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Abstract

Background: Multimorbidity is a significant public health concern, characterized by the coexistence and interaction of multiple
preexisting medical conditions. This complex condition has been associated with an increased risk of COVID-19. Individuals
with multimorbidity who contract COVID-19 often face a significant reduction in life expectancy. The postpandemic period has
also highlighted an increase in frailty, emphasizing the importance of integrating existing multimorbidity details into epidemiological
risk assessments. Managing clinical data that include medical histories presents significant challenges, particularly due to the
sparsity of data arising from the rarity of multimorbidity conditions. Also, the complex enumeration of combinatorial multimorbidity
features introduces challenges associated with combinatorial explosions.

Objective: This study aims to assess the severity of COVID-19 in individuals with multiple medical conditions, considering
their demographic characteristics such as age and sex. We propose an evolutionary machine learning model designed to handle
sparsity, analyzing preexisting multimorbidity profiles of patients hospitalized with COVID-19 based on their medical history.
Our objective is to identify the optimal set of multimorbidity feature combinations strongly associated with COVID-19 severity.
We also apply the Apriori algorithm to these evolutionarily derived predictive feature combinations to identify those with high
support.

Methods: We used data from 3 administrative sources in Piedmont, Italy, involving 12,793 individuals aged 45-74 years who
tested positive for COVID-19 between February and May 2020. From their 5-year pre–COVID-19 medical histories, we extracted
multimorbidity features, including drug prescriptions, disease diagnoses, sex, and age. Focusing on COVID-19 hospitalization,
we segmented the data into 4 cohorts based on age and sex. Addressing data imbalance through random resampling, we compared
various machine learning algorithms to identify the optimal classification model for our evolutionary approach. Using 5-fold
cross-validation, we evaluated each model’s performance. Our evolutionary algorithm, utilizing a deep learning classifier, generated
prediction-based fitness scores to pinpoint multimorbidity combinations associated with COVID-19 hospitalization risk. Eventually,
the Apriori algorithm was applied to identify frequent combinations with high support.

Results: We identified multimorbidity predictors associated with COVID-19 hospitalization, indicating more severe COVID-19
outcomes. Frequently occurring morbidity features in the final evolved combinations were age>53, R03BA (glucocorticoid
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inhalants), and N03AX (other antiepileptics) in cohort 1; A10BA (biguanide or metformin) and N02BE (anilides) in cohort 2;
N02AX (other opioids) and M04AA (preparations inhibiting uric acid production) in cohort 3; and G04CA (Alpha-adrenoreceptor
antagonists) in cohort 4.

Conclusions: When combined with other multimorbidity features, even less prevalent medical conditions show associations
with the outcome. This study provides insights beyond COVID-19, demonstrating how repurposed administrative data can be
adapted and contribute to enhanced risk assessment for vulnerable populations.

(JMIR Public Health Surveill 2024;10:e52353) doi: 10.2196/52353
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Introduction

Background
COVID-19, classified as a highly infectious disease, poses a
severe threat to vulnerable populations, making it a critical
public health concern and a significant global epidemiological
issue. The first Italian case of COVID-19 was diagnosed in the
Lombardy region on February 21, 2020. The virus quickly
spread across the country, leading to a nationwide lockdown
and overwhelming the health care system. Italy was among the
countries hardest hit by the COVID-19 pandemic, with
Piedmont, a region in the northwest, experiencing a high number
of cases during the first wave.

Multimorbidity refers to the presence of multiple coexisting
medical conditions in a patient, which interact with each other,
resulting in a complex and multidimensional health condition
[1]. At the population level, it has been established that
interactions between diseases can increase the severity of the
overall medical condition and complicate the treatment of other
diseases within the combination [2,3]. In people infected with
SARS-CoV-2, multimorbidity can increase the severity of the
infection [4,5]. Therefore, it is important to identify specific
disease combinations that could impact the severity of
COVID-19 in individuals with multimorbidity.

It is necessary to point out that having one or more of these
chronic health conditions does not guarantee severe COVID-19
development, but it does increase the risk. Different diseases
may affect COVID-19 outcomes differently. Therefore,
identifying specific disease combinations and studying
interactions between different chronic health conditions are
essential for understanding the severity of COVID-19 among
individuals with multimorbidity. This can help health care
professionals identify those at the highest risk of severe
complications and provide appropriate prevention, care, and
treatment.

Studying multimorbidity using traditional methods can be
labor-intensive, requiring the identification of high-dimensional
combinatorial features. Also, there is no universally accepted
list of medical conditions to define multimorbidity. To address
these challenges, efforts must focus on identifying
low-dimensional representations of multimorbidity features for
effective outcome prediction. High-order input features make

machine learning models more prone to overfitting, and
identifying meaningful high-order combinatorial features
requires extensive effort from experts with domain knowledge.

Contrary to misconceptions, the concept of multimorbidity
analysis in patients with COVID-19 is not outdated. Our study
introduces a cutting-edge tool designed to analyze the complex
interactions among diverse chronic health conditions and their
collective impact, which could be valuable in situations similar
to recent health crises.

Traditionally, research on multimorbidity has focused on
counting the total number of chronic conditions rather than
considering individual experiences and the effects of different
combinations of diseases [6]. Count-based measures of
multimorbidity have been utilized to predict emergency
hospitalizations [7,8]. Common combinations of medical
conditions have been documented to delineate patterns of
multimorbidity [9,10]. Previous studies have explored
multimorbidity combinations using methods such as latent class
analysis [11], cluster analysis [12], network analysis [13], factor
analysis [14], association rules, and tree-based analysis [13,15].

