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Abstract

Background: Postacute sequelae of COVID-19 (PASC), also known as long COVID, is a broad grouping of a range of long-term
symptoms following acute COVID-19. These symptoms can occur across a range of biological systems, leading to challenges in
determining risk factors for PASC and the causal etiology of this disorder. An understanding of characteristics that are predictive
of future PASC is valuable, as this can inform the identification of high-risk individuals and future preventative efforts. However,
current knowledge regarding PASC risk factors is limited.

Objective: Using a sample of 55,257 patients (at a ratio of 1 patient with PASC to 4 matched controls) from the National COVID
Cohort Collaborative, as part of the National Institutes of Health Long COVID Computational Challenge, we sought to predict
individual risk of PASC diagnosis from a curated set of clinically informed covariates. The National COVID Cohort Collaborative
includes electronic health records for more than 22 million patients from 84 sites across the United States.

Methods: We predicted individual PASC status, given covariate information, using Super Learner (an ensemble machine
learning algorithm also known as stacking) to learn the optimal combination of gradient boosting and random forest algorithms
to maximize the area under the receiver operator curve. We evaluated variable importance (Shapley values) based on 3 levels:
individual features, temporal windows, and clinical domains. We externally validated these findings using a holdout set of
randomly selected study sites.

Results: We were able to predict individual PASC diagnoses accurately (area under the curve 0.874). The individual features
of the length of observation period, number of health care interactions during acute COVID-19, and viral lower respiratory
infection were the most predictive of subsequent PASC diagnosis. Temporally, we found that baseline characteristics were the
most predictive of future PASC diagnosis, compared with characteristics immediately before, during, or after acute COVID-19.
We found that the clinical domains of health care use, demographics or anthropometry, and respiratory factors were the most
predictive of PASC diagnosis.

Conclusions: The methods outlined here provide an open-source, applied example of using Super Learner to predict PASC
status using electronic health record data, which can be replicated across a variety of settings. Across individual predictors and
clinical domains, we consistently found that factors related to health care use were the strongest predictors of PASC diagnosis.
This indicates that any observational studies using PASC diagnosis as a primary outcome must rigorously account for heterogeneous
health care use. Our temporal findings support the hypothesis that clinicians may be able to accurately assess the risk of PASC
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in patients before acute COVID-19 diagnosis, which could improve early interventions and preventive care. Our findings also
highlight the importance of respiratory characteristics in PASC risk assessment.
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Introduction

As the mortality rate associated with acute COVID-19 incidence
wanes, investigators have shifted focus to determining its
longer-term, chronic impacts [1]. Postacute sequelae of
COVID-19 (PASC), also known as long COVID, is a loosely
categorized consequence of acute infection that is related to
dysfunction across multiple biological systems [2]. Much
remains unknown about PASC, leaving individuals uncertain
regarding their risk for PASC and what factors may contribute
to this risk. Prediction of individual risk for PASC diagnosis
can allow us to identify what populations are at the greatest risk
for PASC, and interpretation of these predictors may generate
hypotheses regarding underlying drivers of PASC incidence.

Electronic health record (EHR) databases, such as the National
COVID Cohort Collaborative (N3C), provide an important tool
for predicting, evaluating, and understanding PASC [3,4]. There
is a broad range of PASC symptoms, diagnostic criteria, and
hypothesized causal mechanisms, which has made it difficult
for investigators to build generalizable predictions (Multimedia
Appendix 1) [5-7]. Given this heterogeneity, multisite
evaluations including large sample sizes and high-dimensional
covariate information can provide opportunities to build models
that can accurately predict PASC risk.

