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Abstract

Background: Understanding the patterns of disease importation through international travel is paramount for effective public
health interventions and global disease surveillance. While global airline network data have been used to assist in outbreak
prevention and effective preparedness, accurately estimating how these imported cases disseminate locally in receiving countries
remains a challenge.

Objective: This study aimed to describe and understand the regional distribution of imported cases of dengue and malaria upon
arrival in Spain via air travel.

Methods: We have proposed a method to describe the regional distribution of imported cases of dengue and malaria based on
the computation of the “travelers’ index” from readily available socioeconomic data. We combined indicators representing the
main drivers for international travel, including tourism, economy, and visits to friends and relatives, to measure the relative appeal
of each region in the importing country for travelers. We validated the resulting estimates by comparing them with the reported
cases of malaria and dengue in Spain from 2015 to 2019. We also assessed which motivation provided more accurate estimates
for imported cases of both diseases.

Results: The estimates provided by the best fitted model showed high correlation with notified cases of malaria (0.94) and
dengue (0.87), with economic motivation being the most relevant for imported cases of malaria and visits to friends and relatives
being the most relevant for imported cases of dengue.

Conclusions: Factual descriptions of the local movement of international travelers may substantially enhance the design of
cost-effective prevention policies and control strategies, and essentially contribute to decision-support systems. Our approach
contributes in this direction by providing a reliable estimate of the number of imported cases of nonendemic diseases, which
could be generalized to other applications. Realistic risk assessments will be obtained by combining this regional predictor with
the observed local distribution of vectors.
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Introduction

Throughout history, human mobility has been a key determinant
for the spread of infectious diseases. From the 14th century
bubonic plague pandemic to the 1918 Spanish flu as well as the
more recent Ebola epidemic and COVID-19 pandemic, the way
individuals travel across the globe has shaped the evolution and
geographical dynamics of infectious diseases [1-3].

International mobility flows are especially relevant for the
spread of vector-borne diseases (VBDs), which often receive
less attention in routine epidemiological surveillance plans in
countries where they are not endemic. In recent years, global
warming and intensified urbanization processes have favored
the establishment of previously foreign species around the globe,
such as Aedes, Anopheles, and Culex mosquitoes [4-7]. These
are vectors for malaria, dengue, yellow fever, West Nile virus,
Zika, and chikungunya, and thus, they pose a significant public
health risk that needs adequate preparedness [8-10]. Air travel
plays a central role in the diffusion of most of these diseases,
allowing their spread through imported cases at nonendemic
locations [11-13] with vector presence, and it must be
incorporated in decision-support systems to achieve operational
preparedness and risk prediction [14-16]. Reliable descriptions
and predictions of migration flows have been proven to be
valuable tools for the design of more effective public health
policies [17-20]. However, new developments are always needed
as complex dynamics are expected to arise from the multi-step
life cycle of VBDs [21-23].

A wide range of approaches have been used to model risks of
imported cases of dengue [24-27] and malaria [28-30] from
endemic to nonendemic regions. Several studies [31-33] have
incorporated data on the global airline network to assist outbreak
prevention and public health preparedness. However, accurate
estimations of how such imported cases disseminate locally
after arrival in the receiving countries are harder to devise. While

fine-grained data on local mobility are available from cellular
networks [34-36], it is not clear how the specific behavior of
travelers can be differentiated from the local population
dynamics. Moreover, travel-related data are usually obtained
through coarse-grained spatial statistics, thus involving large
territories. A reason for this is the inherent complexity and range
of scales involved in human flows. While it is possible to record
information at designated locations (eg, airports), it is much
more difficult to reliably collect detailed movement data of
target groups over larger geographical regions. In these cases,
insights on the nature of human traveling behaviors and
motivations that uncover hidden patterns in these processes are
crucial as they may be used to sidestep the need for excessively
detailed and thus unreachable data [37-39].

