kowarik A, Templ M. Imputation with the R package VIM. J Stat Soft. 2016;74(7):1-16. [doi: 10.18637/jss.v074.i07]
17. Kim KH, Kim KJ. Missing-data handling methods for lifelogs-based wellness index estimation: comparative analysis

with panel data. JMIR Med Inform. Dec 17, 2020;8(12):e20597. [doi: 10.2196/20597] [Medline: 33331831]

JMIR PUBLIC HEALTH AND SURVEILLANCE Pham et al

https://publichealth.jmir.org/2024/1/e53719 JMIR Public Health Surveill 2024 | vol. 10 | e53719 | p. 10
(page number not for citation purposes)

https://jmir.org/api/download?alt_name=publichealth_v10i1e53719_app1.docx
https://jmir.org/api/download?alt_name=publichealth_v10i1e53719_app1.docx
https://jmir.org/api/download?alt_name=publichealth_v10i1e53719_app2.docx
https://jmir.org/api/download?alt_name=publichealth_v10i1e53719_app2.docx
https://jmir.org/api/download?alt_name=publichealth_v10i1e53719_app3.docx
https://jmir.org/api/download?alt_name=publichealth_v10i1e53719_app3.docx
http://www.ncbi.nlm.nih.gov/books/NBK11770/
https://doi.org/10.2196/37887
http://www.ncbi.nlm.nih.gov/pubmed/36083618
https://doi.org/10.2196/38037
http://www.ncbi.nlm.nih.gov/pubmed/36350701
https://doi.org/10.1186/s13167-015-0028-0
http://www.ncbi.nlm.nih.gov/pubmed/25829972
https://doi.org/10.1136/bmj.b2393
http://www.ncbi.nlm.nih.gov/pubmed/19564179
https://doi.org/10.4097/kjae.2013.64.5.402
https://doi.org/10.4097/kjae.2013.64.5.402
http://www.ncbi.nlm.nih.gov/pubmed/23741561
https://doi.org/10.1371/journal.pcbi.1008994
http://www.ncbi.nlm.nih.gov/pubmed/34138845
https://doi.org/10.1186/s12963-021-00274-z
http://www.ncbi.nlm.nih.gov/pubmed/34736462
https://doi.org/10.1016/j.artmed.2023.102587
http://www.ncbi.nlm.nih.gov/pubmed/37316097
https://doi.org/10.1017/S0950268823001048
http://www.ncbi.nlm.nih.gov/pubmed/37401482
https://doi.org/10.1109/ACCESS.2019.2891360
https://doi.org/10.3389/fevo.2021.669477
https://doi.org/10.18637/jss.v014.i06
https://doi.org/10.32614/RJ-2017-009
https://doi.org/10.32614/RJ-2017-009
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.18637/jss.v074.i07
https://doi.org/10.2196/20597
http://www.ncbi.nlm.nih.gov/pubmed/33331831
https://publichealth.jmir.org/2024/1/e53719


18. Ghanad Poor N, West NC, Sreepada RS, Murthy S, Görges M. An artificial neural network–based pediatric mortality
risk score: development and performance evaluation using data from a large North American registry. JMIR Med
Inform. Aug 31, 2021;9(8):e24079. [doi: 10.2196/24079] [Medline: 34463636]

19. Turicchi J, O’Driscoll R, Finlayson G, et al. Data imputation and body weight variability calculation using linear and
nonlinear methods in data collected from digital smart scales: simulation and validation study. JMIR Mhealth Uhealth.
Sep 11, 2020;8(9):e17977. [doi: 10.2196/17977] [Medline: 32915155]

20. Goldberg SB, Bolt DM, Davidson RJ. Data missing not at random in mobile health research: assessment of the problem
and a case for sensitivity analyses. J Med Internet Res. Jun 15, 2021;23(6):e26749. [doi: 10.2196/26749] [Medline:
34128810]