Due to the broad range of factors associated with PASC, the
high dimensionality of the large EHR databases, and the
unknown determinants of PASC, modeling methods for
predicting PASC must be highly flexible. Super Learner (SL)
is a flexible, ensemble (stacked) machine learning algorithm
that uses cross-validation to learn the optimal weighted
combination of a specified set of algorithms [8,9]. The SL is
grounded in statistical optimality theory that guarantees it will
perform at least as well as the best-performing algorithm
included in the library for large sample sizes. Thus, a rich library
of learners, with a sufficient sample size, will ensure optimal
performance. The SL can be specified to maximize any
performance metric, such as mean squared error [9]. Given the
large sample size of high-dimensional data in EHR databases,
SL is well positioned to predict individual risk of PASC
diagnosis in this setting.

Here, we used the SL to predict PASC diagnosis in patients
with COVID-19, given a diverse set of features curated from
the EHR. We also investigated the importance of features for
predicting PASC by assessing the importance of each individual
feature, by assessing groups of features based on temporality
(baseline, pre–COVID-19, acute COVID, and post–COVID-19
features) and by hypothesized clinical domains of PASC.

Methods

Sample
The Long COVID Computational Challenge (DUR
RP-5A73BA) sample population was selected from the N3C
data set, a national, open data set that has been described
previously [3,4]. N3C has created a centralized repository where
investigators can access and analyze data from more than 8
million patients with COVID-19, including 32 billion rows of
data from 84 sites across the United States while maintaining
patient privacy [10,11]. When a patient at a participating site is
diagnosed with COVID-19, they are included in the N3C
database, along with 2 sociodemographically matched controls.
N3C defines acute COVID-19 diagnosis as either (1) at least 1
laboratory diagnostic positive result (either PCR or antigen) or
(2) a provider diagnosis (International Classification of
Diseases, 10th Revision, Clinical Modification [ICD-10-CM]
code U07.1). We defined the index COVID-19 date as the
earliest of these 2 dates [12,13]. For each sampled patient, N3C
includes EHRs from January 1, 2018, to the present. These
records include extensive information related to comorbidities,
medications, medical procedures, demographic information,
anthropometry, and other information collected during health
care interactions.

The Long COVID Computational Challenge sample included
cases of patients diagnosed with PASC (International
Classification of Diseases [ICD] code U09.9) and matched
controls with a documented COVID-19 diagnosis who had at
least 1 health care interaction more than 4 weeks after their
initial COVID-19 diagnosis date. ICD code U09.9, which was
established on October 1, 2022, indicates a diagnosis for
reimbursement purposes and enables linkage with COVID-19
diagnosis for patients experiencing postacute sequelae of
infection [14]. Controls were selected at a 1:4 (case:control)
ratio and were matched based on the distribution of health care
interactions before a COVID-19 diagnosis. The primary outcome
of interest was PASC diagnosis via ICD code U09.9. To evaluate
our model’s discriminative ability, we used a 10% holdout test
set based on study site (contributing data partner). In comparison
to choosing a holdout test set randomly, nonrandom selection
by factors such as study site improves the external validity of
our model, as it evaluates the model’s predictive performance
using data from a separate source [15]. We included data from
the beginning of the N3C observation period (January 1, 2018)
to 28 days following acute COVID-19.
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Feature Selection

Overview
Our set of features for predicting PASC included those
previously described in the literature [3] and additional features
related to subject-matter knowledge and patterns of missingness.
We extracted 304 features from N3C data. After indexing across
4 time periods (detailed below) and transforming features into
formats amenable to machine learning analysis, our sample
included 1339 features (see Multimedia Appendix 2). Details
regarding feature selection and processing can be accessed via
GitHub [16]. For continuous features, we included the minimum,
maximum, and mean values for each measurement in each
temporal window. For binary features, we either included an
indicator (when repetition was not relevant) or a count (when
repetition was relevant) over each time period, and we recoded
categorical variables as indicators.