Rare features, such as diseases and drugs with low occurrence
rates in the data, can pose significant challenges for both
statistical and machine learning analyses. Their lower prevalence
in the data can result in sparsity, which may lead to poorer
predictions.

Some studies using machine learning to investigate
multimorbidity patterns tackled data set sparsity by strategies
such as removing sparsity-inducing features [16], consolidating
feature categories after one-hot encoding [17], or clustering rare
features [18]. However, while these methods can alleviate
sparsity, they may also result in the loss of important information
and impede the meaningful interpretation of multimorbidity
features [19].

Importance of the Proposed Method for
Multimorbidity Research
With the increasing prevalence of electronic health records and
other large data sets, there is a rising demand for efficient and
effective methods to analyze and comprehend multimorbidity.
By utilizing machine learning algorithms and other advanced
computational techniques, researchers can gain deeper insights
into the underlying mechanisms and risk factors associated with
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multimorbidity. This understanding can significantly inform
more effective prevention and treatment strategies.

An evolutionary algorithm coupled with deep learning–based
feature scoring represents a powerful approach for analyzing
multimorbidity data [20]. This method involves multiple steps
aimed at identifying the most relevant features for predicting
the target variable while minimizing the number of features
used.

Initially, the data set undergoes preprocessing by using a feature
binning approach to generate various subsets or bins of the
multimorbidity features. This step aims to reduce sparsity in
the data and facilitates more effective feature scoring.
Subsequently, deep learning is utilized to score the features
within each subset based on their relevance for predicting the
target variable. The result of this process is a feature score
assigned to each feature within every subset. Next, an
evolutionary algorithm is applied to select the optimal subset
of features based on their scores. The algorithm initiates by
generating a population of candidate feature subsets and
iteratively enhances this population through selection, crossover,
and mutation operations [21]. The fitness of each candidate
solution is assessed using a fitness function that integrates the
deep learning–based feature scores derived from each subset or
bin of features.

The output of the evolutionary algorithm is a subset of features
that are most relevant for predicting the target variable. These
features can be utilized for further analysis, such as constructing
a predictive model or uncovering the underlying associations
of multimorbidity patterns. In summary, using an evolutionary
algorithm with deep learning–based feature scoring offers a
robust approach to analyzing multimorbidity data, pinpointing
the most influential features for predicting the target variable.
This approach can result in enhanced model performance, faster
training times, and improved interpretability in complex data
sets featuring multimorbidity [22].

Study Goal
This study aims to identify multimorbidity patterns that may
serve as predictors of COVID-19 hospitalization (as a proxy
for a more severe COVID-19 outcome) using evolutionary
algorithms. To assess the effectiveness of our approach, we
conducted a comparative analysis to justify the use of deep
learning as a classifier over other established machine learning
algorithms in terms of prediction accuracy. The evolutionary
model may excel not only because of its superior predictive
performance but also because it effectively manages sparsity.
This capability could result in better identification of key
features, more stable predictions, or enhanced performance
within specific subgroups of the data [23].

A logistic model might reveal multimorbidity patterns that
exhibit complexity[24]. However, linear models, despite their
high interpretability, may struggle in sparse data sets where
effective feature selection is relevant [25]. In such cases,
evolutionary algorithms, particularly genetic algorithms, excel
by adeptly handling feature interactions with complexity and
identifying optimal feature subsets, a task that proves
challenging for linear models in sparse data scenarios [26].

The selected models are interpreted using Shapley Additive
Explanations (SHAP) values [27] to understand the relationship
between the multimorbidity features across different cohort data
and hospitalization outcomes. The proposed method also
generates a feature-engineered data set containing a specified
number of outcome-associated combinations or bins of
multimorbidity. Then, the best performing bins are analyzed to
explore the frequency of various multimorbidity patterns across
all cohorts.

This study demonstrates how our innovative tool has the
potential to revolutionize traditional risk assessment approaches.
By incorporating complex combinations of diseases, the tool
aims to improve the accuracy of predicting severe outcomes for
individuals with multiple chronic conditions. With its adaptable
design, it ensures applicability even in evolving scenarios
involving different communicable diseases, highlighting its
ongoing relevance. This study focuses on investigating the
complexities of disease interactions, demonstrating how our
tool could reshape risk assessment in similar contexts.

Methods

Study Design
This retrospective cohort study is designed to exhaustively
examine the presence or absence of various multimorbidities
in patients over a 5-year period leading up to the onset of
COVID-19. The core of our analysis is the longitudinal tracking
of these multimorbidities, relevant for understanding their
impact on subsequent health outcomes, particularly
hospitalizations due to COVID-19. Central to the study’s design
is its longitudinal nature, involving systematic analysis of patient
data collected over a specified time frame to assess how
individual and collective health conditions influence the risk
and severity of COVID-19–related hospitalizations. The
retrospective cohort framework enables the use of existing
medical records, including hospital discharge summaries and
drug prescription data, to construct a comprehensive picture of
each patient’s health status in the years leading up to the
pandemic. Through an analysis of these long-term health
patterns, our aim is to understand how preexisting conditions
influence the severity of COVID-19.

This study involves examining individuals’ multimorbidity
history over a 5-year period, encompassing both pre– and
post–COVID-19 diagnosis periods. It further investigates the
relationship between multimorbidity history, COVID-19
positivity, and the subsequent severity of COVID-19. This
design allows for observing participants over an extended time
frame and evaluating outcomes not only before but also after
the critical event of COVID-19 diagnosis.