21. Jiang L, Gu J, Zhang X, Hua L, Cai Y. Multi-type missing imputation of time-series power equipment monitoring data
based on moving average filter-asymmetric denoising autoencoder. Sensors (Basel). Dec 8, 2023;23(24):9697. [doi: 10.
3390/s23249697] [Medline: 38139543]

22. Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. Jun 2002;7(2):147-177.
[Medline: 12090408]

23. Jamshidian M, Mata M. Chapter 2: advances in analysis of mean and covariance structure when data are incomplete. In:
Lee SK, editor. Handbook of Latent Variable and Related Models. North Holland; 2007:21-44. [doi: 10.1016/S1871-
0301(06)01002-X]

24. Thanhph58/Handing-missing-data. GitHub. URL: https://github.com/Thanhph58/Handing-missing-data [Accessed
2024-08-06]

Abbreviations
ACB: absolute crude bias
APC: absolute percentage change
ARIMA: autoregressive integrated moving average
CCC: COVID-19 containment cycle
CIR: COVID-19 incidence rate
KNN: K-nearest neighbor
MLE: maximum likelihood estimation
RMSE: root mean square error

Edited by Amaryllis Mavragani; peer-reviewed by Ju-Hyung Kim, Mehdi Jabbari Nooghabi, Sachi Nandan Mohanty;
submitted 17.10.2023; final revised version received 05.06.2024; accepted 12.06.2024; published 20.08.2024

Please cite as:
Pham HT, Do T, Baek J, Nguyen CK, Pham QT, Nguyen HL, Goldberg R, Pham QL, Giang LM
Handling Missing Data in COVID-19 Incidence Estimation: Secondary Data Analysis
JMIR Public Health Surveill 2024;10:e53719
URL: https://publichealth.jmir.org/2024/1/e53719
doi: 10.2196/53719

© Hai-Thanh Pham, Toan Do, Jonggyu Baek, Cong-Khanh Nguyen, Quang-Thai Pham, Hoa L Nguyen, Robert Goldberg,
Quang Loc Pham, Le Minh Giang. Originally published in JMIR Public Health and Surveillance (https://publichealth.jmir.org),
20.08.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic
information, a link to the original publication on https://publichealth.jmir.org, as well as this copyright and license information
must be included.

JMIR PUBLIC HEALTH AND SURVEILLANCE Pham et al

https://publichealth.jmir.org/2024/1/e53719 JMIR Public Health Surveill 2024 | vol. 10 | e53719 | p. 11
(page number not for citation purposes)

https://doi.org/10.2196/24079
http://www.ncbi.nlm.nih.gov/pubmed/34463636
https://doi.org/10.2196/17977
http://www.ncbi.nlm.nih.gov/pubmed/32915155
https://doi.org/10.2196/26749
http://www.ncbi.nlm.nih.gov/pubmed/34128810
https://doi.org/10.3390/s23249697
https://doi.org/10.3390/s23249697
http://www.ncbi.nlm.nih.gov/pubmed/38139543
http://www.ncbi.nlm.nih.gov/pubmed/12090408
https://doi.org/10.1016/S1871-0301(06)01002-X
https://doi.org/10.1016/S1871-0301(06)01002-X
https://github.com/Thanhph58/Handing-missing-data
https://publichealth.jmir.org/2024/1/e53719
https://doi.org/10.2196/53719
https://publichealth.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://publichealth.jmir.org
https://publichealth.jmir.org/2024/1/e53719

	Handling Missing Data in COVID-19 Incidence Estimation: Secondary Data Analysis
	Introduction
	Methods
	Study Context and Data Source
	Overview
	Step 1: Separating by Period
	Step 2: Generating Simulated Data Sets
	Step 3: Handling the Missing Data
	Step 4: Estimating the Effectiveness
	Ethical Considerations

	Results
	Zero COVID-19 Period
	Transition Period
	New Normal Period

	Discussion
	Principal Results
	Comparisons With Prior Work
	Study Strengths and Limitations
	Conclusions