Temporal Windows
We divided each participant’s records into 4 temporal windows:
baseline, which consisted of all records occurring a minimum
of 37 days before the COVID-19 index date (t – 37, where t
represents the COVID-19 index date), and all time-invariant
factors (such as sex, ethnicity, etc); pre–COVID-19,
observations falling between 37 and 7 days before the index
date (t – 37 to t – 7); acute COVID-19, observations falling 7
days before 14 days after to the index date (t – 7 to t + 14); and
post–COVID-19, records from 14 to 28 days after the index
date (t + 14 to t + 28). The acute COVID-19 window begins 7
days before the reported infection date, to conservatively include
early COVID-19 symptoms before official diagnosis.

Features Described in the Literature
We extracted and transformed key features that were identified
in prior research using N3C data as risk factors for PASC [3].
These features included 199 previously described factors related
to medical history, diagnoses, demographics, and comorbidities
[3].

Temporality
To account for differences in follow-up, we included as an
additional factor a continuous variable for follow-up time,
defined as the number of days between the COVID-19 index
date and the most recent observation. To account for temporal
trends of COVID-19 (such as seasonality and dominant variant),
we included categorical (ordinal) covariates for the season and
months since the first observed COVID-19 index date.

Missing Data
To avoid dropping any observations, we mean-imputed missing
observations for continuous variables and added indicator
variables for imputed values [17]. By using flexible ensemble
machine learning, which allows for interactions between
imputed variables and the missingness indicators, we allow the
patterns of missingness to be potential predictors of PASC.
Furthermore, as SL predicts the outcome based on a
semiparametric function of all predictor variables, including
missingness, this workflow implicitly imputes missing variables
using the candidate algorithms in the SL. Therefore, further
imputation of missing predictor values is not necessary.

COVID-19 Positivity
We added several measures of COVID-19 severity and persistent
SARS-CoV-2 viral load, which are associated with PASC
incidence [18]. We imported measures of COVID-19 severity
as well as 15 measures of acute COVID-19 from laboratory
measurements, which provided insights into persistent
SARS-CoV-2 viral load. We assessed the duration of COVID-19
viral positivity separately for each laboratory measure of
COVID-19 and each temporal window. For participants who
had both a positive and negative value of a given test during a
temporal window, we took the midpoint between the last
positive test and the first negative test as being the end point of
their positivity. For individuals who had a positive test but no
subsequent negative test within that temporal window, we
determined their end point to be their final positive test plus 3
days. We included separate missingness indicators in each
temporal window for each test, for a positive value for each
test, and for a negative value following a positive value to
indicate an imputed positivity end point. We included the
calendar date of index infection to account for the COVID-19
viral strain, given our lack of variant data.

Additional Features
We incorporated the laboratory measurements related to
anthropometry, nutrition, COVID-19 positivity, inflammation,
tissue damage due to viral infection, autoantibodies and
immunity, cardiovascular health, and microvascular disease,
which are potential predictors of PASC [18]. We also extracted
information about smoking status, alcohol use, marital status,
and use of insulin or anticoagulant from the observation table
as baseline characteristics of individuals. We included the
number of times a person has been exposed to respiratory
devices (eg, supplemental oxygen or ventilator) in each of the
4 windows from the device table. We extracted covariates
related to COVID-19 severity, vaccination history,
demographics, medical history, and previous diagnoses from
before and during acute COVID-19.

Prediction Using Ensemble Machine Learning
We used the SL, an ensemble machine learning method, also
known as stacking, to learn the optimally weighted combination
of candidate algorithms for maximizing the area under the curve
(AUC). We reprogrammed the SL in Python to capitalize on
the resources (eg, PySpark parallelization) available in the N3C
Data Enclave (National Center for Advancing Translational
Sciences; NCATS), and this software is available to external
researchers [16]. We used an ensemble of 4 learners (a mix of
parametric models and machine learning models): (1) logistic
regression, (2) L1 penalized logistic regression (with penalty
parameter lambda=0.01), (3) gradient boosting (with
n_estimators=200, max_depth=5, and learning_rate=0.1), and
(4) random forest (with max_depth=5 and num_trees=20). The
original candidate learner library consisted of a large set of
candidate learners with different combinations of
hyperparameters (eg, gradient boosting with n_estimators=[.200,
150, 100, 50], max_depth=[.3, 5, 7], and learning_rate=[.0.05,
0.1, 0.2]). SL is based on the Oracle Inequality, and there is
strong theoretical justification for its use of k-fold
cross-validation [19]. Modifications to this approach, such as
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repeated cross-validation, may provide a benefit in finite sample
situations, but given the large sample size available here in N3C,
these modifications would have little impact on performance
in this context [8,9,19].