Multimorbidity Data Set
Data for the multimorbidity analyses were collected from the
Piedmont Longitudinal Study (PLS), a health administrative
cohort comprising anonymized records linked at the individual
level from various social, health, and administrative databases
[5,19]. Since February 2020, the PLS has been augmented by
the regional COVID-19 platform, which collects data on
COVID-19 infections. From these databases, we utilized
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registers for (1) hospital discharges, (2) drug prescription data,
and (3) COVID-19 hospitalizations of individuals diagnosed
with SARS-CoV-2 infection for the first time between February
22, 2020, and May 31, 2020. We retrieved the 5-year medical
history of patients positive for COVID-19 from these data sets.
The extracted data comprises 12,793 individuals aged 45-74
years who tested positive for the first time for SARS-CoV-2
infection. Our study specifically focused on this age group to
eliminate potential influences from both younger and older
individuals on the results. Also, this approach helped to mitigate
bias associated with patients residing in nursing homes.

As the study was integrated into the National Statistical Plan,
no ethical approvals or permits were required, and the database
used for the analyses contained only anonymized data. Further
information regarding ethical considerations and data availability
can be found in the “Ethical Considerations” section.

Ethical Considerations
This study is part of the PLS, a specific project within the Italian
National Statistical Program, proposed by the National Statistical
System (SISTAN), integrated into the National Statistical
Program (Programma Statistico Nazionale [PSN]), an initiative
endorsed by the National Institute of Statistics (Istituto
Nazionale di Statistica [ISTAT]) in Italy. This project is annually
approved by the Italian Parliament. Since 2003, a dedicated
form (PIE-00001 “Monitoring of socio-economic differences
in mortality and morbidity through longitudinal studies”) has
been included in the PSN, currently effective for the 3-year
period from 2020 to 2022 [28] and recently renewed for
2023-2025.

Ethical approval or permits from the ethics committee are not
necessary for this research. Access to PLS data within the
responsible institution does not require informed consent, as
stipulated by the Presidential Decree published in the Official
Gazette of the Italian Republic N. 122 of May 26, 2022, under
the PSN [29].

Consequently, informed consent from an ethical committee is
not required for this study. All analyses adhered to the principles
of the World Medical Association’s Declaration of Helsinki,
and to preserve privacy, the data used for analysis underwent
deidentification.

Construction of the Exposure’s Variables
In this longitudinal cohort study, patients’multimorbidity status
over the past 5 years (2015-2019) was compared in relation to
a specific outcome (hospitalization due to COVID-19).
Multimorbidity was defined using records from hospital
discharge and drug prescription registers. In the data sets for
hospital discharges and drug prescriptions, multiple entries exist
for each patient with COVID-19. The drug prescriptions data
set comprises approximately 1 million records, while the hospital
discharges data set includes around 19,000 entries. From the

drug prescriptions data set, the Anatomical Therapeutic
Chemical (ATC) classification system codes were used. All
distinct ATC codes up to the 4th level (the first 5 digits of the
ATC codes) were considered in this study. One-hot encoding
was applied to convert categorical codes into separate feature
columns with binary values (0 or 1) indicating the absence or
presence of drugs in each patient’s prescription history.
Similarly, from the hospital discharge data, the 9th International
Classification of Diseases-Clinical Modification (ICD-9-CM)
codes [30] (as diagnosis codes) were used, and one-hot encoding
was applied. Following these transformations, only drug codes
and diagnosis codes meeting the criterion “at least 100 patients
with this code in the COVID-19-positive patients’ data” are
retained. Consequently, 194 features were derived from drug
codes (n=112) and diagnosis codes (n=82) as multimorbidity
features from the entire data set, where the presence and absence
of these features are denoted as 1 and 0, respectively. Also, 2
features—age and sex—are included, with sex coded as 1 for
females and 0 for males. Subsequently, the preprocessed data
were segmented into 4 data sets based on age and sex. The data
set transformation steps are illustrated in Figure 1.

Subsets of various cohorts were obtained by considering the
study population falling within the age criteria of “aged 45-59
years” and “aged 60-74 years.” This subdivision is made because
individuals aged 60 and above are often categorized as part of
the older population [5]. Median values within each age range
are used as threshold values for discretizing the age feature in
this study. This approach involves categorizing or binning based
on median values within each specified age range. For example,
to discretize the age feature into groups such as “45-59” and
“60-74,” we used medians (53 for “45-59” and 68 for “60-74”)
as thresholds.

In the data sets for the younger cohorts (cohorts 1 and 2), the
age feature was converted into a binary variable, where 1
represents age>53 and 0 represents age≤53. The age values were
derived from the 2020 COVID-19 data, and the age of 53 years
was used as a threshold to divide the younger population into
2 subgroups (45-53 and 54-59 years). Similarly, the older
population was divided into 2 subgroups (60-68 and 69-74
years), where the age feature was converted into a binary
variable, with 1 indicating age>68 and 0 indicating age≤68. All
4 cohort data sets were treated as distinct binary classification
problems. The input variables, comprising multimorbidity
history and age, along with the outcome variable indicating
whether a patient was hospitalized due to COVID-19, were
represented as binary values.

In our study, multimorbidity features included the presence and
absence of prescribed drugs and diagnosed diseases, as well as
patient age and sex. However, due to the rarity of many medical
conditions in the study population, the resulting data set became
sparse when encoding absence as 0 values.
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Figure 1. Transformation of data sets: The Multimorbidity data, derived from prescription and hospital discharge data sets, are merged with the
COVID-19 database containing patients who tested positive. The resulting data set is then subdivided into 4 cohorts based on age and sex. ATC:
Anatomical Therapeutic Chemical; ICD: 9th International Classification of Diseases-Clinical Modification.