We aimed to provide accurate descriptions of how infected
travelers may distribute in a territory, which could be valuable
input for local authorities in the design of cost-effective VBD
prevention and control strategies. For this, we approximated
the local distribution of travelers arriving at a specific country
(or any other territory) in terms of readily available indicators,
rather than considering travel information that is usually not
quantified at a local scale. These statistics gauge the appeal of
each region to foreign travelers, quantifying the number of
imported cases each region may receive. We calibrated our
model with the number of imported cases of dengue and malaria
at each province in Spain from 2015 to 2018 and then performed
validation by comparing our model’s estimates for the number
of imported cases in 2019 with official data.

Methods

Travelers’ Distribution
We first developed a theoretical framework to estimate how
travelers distribute throughout the territory after their arrival in
the country. See Figure 1 for a schematic description of this
approach.
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Figure 1. Summary of the rationale behind our approach. Infected travelers arrive at the importing country from L exporting countries across the world
by means of air travel. For each country k, the prevalence of the disease in the country (pk) and the number of travelers arriving from it to the importing
country (ak) are combined to obtain an estimate of the number of imported cases (pk ak). These spread across R regions or spatial units of the importing
country following a distribution that can be estimated by means of the “travelers’ index.” The index is computed from local statistics concerning economic
and touristic activity and the number of foreign residents at each region. The travelers' index vki measures the proportion of imported cases from country
k moving to local region i upon arrival at the importing country. The total number of cases expected to arrive at the region (ci) is then obtained as the
sum of the estimated number of imported cases over all exporting countries: ci=∑pk akvki. AENA: Aeropuertos Españoles y Navegación Aérea (Spanish
Airports and Aerial Navigation); GHDx: Global Health Data Exchange; INE: Instituto Nacional de Estadistica (Spanish National Statistics Institute).

Input Data
We used the following yearly statistics from 2015 to 2019 to
compute the relative appeal of each province in Spain to
international travelers, which are publicly available and curated
by the Spanish National Statistics Institute [40]:

• Tourist indicators: For both hotels and tourist apartments,
we used the variables total capacity, number of national
travelers, number of foreign travelers, number of overnight
stays by national travelers, and number of overnight stays
by foreign travelers.

• Economic indicators: We considered each province’s
population, gross domestic product (GDP), GDP per capita,
number of private limited companies (Sociedades
Limitadas), and number of public limited companies
(Sociedades Anónimas).

• Indicators for visits to friends and relatives: For each
country and province, we used the number of foreign
residents by nationality, number of foreign residents by
birthplace, and number of national residents by birthplace
(other than Spain).

The following 3 additional data inputs were used in our
approach:

• Arrival data: We computed the yearly number of travelers
arriving in Spain from 2015 to 2019 at each of the 100
airports with the largest flows of incoming travelers and

aggregated publicly available monthly data provided by the
public entity in charge of the Spanish Airports and Aerial
Navigation (Aeropuertos Españoles y Navegación Aérea,
AENA) [41].

• Disease data: We used yearly prevalence estimates for
malaria and dengue from 2015 to 2019 provided by Global
Health Data Exchange (GHDx) [42]. Data on malaria were
supplied by the Malaria Atlas Project [43].

• Cases in Spain: The number of imported cases of malaria
and dengue (including any type of infection by the dengue
virus) is reported by each province to the Spanish National
Surveillance System (Red Nacional de Vigilancia
Epidemiológica, RENAVE). These data were used.

Travelers’ Index
We have described the rationale used to combine the above
statistics in an informed indicator to estimate the propensity of
international travelers to move to a specific region. We
considered a country that receives travelers from other countries
of the world (these are denoted as importing and exporting
countries, respectively). We assumed that the importing country
is divided into regions, which may represent geographical
regions or administrative units, for instance.