To tune the hyperparameters for the candidate algorithms, first,
we randomly split the full data into a training set (with 0.9 of
the sample) and a test set (0.1 of the sample). Then, we
prespecified a grid of candidate values for hyperparameters
including a maximum number of iterations, learning rate,
maximum depth of trees, and feature subset strategy. Then, we
fit the algorithms with these candidate values on the training
set and collected the loss on the test set. Finally, for each
hyperparameter of each algorithm, we plotted the training and
testing errors against the candidate values and select the ones
where the testing errors stop decreasing. We then equipped the
algorithms with the best hyperparameter candidate and include
them in the SL library. Without computational constraints, one
can treat each algorithm with unique hyperparameter values as
separate candidate learners in the library, which can incorporate
automated hyperparameter tuning as part of the SL process. In
this project, we separated the tuning part from the model fitting
process due to the computational constraints of the N3C enclave.

Prediction Performance
One important decision for optimizing an algorithm is to choose
the metric that will be used to evaluate the fit and optimize the
weighting of the algorithms in the ensemble. We used an
approach developed specifically for maximizing the AUC [20].
The SL was specified such that it learned the combination of
algorithms, including variations of gradient boosting (extreme
gradient boosting) and random forest, that maximized the AUC
[20]. Specifically, we used an AUC maximizing meta-learner
with Powell optimization to learn the convex combination of
these 4 candidate algorithms [20]. The SL was implemented
with a V-fold or k-fold cross-validation scheme with 10 folds.
To evaluate model performance, we reported the AUC, accuracy,
precision, recall, F1-score, and Brier score, along with associated
95% CIs, for our ensemble algorithm [21].

Variable Importance
For the sake of computational efficiency, we worked with the
discrete SL selector (the single candidate learner in the library
with the highest cross-validated AUC) instead of the entire
ensemble SL. In this case, the gradient-boosting learner was
the candidate learner with the highest cross-validated AUC. As
the gradient-boosting algorithm carried the vast majority (75%)
of the weight of the ensemble SL, the variable importance of
this algorithm is an appropriate summary of the overall
ensemble. We used a general approach (for any machine
learning algorithm) known as Shapley values [22]. We generated

these values within 3 groupings of predictors for ease of
interpretability: individual features (eg, cough diagnosis during
acute COVID-19 window), the temporal window when
measurements were made relative to acute COVID-19 (eg,
pre–COVID-19 window), and specific clinical domains (eg,
respiratory pathway). At the individual level, we assessed the
importance of each variable (indexed across each of the 4
temporal windows) in predicting PASC. At the temporal level,
we assessed the relative importance of each of the 4 temporal
windows (baseline, pre–COVID-19, acute COVID-19, and
post–COVID-19) in predicting PASC status. At the level of the
clinical domain, we grouped variables based on the following
hypothesized mechanistic pathways of PASC: (1) baseline
demographics and anthropometry; (2) health care use; (3)
respiratory system; (4) antimicrobials and infectious disease;
(5) cardiovascular system; (6) female hormones and pregnancy;
(7) mental health and well-being; (8) pain, skin sensitivity, and
headaches; (9) digestive system; (10) inflammation,
autoimmune, and autoantibodies; (11) renal function, liver
function, and diabetes; (12) nutrition; (13) COVID-19 positivity;
and (14) uncategorized disease, nervous system, injury, mobility,
and age-related factors [18]. For temporal and clinical domain
groupings, we assessed the mean Shapley value of the 10 most
predictive features in each group. A full list of our included
covariates along with their grouping by temporality and clinical
domain is included in Multimedia Appendix 2.