Data Imbalance Rectification
A significant challenge when working with clinical data is
predicting rare events, which can result in an imbalance problem
when the target variable has more observations in one class than
in others. Therefore, it is beneficial to handle imbalanced raw
data properly to prevent bias toward a particular class. All data
sets used in this study exhibit imbalance, and resampling is

recommended as a solution. To address this, randomly balanced
samples were drawn from the unbalanced original data set to
achieve class balance. Subsequently, a statistical hypothesis
test, specifically the one-proportion z-test, was performed. This
test compares the proportion of the sampled population with
that of the raw data population, ensuring the representativeness
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of the randomly balanced sample data compared with the
original cohort data set and mitigating potential biases.

The steps performed to obtain an unbiased balanced data set
with significant features are as follows:

• Extract all minority and majority samples attributed to the
outcome value from the original cohort data set.

• Randomly select samples belonging to the majority class
so that they are equal in number to the minority class to
achieve a balanced data set.

• Calculate the prevalence of each feature in the randomly
selected samples and compare it with the prevalence in the
original population.

• Perform a one-proportion z-test on all nonzero variables to
assess whether the frequency distribution of a feature in the
resampled data is representative of the same feature in the
original cohort data set, using a significance level of .05.

• Evaluate the results of the one-proportion z-test, considering
the test statistic and P values, to determine the significance
and eliminate nonsignificant features from the sampled
data.

Model Development

Machine Learning Algorithms
To select the best model, we evaluated the performance of
various supervised machine learning algorithms. Using labeled
health records enables the application of supervised learning,
specifically binary classification to classify a patient’s
multimorbidity profile. Deep learning and other machine
learning algorithms were applied to all cohort data sets, as
depicted in Figure 2. Results were compared using a scoring
grid with average cross-validated scores.

Figure 2. Selecting best ML model for each cohort data set: A streamlined process of selecting the optimal ML model for cohort data sets, using
supervised algorithms for binary classification of multimorbidity profiles, with comparison based on a scoring grid featuring average cross-validated
scores. AUC: area under the curve; ML: machine learning.
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SHAP Analysis
SHAP values were used to elucidate the contribution of
individual features in predicting hospitalization outcomes across
all cohorts. These SHAP values for all features were plotted,
with their positions on the y-axis indicating their impact on the
model outcome. Beeswarm plots of SHAP values were used to
explore the distribution of influence that each feature has on
the model outcome, with features of greater importance
positioned higher on the graph. Each data point for a feature

corresponds to a single patient, with the position of the data
point (SHAP value) on the x-axis indicating the effect of that
feature on the model outcome for that specific patient. In the
SHAP beeswarm plots, when multimorbidity is present
(indicated by a feature value of 1 in red), a higher positive SHAP
value suggests that this feature acts as a risk factor for
hospitalization. Conversely, a more negative SHAP value in
the presence of multimorbidity indicates that this feature acts
as a protective factor against hospitalization risk for the patient.
These findings are illustrated in Figure 3.

Figure 3. SHAP beeswarm plots illustrating the impact of all features on COVID-19 hospitalization for all 4 models. SHAP: Shapley Additive
Explanations.
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Deep Learning With Sparse Data
This study addresses a sparse health care data set that includes
rare medical conditions and drugs, posing challenges for
statistical and machine learning analyses due to their low
prevalence [23]. To tackle this issue, the study utilizes sequential
deep learning with the Adaptive Gradient Algorithm (AdaGrad),
an optimization algorithm well-suited for handling sparse data
[31]. AdaGrad’s adaptive scaling of the learning rate eliminates
the need for manual tuning and enhances robustness compared
with stochastic gradient descent. Also, the study uses early
stopping functionality to improve the model’s performance.

In all deep learning models, dropout has been used as a
regularization technique to mitigate overfitting during training
[32]. Specifically, a dropout layer with a 20% dropout rate has
been introduced after the first and second layers in the sequential
model. Given the binary classification nature of the problem,
the default loss function used is binary cross-entropy loss [33].

Feature Selection for Discovering the Optimal Set of
Multimorbidity Features
Feature selection as a preprocessing method eliminates irrelevant
and redundant information, aiding in dimensionality reduction
[34]. There are 3 main methods of feature selection: filter-based,
embedded, and wrapper-based methods. Filter-based methods
typically generate models with reduced predictive performance
compared with the other 2 methods. The embedded method
performs an optimal feature subset search while constructing
the model, whereas the wrapper method selects the best feature
subset based on the classifier’s performance. In our study, we
used a wrapper method that utilizes deep learning as the
classifier algorithm and an evolutionary algorithm as the search
strategy to generate feature subsets (bins). The best performing
bin is determined using the area under the curve (AUC) metric
and selected as the optimal subset of multimorbidity features
highly associated with COVID-19 hospitalization.

Evolutionary Machine Learning
The use of evolutionary algorithms represents a promising
approach for extracting a reduced set of meaningful and accurate

rare associations, particularly beneficial for addressing
challenges such as sparse data, epistatic associations with
features, and high-dimensional representations of features.
Evolutionary machine learning is a hybrid method that leverages
evolutionary computation to overcome challenges encountered
in various machine learning tasks [35]. Compared with
traditional algorithms that rely on exhaustive search-based
techniques, evolutionary algorithms offer a more robust solution.