Motivations for international travel are usually classified into
3 major categories: tourism, business, and visits to friends and
relatives [44,45]. Based on this principle, we computed the
relative importance of each region in the importing country in
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terms of each of these drivers as follows: ti measures the relative
importance of region i in terms of tourism, ei measures the
relative importance of region i in terms of economy, and rik

measures the relative importance of region i in terms of visits
to friends and relatives for travelers arriving from country k.

The last indicator depends on the exporting country k. For
instance, when computing the travelers’ index with k=Brazil,
only the number of Brazilian residents is considered in the
computation. The 3 indicators were computed from several
available statistics concerning the regions of the country (see
the Input Data subsection) as the relative contribution of each
region to the country’s total. For instance, when using GDP to
measure economic status, the relative importance of region i in
terms of economy would be as follows:

ti = GDP of region i / total GDP of the importing country (1)

We then computed the travelers’ index for each region i of the
importing country and any exporting country k as the average
of the 3 indicators as follows:

vik = 1/3 (ti + ei + rik) (2)

It follows from equations 1 and 2 that for each exporting country
k, the sum of the travelers’ index of the country over all the
regions i of the importing country is as follows:

Therefore, given an exporting country k, the travelers’ index vik

may be understood as an estimate of the portion of travelers ak

arriving from this country to each province i. Hence, we can

estimate the total number of travelers arriving at a given region
i as follows:

where the sum runs over all exporting countries k, and ak is the
total number of travelers arriving from any such country k.
Accordingly, we estimated the number of imported cases of a
disease at each province i as the sum of the imported cases from
each of the exporting countries k as follows:

where pk denotes the prevalence of the disease in the exporting
country k. Plainly speaking, we estimated the total number of
cases arriving from country k as the product of the total number
of travelers arriving from the country and the prevalence of the
disease in the country. We then estimated how these cases
disseminate across regions by means of the travelers’ index,
which assigns to travelers a relative importance or preference
for each of the regions. Adding these local distributions over
all the exporting countries resulted in the total number of
expected cases at each of the regions in the importing country.
See Figure 1 for a visual representation of this reasoning.

Model Calibration and Validation
In order to test the validity of our approach, we followed the
pipeline depicted in Figure 2. The steps involved in this process
were (1) input variables, (2) model fitting, (3) model selection,
and (4) model validation and assessment.

Figure 2. Summary of the model building process. Key steps include the fitting, selection, validation, and assessment of the model.

Input Variables
We considered data from Spain (importing country) and its 52
provinces (regions over which the imported cases disseminate).
We computed the relative importance of ti, ei, and rik using each
of the statistics listed in the Input Data subsection for each of
the 3 drivers (ie, tourism, economy, and visits to friends and
family).

Model Fitting
We used equation 2 to construct the travelers’ index (1 for each
possible combination of the indicators). We combined these
with arrivals and prevalence data to obtain estimates for the
expected number of cases at each province for 2015-2018
(equation 4), resulting from simple averages of the indicators
ti, ei, and rik. We also considered a generalized version of the
travelers’ index by replacing the average in equation 2 with a
weighted average as follows:

where 0 ≤ aj ≤ 1 and a1 + a2 + a3 = 1. The coefficient aj

measures the relative importance given to each of the 3
categories themselves (tourism, business, and visits to friends
and relatives) in a particular model. For instance, an estimate
obtained from a value of a1 close to 1 and values of a2 and a3

close to 0 in equation 5 assumes that tourism is the most
important driver for travelers from countries where the disease
is endemic than business or visits to friends and relatives.
Identifying the choice of the weight aj and indicator in equation
5 that provide a better estimate allows us to also understand
which of the 3 drivers among ti, ei, and rik plays a more
significant role in the motivation of travelers carrying the
disease.
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Model Selection
To identify which travelers’ index best approximates the number
of imported cases per province, we computed the correlation
between the estimates provided by each of our models (1 for
each combination of indicators) and the actually reported cases
of malaria and dengue at each province for the years 2015 to
2018. The model reporting the highest value for this correlation
was selected as the best model. We followed the same procedure
for the case of the weighted averages, and a different estimate
was obtained for each choice of the indicator and weight aj.