Ethical Considerations
The N3C data transfer to NCATS is performed under a Johns
Hopkins University Reliance Protocol (IRB00249128) or
individual site agreements with the National Institutes of Health
(NIH). The N3C Data Enclave is managed under the authority
of the NIH; information can be found online [23]. This study
was approved by the University of California Berkeley Office
for Protection of Human Subjects (2022-01-14980). N3C
received a waiver of consent from the NIH institutional review
board and allows the secondary analysis of these data without
additional consent. NCATS ensures that the privacy of patient
data is maintained by managing access to the N3C data enclave,
the use of patient data in the N3C Enclave, and the publication
of inferences drawn from these data. Patients were not
compensated for this research.

Results

Overview
The data set included 57,672 patients with 9031 cases; 46,226
controls; and 2415 patients excluded due to having a PASC
diagnosis within 4 weeks of an acute COVID-19 diagnosis. This
yielded a final analytic sample of 55,257 participants (Table 1).
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Table 1. Characteristics of the sample population. The sample population was drawn from electronic health record data of patients included in the
National COVID Cohort Collaborative during the COVID-19 pandemic (N=55,257).

ValuesCharacteristics

Sex, n (%)

32,534 (58.88)Female

22,675 (41.04)Male

48 (0.09)Unknown

Race, n (%)

1303 (2.36)Asian or Pacific Islander

11,481 (20.78)Black or African American

32,411 (58.66)White

1087 (1.97)Other

8975 (16.24)Unknown

Ethnicity, n (%)

43,282 (78.33)Not Hispanic or Latino

5363 (9.71)Hispanic or Latino

6612 (11.97)Unknown

Age (years)

6393 (11.57)<18, n (%)

5021 (9.09)18-25, n (%)

15,660 (28.34)26-45, n (%)

15,291 (27.67)46-65, n (%)

8153 (14.75)≥66, n (%)

43.33 (20.71)Mean (SD)

Pre–COVID-19 comorbidities, n (%)

5623 (10.18)Diabetes

2835 (5.13)Chronic kidney disease

2396 (4.34)Congestive heart failure

696 (1.26)Chronic pulmonary disease

COVID-19 severity type, n (%)

47,351 (85.69)Mild (no emergency visit)

3159 (5.72)Mild (with emergency visit)

3914 (7.08)Moderate (with hospitalization)

720 (1.30)Severe (with extracorporeal membrane oxygenation or invasive mechanical ventilation)

104 (0.19)Death following infection

BMI, n (%)

4556 (8.25)Obese

2798 (5.06)Severely obese

Predictive Performance
Our ensemble machine learning algorithm achieved an AUC of
0.874 (95% CI 0.864-0.884), accuracy of 0.772 (95% CI
0.761-0.783), precision of 0.467 (95% CI 0.446-0.489), recall
of 0.806 (95% CI 0.784-0.828), F1-score of 0.591 (95% CI

0.571-0.661), and Brier score of 0.110 (95% CI 0.104-0.116;
see Table 2). We report the calibration metrics for each
candidate algorithm (logistic regression, Lasso, gradient
boosting, and random forest) and the ensemble algorithm in
Figure 1. All models slightly underestimate the sample patient
risk of PASC diagnosis over this study’s period.
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Table 2. Performance of the ensemble Super Learner in the prediction of postacute sequelae of COVID-19 diagnosis. Model created using electronic
health record data from a sample of patients included in the National COVID Cohort Collaborative during the COVID-19 pandemic.