Several key considerations arise when performing feature
engineering with evolutionary algorithms: (1) a feature’s lack
of prevalence does not necessarily imply irrelevance; it could
still strongly influence the outcome; (2) addressing data sparsity
poses a challenge for many machine learning methods,
particularly concerning features with near-0 variance; and (3)
evaluating combinations of features may yield greater predictive
power than assessing isolated features alone, emphasizing the
significance of exploring feature interactions.

We used a genetic algorithm to create an optimized feature
matrix. Initially, features were randomly grouped into bins, each
forming a feature matrix. These bins were then regrouped using
a genetic algorithm and a wrapper-based method interacting
with a classifier. The study adopted the elitism principle to
preserve the best-performing bins as checkpoints. The final
feature matrix represents the evolved engineering matrix after
all iterations, designed to address issues of data sparsity and
incorporate interactions among various multimorbidity features.

The proposed evolutionary approach in the study is an
evolutionary algorithm–based wrapper method, illustrated in
Figure 4. It is a modified version of an existing evolutionary
algorithm known as the Relevant Association Rare-variant-bin
Evolver [23]. The proposed method differs from the existing
approach in several ways: it utilizes a prediction-based method
with separate training and testing phases, incorporates a deep
learning technique with an AdaGrad optimizer, and estimates
the frequency of occurrence of specific features within the best
performing feature combinations. Also, the scores produced by
the deep learning model serve as fitness scores to assess the
performance of multimorbidity combinations in each cycle.
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Figure 4. Illustration of the evolutionary approach carried out in this study: The process begins by randomly initializing subsets of features. Through
the execution of evolutionary computation, a final feature matrix is generated. Subsequently, frequently occurring combinations and features are
identified.

Frequent Multimorbidity Features
The most prevalent multimorbidity combinations were identified
to discern patterns among patients with COVID-19 using the
Apriori algorithm. Applied to the final bins data set, which
includes various multimorbidity feature combinations obtained
from the evolutionary algorithm, the Apriori algorithm utilized
the support measure to gauge the commonality of feature

combinations across rows in the final bins. To focus on relevant
feature combinations, only the most common multimorbidity
patterns were analyzed. Frequent combinations of features were
examined using a minimum support threshold (smin) set at 0.5
to derive frequent itemsets.
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Results

Characteristics of the COVID-19 Population

Table 1 summarizes the characteristics of the COVID-19
population, while Table 2 presents the distribution of
hospitalized and nonhospitalized patients.

Table 1. Characteristics of the COVID-19 population.

ValuesDemographics

Age groups (years), n/N (%)

4179/7324 (57.06)45-53a

3145/7324 (42.94)54-59a

3296/5469 (60.27)60-68b

2173/5469 (39.73)69-74b

Female, n/N (%)

4477/7324 (61.13)Younger age group

2355/5479 (42.98)Older age group

Male, n/N (%)

2847/7324 (38.87)Younger age group

3114/5479 (56.84)Older age group

Age (years), mean (SD)

52.3 (4.18)Younger age group

67 (4.55)Older age group

aConsidered the younger age group.
bConsidered the older age group.

Table 2. Distribution of hospitalized and nonhospitalized patients with COVID-19.

NonhospitalizedHospitalizedDemographics

Female, n/NMale, n/NFemale, n/NMale, n/N

Age group (years)

3861/56071746/5607616/17171101/171745-59

2323/33541031/3354303/825522/82545-53

1538/2253715/2253313/892579/89254-59

1402/25421140/2542953/29271974/292760-74

971/1711740/1711512/15851073/158560-68a

431/831400/831441/1342901/134269-74a

aConsidered the older age group.

One-Proportion z-Test Results
The one-proportion z-test was conducted on all features, and
the results comparing randomly sampled data with the original
cohort data sets are presented in Multimedia Appendix 1.

Performance of Machine Learning Models and Model
Selection
Table 3 illustrates the performance evaluation of the deep
learning model used across all 4 cohorts. The evaluation of other

machine learning models is presented in Multimedia Appendix
2.

For each cohort, as depicted in Figure 5, 2 line plots were
generated to validate the model’s effectiveness using
cross-validation.

JMIR Public Health Surveill 2024 | vol. 10 | e52353 | p. 10https://publichealth.jmir.org/2024/1/e52353
(page number not for citation purposes)

Benny et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Performance evaluation of the deep learning model.

F1-score, %Recall, %Precision, %Accuracy, %Test AUC score
(loss)

Training AUC
score (loss)

AUCa score 5-fold CVb

(SD), %

Cohort

7263857680% (0.29)82% (0.28)77 (1.87)1

6261626267% (0.32)71% (0.30)68 ( 1.94)2

6560706769% (0.32)74% (0.31)67 (1.87)3

6568626362% (0.34)65% (0.34)61 (2.44)4

aAUC: area under the curve.
bCV: coefficient of variation.

Figure 5. Model loss plot and AUC score over epochs—validation of model efficiency for each cohort through 2 line plots: The topmost plot depicts
the binary cross-entropy loss for the epochs for the training and validation data sets, and the bottommost one presents the classification performance
(AUC score) over epochs. AUC: area under the curve.
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In cohort 1, it is evident that the model learns the problem
efficiently and rapidly, achieving an AUC score of 82% on the
training data set and 80% on the test data set. The close
similarity between these scores suggests that the model is neither
overfitting nor underfitting. The cross-entropy loss plot showed
that the model has converged, with acceptable loss values
observed on both data sets. The classification performance plot
further indicated convergence. The model’s performance and
convergence suggested that cross-entropy loss is suitable for
effectively learning this neural network problem. In cohort 2,
the model achieved performance scores of 71% on the training
data set and 67% on the test data set, with reasonable loss values.
The minimal difference between these scores indicated that the
model learned the problem satisfactorily. In cohort 3, the model
achieved a training score of 74% and a test AUC score of 69%.
Observing that there was no significant improvement after 30
epochs, early stopping could be implemented during model
training to prevent overfitting and stabilize the validation loss.