Estimate (95% CI)Metric

0.874 (0.864-0.884)Area under the receiver operator curve

0.772 (0.761-0.783)Accuracy

0.467 (0.446-0.489)Precision

0.806 (0.784-0.828)Recall

0.591 (0.571-0.661)F1-score

0.110 (0.104-0.116)Brier score

Figure 1. Calibration of candidate learners and the ensemble algorithm in PASC diagnosis. Model created using electronic health record data from a
sample of patients included in the National COVID Cohort Collaborative during the COVID-19 pandemic. PASC: postacute sequelae of COVID-19.
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Variable Importance

Individual Predictors
We found that the strongest individual predictors (absolute
Shapley value) of PASC diagnosis were observation period
length (0.075), the number of health care interactions associated
with a diagnosis during the acute COVID-19 period (0.045),
viral lower respiratory infection during the acute COVID-19
period (0.040), age (0.038), ethnicity unknown (0.037), total
number of health care interactions associated with a diagnosis
during the post–COVID-19 period (0.035), systemic

corticosteroid use before acute COVID-19 (0.025), index acute
COVID-19 date (0.024), state missing (0.019), state Utah
(0.016), state Ohio (0.016), acute respiratory disease during the
acute COVID-19 period (0.013), creatinine concentration in
blood (0.012), never smoker (0.011), total health care
interactions associated with a diagnosis during the baseline
period (0.011), cough during the acute COVID-19 period
(0.011), cough during the post–COVID-19 period (0.011), state
Colorado (0.010), creatinine volume (0.010), and SARS-CoV-2
RNA presence (0.010; Table 3).

Table 3. Most important model features associated with postacute sequelae of COVID-19 ranked by absolute Shapley value. Model created using
electronic health record data from a sample of patients included in the National COVID Cohort Collaborative during the COVID-19 pandemic. For
additional information regarding covariates, see Multimedia Appendix 2.

Absolute Shapley value, meanFeature

0.075Observation period length

0.045Number of health care interactions during the acute COVID-19 period

0.040Viral lower respiratory infection during the acute COVID-19 period

0.038Age (years)

0.037Ethnicity unknown

0.035Total number of health care interactions associated with a diagnosis during the post–COVID-19 period

0.025Systemic corticosteroid use before acute COVID-19

0.024Index acute COVID-19 date

0.019State missing

0.016State Utah

0.016State Ohio

0.013Acute respiratory disease during the acute COVID-19 period

0.012Creatinine concentration in blood

0.011Never smoker

0.011Total health care interactions associated with a diagnosis during the baseline period

0.011Cough during the acute COVID-19 period

0.011Cough during the post–COVID-19 period

0.010State Colorado

0.010Creatinine volume

0.010SARS-CoV-2 RNA presence

Temporal windows
Baseline and time-invariant characteristics were the strongest
predictors of PASC (mean 0.026, SD 0.020), followed by

characteristics during the acute COVID-19 period (mean 0.016,
SD 0.015), the post–COVID-19 period (mean 0.008, SD 0.010),
and the pre–COVID-19 period (mean 0.006, SD 0.003; Table
4).

Table 4. Variable importance of features associated with postacute sequelae of COVID-19 diagnosis by the temporal window. Ranked by the mean
absolute Shapley value of the top 10 features in each category. Model created using electronic health record data from a sample of patients included in
the National COVID Cohort Collaborative during the COVID-19 pandemic. The temporal windows included baseline (before t – 37), pre–COVID-19
(t – 37 to t – 7), acute COVID-19 (t – 7 to t + 14), and post–COVID-19 (t + 14 to t + 28) periods, with t being the index COVID-19 date.

Absolute Shapley value of top 10 features, mean (SD)Temporal window

0.026 (0.020)Baseline

0.016 (0.015)Acute COVID-19

0.008 (0.010)Post–COVID-19

0.006 (0.003)Pre–COVID-19
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Clinical Domain
We found that health care interactions and procedures included
the strongest predictors (mean 0.021, SD 0.024), followed by
demographics and anthropometry (mean 0.016, SD 0.012),
respiratory factors (mean 0.011, SD 0.011), renal and liver
factors (mean 0.006, SD 0.004), cardiovascular factors (mean
0.005, SD 0.002), markers of COVID-19 positivity (mean 0.004,

SD 0.003), inflammation markers (mean 0.003, SD 0.008),
mental health factors (mean 0.002, SD 0.002), markers of pain
(mean 0.002, SD 0.001), markers of nutrition (mean 0.001, SD
0.001), markers of general health and aging (mean 0.001, SD
0.000), factors related to female health and hormones (mean
0.001, SD 0.001), digestive health (mean 0.001, SD 0.001), and
markers of general infectious disease (mean 0.001, SD 0.000;
Table 5).