In cohort 4, although the loss plot appeared well-converged,
the model showed slightly lower classification performance
compared with the models in other cohorts.

Influence of Individual Features on COVID-19
Hospitalization: Most Prevalent Multimorbidity
Features in Evolved Bins
The accuracy scores of the evolutionarily obtained final bins
have been calculated. The highest accuracy was achieved for
cohort 1 using the evolutionary approach to find
outcome-associated best subsets of features, reaching 71.43%
(95% CI 67.31-67.97) with 64 features. For cohort 2, the
accuracy was 63% (95% CI 59.43-59.75) using 69 features.
Cohort 3 achieved an accuracy of 62.38% (95% CI 59.84-60.09)
with 53 features, while cohort 4 achieved an accuracy of 58%
(95% CI 55.42-55.63) using 61 features. These results were
then compared with the accuracy score of the deep learning
model that utilized all features, as illustrated in Figure 6.

Figure 6. Maximum classification accuracy achieved by a bin versus number of features in that bin using evolutionary approach (left side) and the
accuracy score achieved exclusively by the deep learning model (right side) with all the available features in the cohort.

In cohort 1, frequently occurring multimorbidity features
included age>53, R03BA (glucocorticoid inhalants), and N03AX
(other antiepileptics). For cohort 2, A10BA (biguanide or
metformin) and N02BE (anilides) were prevalent. Cohort 3
exhibited frequent occurrences of N02AX (other opioids) and
M04AA (preparations inhibiting uric acid production), while
G04CA (Alpha-adrenoreceptor antagonists) was notable in
cohort 4.

Table 4 displays the multimorbidity features that occurred most
frequently in the final bins data set across all cohorts, using a
minimum support (smin) measure of 0.6. It includes the
prevalence of these features in the sampled data set. Detailed
statistics for all other features can be found in Multimedia
Appendix 3.
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Table 4. Frequently occurred morbidity features in the evolutionarily obtained final bins data set with support measure with corresponding P values,
and the prevalence of the features in the sampled data set utilized for the predictive analysis.

PrevalenceSupportP valueDescriptionCohort, category, and fea-
tures

1

Age

41.150.84<.001—a>53

ATC#b

15.50.85<.001GlucocorticoidsR03BA

5.60.82<.001Other antiepilepticsN03AX

6.740.79<.001Other antihistamines for systemic useR06AX

14.20.78<.001Other antibacterialsJ01XX

5.190.76<.001Sulfonamides, plainC03CA

6.90.74<.001Other opioidsN02AX

23.050.73<.001Vitamin D and analogsA11CC

5.440.69<.001Angiotensin II receptor blockers, plainC09CA

14.120.66<.001Penicillins with extended spectrumJ01CA

2.440.61.03Combinations of sulfonamides and trimethoprim,
including derivatives

J01EE

ICD#c

0.160.68.16Other nonorganic psychoses298

0.080.62.32Other acute and subacute forms of ischemic heart
disease

411

2

ATC#

4.310.86<.001BiguanidesA10BA

6.40.79<.001AnilidesN02BE

2.910.76<.001Nucleosides and nucleotides (excluding reverse
transcriptase inhibitors)

J05AB

4.090.76<.001Sulfonamides, plainC03CA

5.130.74<.001Preparations inhibiting uric acid productionM04AA

8.40.71<.001Angiotensin II receptor blockers, plainC09CA

3.220.65<.001Alpha-adrenoreceptor antagonistsC02CA

7.40.65<.001Dihydropyridine derivativesC08CA

6.180.64.03Triazole and tetrazole derivativesJ02AC

8.580.63.03Selective serotonin reuptake inhibitorsN06AB

0.680.62.07Prostaglandin analogsS01EE

2.50.61.08Fatty acid derivativesN03AG

18.210.6.001Acetic acid derivatives and related substancesM01AB

1.540.6.17Benzodiazepine derivativesN03AE

ICD#

0.180.64>.99Surgical or other procedures not carried out because
of contraindications

V64

0.320.64.26Other orthopedic aftercareV54

0.180.63.32Malignant neoplasm of the bladder188
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PrevalenceSupportP valueDescriptionCohort, category, and fea-
tures

0.180.6>.99Acquired deformities of the toe735

1.040.6.83Varicose veins of lower extremities454

0.050.6.32Fractures of the neck of the femur820

3

ATC#

12.960.84<.001Other opioidsN02AX

8.50.82<.001Preparations inhibiting uric acid productionM04AA

5.350.76<.001Low-ceiling diuretics and potassium-sparing agentsC03EA

4.040.75.004H2-receptor antagonistsA02BA

12.590.73<.001Heparin groupB01AB

11.70.7<.001Other antiepilepticsN03AX

13.90.68<.001Natural opium alkaloidsN02AA

5.770.65.008Nucleosides and nucleotides (excluding reverse
transcriptase inhibitors)

J05AB

4.670.62.11CalciumA12AA

2.620.62.16Beta blocking agents, selective, and thiazidesC07BB

9.230.61<.001Folic acid and derivativesB03BB

7.190.6.005Selective beta-2-adrenoreceptor agonistsR03AC

ICD#

0.730.68.03Schizophrenic disorders295

0.840.68.62Fractures of the radius and ulna813

4

ATC#

25.750.8.02Alpha-adrenoreceptor antagonistsG04CA

14.470.73.008Penicillins with extended spectrumJ01CA

13.110.66.07Angiotensin II receptor blockers and diureticsC09DA

26.320.66.03ACE inhibitors, plainC09AA

4.610.64.001Vitamin K antagonistsB01AA

16.490.62.002Sulfonamides, plainC03CA

ICD#

0.440.61>.99Certain adverse effects not elsewhere classified995

aNot available.
bATC: Anatomical Therapeutic Chemical.
cICD: 9th International Classification of Diseases.