Table 5. Variable importance of features associated with postacute sequelae of COVID-19 diagnosis by the clinical domain. Ranked by the mean
absolute Shapley value of the top 10 features (ranked by the same metric) in each category. Model created using electronic health record data from a
sample of patients included in the National COVID Cohort Collaborative during the COVID-19 pandemic. For additional information regarding
covariates, see Multimedia Appendix 2.

Absolute Shapley value of top 10 features, mean (SD)Clinical domain

0.021 (0.024)Health care interactions and procedures

0.016 (0.012)Demographics and anthropometry

0.011 (0.011)Respiratory factors

0.006 (0.004)Renal and liver factors

0.005 (0.002)Cardiovascular factors

0.004 (0.003)Markers of COVID-19 positivity

0.003 (0.008)Inflammation markers

0.002 (0.002)Mental health factors

0.002 (0.001)Markers of pain

0.001 (0.001)Markers of nutrition

0.001 (0.000)Markers of general health and aging

0.001 (0.001)Factors related to female health and hormones

0.001 (0.001)Digestive factors

0.001 (0.000)Markers of general infectious disease

Discussion

Principal Findings

Overview
These results provide strong support for (1) the choice of an
ensemble learning approach, (2) the specific learners used, (3)
how the missing data were handled, and (4) the choice of
optimization criteria (maximizing the AUC). These components
are further supported by this model being awarded third place
in the NIH Long COVID Computational Challenge (Multimedia
Appendix 3 [2,3,8,18,20,22,24-29]). The findings of this study
primarily serve to generate hypotheses for future investigation,
although this ensemble model may provide utility in PASC risk
assessment for patients following acute COVID-19 (as
predictions were generated using data 4 weeks following acute
infection).

Individual Predictors
We found that the individual predictors most associated with
PASC diagnosis were related to health care use rate, such as
observation period length and number of health care visits.
These factors may not be causal drivers of PASC incidence and
may, rather, indicate an incident diagnosis of PASC being more
common among those already using medical care, which is

consistent with the findings of Pfaff et al [3]. On the other hand,
we found that lower tract viral respiratory infection during acute
COVID-19 was highly predictive of PASC diagnosis. Previous
studies have also linked lower respiratory infection during acute
COVID-19 with negative outcomes. A 2022 study found that
patients with COVID-19 with lower respiratory symptoms
experienced worse health outcomes, including supplemental
oxygen, mechanical ventilation, and death, compared to patients
with upper respiratory symptoms or no respiratory symptoms
[30]. Lower respiratory infection during acute COVID-19 may
be a causal pathway by which acute COVID-19 leads to PASC,
although future studies should apply a causal inference
framework to evaluate this hypothesis.

Temporal Windows
We found that factors assessed during the baseline period (more
than 37 days before COVID-19 diagnosis) were the strongest
predictors of PASC diagnosis compared with factors
immediately before, during, or after acute COVID-19. This
suggests that clinicians may be able to effectively identify who
is at risk for PASC based on baseline characteristics, such as
preexisting conditions and sociodemographic information.
Efforts to develop risk profiles based on these factors should
be anchored within a social determinants of health approach,
to reduce health inequity rather than reinforce systemic
inequality [31]. However, it should be noted that baseline
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characteristics included the greatest interval of time and included
time-variant factors, such as race. Future analyses should expand
on this finding to evaluate the feasibility of predicting individual
PASC incidence, rather than diagnosis (which may be subject
to bias), using baseline characteristics alone. Additional
information regarding this relationship could identify patients
at risk for PASC before acute COVID-19 and could inform
early interventions to prevent PASC.