The graph in Figure 7 illustrates the combinations derived from
analyzing all 2-variable combinations with a minimum support

(smin) of 0.5. Detailed results for these combinations can be
found in Multimedia Appendix 4.
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Figure 7. Frequent outcome-associated multimorbidity feature combinations (2 variable combinations with smin=0.5) in each cohort.

We observed that certain multimorbidity features appear
consistently across most outcome-associated bins. Additionally,
some features are common and frequent across the final bins of
various cohorts. Table 5 tabulates the features and combinations

that frequently appeared in the final bins data set, using a support
(s) threshold between 0.7 and 1.0. These findings are graphically
presented in Figure 8.
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Table 5. Frequently appeared features and combinations in the final bins data set when the support (s) is configured between 0.7 and 1.0.

CohortFrequent featuresLength of the combinationSupport

1ATC R03BA10.85

1Age>5310.84

1ATC N03AX10.82

1ATC R06AX10.79

1ATC J01XX10.78

1ATC C03CA10.76

1ATC N02AX10.74

1Age>53, ATC R03BA20.74

1ATC A11CC10.73

1ATC N03AX, ATC R03BA20.72

1Age>53, ATC N03AX20.72

2ATC A10BA10.86

2ATC N02BE10.79

2ATC C03CA10.76

2ATC J05AB10.76

2ATC M04AA10.74

2ATC C09CA10.71

3ATC N02AX10.84

3ATC M04AA10.82

3ATC C03EA10.76

3ATC A02BA10.75

3ATC B01AB10.73

3ATC M04AA, ATC N02AX20.71

3ATC N03AX10.7

4ATC G04CA10.8

4ATC J01CA10.73
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Figure 8. Illustration of the features and combinations that frequently appeared in the final bins data set when configuring the support (s) between 0.7
and 1.0 as radar chart, with features presented in more than 1 cohort stacked.

Discussion

Principal Findings
The primary findings of the study highlight prevalent
multimorbidity patterns identified within the evolved data set.
These patterns, characterized by specific ATC codes and ICD
codes, show significant associations with hospitalization
outcomes, particularly among distinct demographic groups.
This analysis not only provides insights into COVID-19 but
also suggests potential broader applications. Repurposing data
originally collected for administrative purposes, this innovative
approach shows promise for multimorbidity analysis in public
health. It shows the adaptability and versatility of the
methodology, capable of extracting valuable insights from
existing data sets to inform effective public health strategies
and interventions.

While our evolutionary machine learning model shows only
marginal superiority compared with other prediction models,
even slight improvements in predictive performance can hold
significant value in real-world applications, particularly in
critical fields such as health care where accuracy is mandatory.
Moreover, we acknowledge that achieving the highest prediction
performance may not be the sole objective of our study.

In the baseline method, variables are transformed into a binary
format using one-hot encoding, which leads to the creation of
a large, sparse matrix [26]. Evolutionary models typically excel
in handling high-dimensional data compared with linear models,
utilizing their enhanced ability to navigate and effectively utilize
the search space [36]. Evolutionary approaches have drawbacks
such as challenges in interpretability, computational efficiency,
and a higher risk of overfitting [37]. However, despite the
simplicity and clear interpretability of linear models,
evolutionary models excel in managing complex,
high-dimensional data and are proficient in handling feature
interactions with complexity. This makes them particularly
suitable for studies focused on detailed and complex aspects of
multimorbidity patterns. Utilizing a novel evolutionary machine
learning approach, we illustrate the ability to derive meaningful
results even from rare events. Our model’s successful application
in uncovering prevalent morbidity patterns linked to COVID-19
outcomes underscores its potential to yield valuable insights
across diverse data sets, particularly where data sparsity poses
challenges. While acknowledging its computational demands,
we emphasize the model’s readiness and adaptability for
analyzing complex medical data, highlighting its robustness as
a powerful tool in medical research.

We identified prevalent morbidity patterns from the evolved
data set, focusing on multimorbidity combinations or feature
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subsets closely associated with the outcome. This research
targets clinically significant patterns directly. Utilizing an
evolutionary algorithm to identify these combinations ensures
the analysis is grounded in a robust, data-driven process.
Analyzing the frequency of these subsets provides a measure
of their prevalence and significance in the studied population.
This step helps validate the relevance of the identified
combinations, ensuring that the observed patterns are not random
but indicative of common trends in patient data. Focusing on
the most prevalent combinations, the study aims to yield findings
with practical implications for health care providers. These
findings can inform clinical decision-making by helping
practitioners identify patients at higher risk due to specific
multimorbidity patterns, enabling them to tailor treatment
approaches accordingly.