Clinical Domain
These results are consistent with published literature and
highlight the importance of respiratory features (eg, preexisting
asthma) as important factors in predicting who may develop
PASC [2,3]. Respiratory factors that may influence individual
susceptibility to COVID-19 appear to be important features of
acute COVID-19 severity and are key symptoms of PASC
[2,3,25]. Therefore, future studies should seek to parse the
contributions of respiratory symptoms to PASC through the
pathways of baseline susceptibility to COVID-19 versus
phenotyping of severe COVID-19 to improve our understanding
of respiratory features as a risk factor for PASC. Despite the
range of PASC phenotypes, these findings are consistent with
respiratory symptoms (eg, dyspnea and cough) being the most
commonly reported PASC symptoms [18,25]. Other clinical
domains, such as cardiovascular factors, have similar roles as
both markers of susceptibility and severity of COVID-19 and
should also be explored further in future studies.

Limitations
Our goal for this analysis was to maximize our model’s
discriminative ability, rather than to make causal inferences
regarding exposure-outcome relationships; therefore, we
included all predictors before 4 weeks post–COVID-19
(censored window). First, the inclusion of pre–COVID-19, acute
COVID, and post–COVID-19 factors complicate inference
regarding whether predictive features (eg, respiratory factors)
reflect vulnerability to acute COVID-19, COVID-19 symptoms,
or early PASC symptoms. Second, this analytic sample was
matched 1:4 (PASC:non-PASC), with matching based on
pre–COVID-19 health care interaction rate, and this matched
sample was drawn from N3C, which is a matched sample of
patients with COVID-19 and healthy controls. Therefore, this
sample may not be representative of a broader population. We
note that, for future use of these data, if the prevalence of PASC
in the target population is known, and the matching identifier

is available, there are methods to calibrate the results to the
actual population. Given that was not the case, one might
generate results that need to be recalibrated to the target
population of interest. Third, we found measures of health care
use to be strong predictors of PASC diagnosis. It is plausible
that health care use may be associated with increased diagnoses
of various medical conditions in general, rather than true PASC
incidence. However, increased health care use may also be an
effect of early PASC symptoms. Finally, as is common with
EHR data, N3C data are heterogeneous concerning certain
outcomes, including biomarker data and PASC diagnosis. An
SL-based approach seeks to account for this heterogeneity by
modeling underlying patterns of missingness, but residual bias
and confounding remain plausible. Overall, this approach
enables investigators to make accurate predictions with minimal
assumptions despite these data limitations. To improve upon
the interpretation and clinical applications of these findings,
future studies should apply a causal inference approach to
evaluate the potential causal impact of individual predictors on
the risk of PASC. These findings are temporally dependent, as
the SARS-CoV-2 virus and the COVID-19 pandemic continue
to evolve. Although our model explicitly incorporates temporal
information, such as the date of infection, future analyses should
retrain this publicly available model to optimize this prediction
framework for contemporary viral dynamics (eg, geospatial
disease trends) [16].

Conclusions
These findings provide support for the use of an
AUC-maximizing SL approach to predict PASC status using
N3C data, which may have utility across other binary outcomes
in EHR data. We found that baseline factors were most
predictive of PASC diagnosis, which may support future efforts
to identify high-risk individuals for preventive interventions or
monitoring. These findings highlight the importance of
respiratory symptoms, health care use, and age in predicting
PASC incidence. Although further investigation is needed, our
findings could support the referral of patients with COVID-19
with severe respiratory symptoms for subsequent PASC
monitoring. In future work, we plan to investigate predictive
performance when only baseline information is used as input
to classify PASC, as this provides a practical implementation
based on readily available clinical features that could identify
participants at risk of PASC before COVID-19 diagnosis.
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