Multimorbidity features such as older age combined with
specific ATC codes (N03AX and R03BA) were frequently
observed in outcome-related bins, particularly among
middle-aged females. Likewise, during the analysis of SHAP
values in cohort 1, it was noted that the use of inhaled
corticosteroid medication for asthma (R03BA) had a
significantly positive impact on the likelihood of hospitalization.
This observation aligns with findings from the Open SAFELY
study, which identified asthma as a significant risk factor for
mortality in patients with COVID-19. Specifically, it highlighted
that individuals using inhaled corticosteroids face the highest
risk in this context [38].

The ATC N03AX group encompasses various antiepileptic
medications used in treating bipolar disorder, epilepsy, migraine,
and sometimes schizophrenia. Individuals with severe mental
illnesses have shown a slightly higher risk of severe clinical
outcomes from COVID-19 compared with those without prior
mental health conditions [39]. Also, there have been reports
linking the use of antiepileptic medications with vitamin D
deficiency [40]. In our study, the presence of A11CC (vitamin
D and analogs) in the multimorbidity history makes middle-aged
females more vulnerable to hospitalization. Conversely, for
older-age females, the presence of this feature is associated with
smaller SHAP values, indicating that its presence in their history
is protective against hospitalization.

In a multimorbidity study of hospitalized patients with
COVID-19 [41], the ATC group most closely associated with
prolonged hospital stays is M04AA, which includes preparations
inhibiting uric acid production. In our study, among older-age
females, the combinations of M04AA and NO3AX were notably
frequent. M04AA also featured prominently in middle-aged
males, while G04CA (alpha-adrenoreceptor antagonists), used
for benign prostatic hypertrophy, was notable among older-age
males. Research indicates that male COVID-19 cohorts
experience more unfavorable clinical outcomes compared with
females [42,43]. Specifically, while patients with cancer are at
an increased risk of SARS-CoV-2 infection, individuals
undergoing androgen-deprivation therapy for prostate cancer
appear to have some level of protection against the infection
[43].

Strength and Limitations
Each row in the data set represents a comprehensive aggregation
of each patient’s multimorbidity history over a 5-year period,
including all relevant instances of diseases and conditions. This
approach ensures a holistic view of each patient’s health status.
To minimize subjectivity in the selection process, the criteria
for including health records in the data set are consistent and
objective. The aggregation process is governed by standardized
criteria, uniformly applied across all patients. Also, aggregating
multiple health records into a single patient instance helps
mitigate bias that could arise from selectively choosing one
entry over another.

In many clinical scenarios, understanding the implications of
false positives and false negatives is a requisite beyond just
disease probabilities. Although metrics such as Pietra and sBrier
[44] and the average deviation about the probability threshold
(ADAPT) index [45] are valuable, especially when patients seek
to understand disease probabilities, we believe that traditional
metrics such as AUC, accuracy, precision, recall, and F1-score,
along with a confusion matrix, offer a comprehensive evaluation
of the prediction models in this study. The use of a confusion
matrix as an evaluation tool enables us to customize model
assessment to reflect different clinical priorities, which is
particularly relevant when the prediction model informs
treatment plans or risk assessments [46].

Evolutionary algorithms inherently favor the best performing
choices available, despite their stochastic nature. These biases
contribute to their improved performance. Each evolutionary
cycle involves evaluating bin fitness and performing genetic
operations to identify the best performing group of features. In
this study, the evolutionary algorithm is used not only for feature
selection in sparse data but also to indirectly assess epistatic
associations between features in each evolutionary cycle.
Multimorbidity features are grouped into bins and scored based
on a deep learning classifier’s predictive ability for the outcome.
The features within bins are regrouped iteratively after each
evolutionary cycle.

Many studies using machine learning to investigate
multimorbidity patterns focus on handling sparse data sets by
either removing sparsity-generating features or merging feature
categories to reduce sparsity. However, these methods often
result in information loss and less precise interpretation of
multimorbidity features [19]. Instead of relying solely on a
sequential deep learning model, we aggregated all evolved bins
to create a new data set. This allowed us to analyze the
evolutionarily evolved bins and identify frequent multimorbidity
features and combinations.

Analyzing all possible combinations of multimorbidity features
in a data set can be computationally expensive, and many
irrelevant combinations may not warrant further analysis. To
address this, we applied an evolutionary algorithm to extract
meaningful combinations, prioritizing even less prevalent
features. Consequently, our focus shifted to investigating only
the most common multimorbidity features found in the top bins.
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Conclusions
When combined with other multimorbidity features, we
identified associations with the outcome even for less prevalent
medical conditions. Discovering hidden interconnections among
different multimorbidity features opens new research pathways
for studying multidimensional medical conditions in
combination.

Using an innovative evolutionary machine learning approach,
we identified prevalent morbidity patterns linked to
hospitalization risk, especially among specific age and gender

cohorts. Our findings highlight the adaptability of this
methodology, demonstrating its ability to yield significant
insights even in scenarios involving rare events. In addition to
this, we repurposed administrative data for multimorbidity
analysis, offering a novel path for public health research. This
approach has the potential to influence future studies and
interventions, encompassing areas such as polypharmacy and
long COVID-19 research. By deepening our understanding of
COVID-19 dynamics, this study emphasizes the broader utility
of such methodologies in shaping effective public health
strategies and interventions.
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AdaGrad: Adaptive Gradient Algorithm
ADAPT: average deviation about the probability threshold
ATC: Anatomical Therapeutic Chemical
AUC: area under the curve
ICD-9-CM: 9th International Classification of Diseases-Clinical Modification
ISTAT: Istituto Nazionale di Statistica
PLS: Piedmont Longitudinal Study
PSN: Programma Statistico Nazionale
SHAP: Shapley Additive Explanations
SISTAN: National Statistical System
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