Model Validation and Assessment
As a final test for accuracy, we computed the correlation
between the best model’s estimates for 2019 (data not used
during the fitting and selection process) and the officially
reported cases for this year, both for the simple and weighted
averages. In case this correlation was high, we considered the
model as validated and proceeded to the next step.

We assessed 3 features of the resulting model. First, we fit a
linear model explaining the estimated number of imported cases
at each province in 2019 in terms of the officially reported cases.
The coefficient of the linear model may be understood as the
number of cases predicted by the model per officially reported
case, thus informing of the overestimation or underestimation
of the model’s prediction of actually reported cases. This refers
only to the raw number of cases as the accuracy of the
distribution is captured by the validated correlation. Second,
we ranked the contribution of each of the statistics considered
in the model by computing the average correlation with 2019
official data of those estimates obtained from models including
each particular variable. We also computed the average loss of
accuracy associated with each variable as the difference in the
average correlation of those models including and not including
each statistic. This allowed us to identify which statistics among
the choices made for each indicator ti, ei, and rik provided more
reliable predictors of the disease. Third, we followed an
analogous procedure for the assessment of the weighted averages
and computed the average correlation of those models built
from each choice of the indicator and weight aj. Those indicators
scoring higher for larger values of the corresponding weight
were expected to inform about the motivations of the travelers
carrying each disease among business, tourism, and visits to
friends and relatives.

Human Mobility Model
Finally, we tested the validity of our results against a
well-established model for human mobility [46,47], assuming
that the movement of travelers does not follow motivations
different from those of resident populations. For this, we
assumed that, on arrival to their destination airport in Spain, a
proportion q of imported cases stay at that destination and the
rest move to a different province following a well-known,
generic, and random human mobility pattern [47,48]. The
probability of these travelers moving to each province in Spain
is assumed to follow a decaying power law with exponent γ on

the distance d between the origin and destination province

centroids (p(d) = d−γ).

We then grouped the total number of expected cases at each
province as the sum of those arriving at the province according
to their final flight destination and those arriving from any other
province by means of other transport modes reflected in a
geographically bounded power law distribution. This model
was then fitted to the data on the officially reported cases of
dengue and malaria from 2015 to 2018 for values of q between
0 and 1 (proportion of travelers who leave their destination
province upon arrival) and values of γ between 1 and 5
(exponent of the power law, with lower values favoring
longer-ranged movement and higher values favoring
shorter-ranged movement).

We followed an analogous philosophy for the model building
and assessment process as in the travelers’ index model. The
parameters leading to the highest correlation with the reported
cases for the period of 2015 to 2018 were used to compute an
estimate for 2019, and the correlation between this estimate and
the 2019 official record was then computed to allow for
comparison with the travelers’ index model. A linear model
between the human mobility model’s estimate and the official
2019 record was also fitted to assess the underestimation or
overestimation of the model.

Ethical Considerations
Our study used publicly available aggregated secondary data
with no characteristics that allowed for individual identification.
There are no relevant data protection and privacy issues to
report.

Results

Input Data
A preliminary analysis showed that among all statistics used,
those concerning the same drivers were usually highly
co-dependent, with some exceptions (eg, GDP per capita; see
Figures S1 and S2 in Multimedia Appendix 1 [40]). The relative
importance appearing in the computation of the travelers’ index
(equation 2) showed little variation over the years (see Figure
S3 in Multimedia Appendix 1). This temporal stability has been
observed before in the distribution of international [37] and
national [49] human mobility flows across destinations, which
have been obtained from expressions analogous to equation 1.

The 100 airports with the highest number of incoming travelers
were located in 49 countries and accounted for 99.75% of the
total incoming travelers to Spain from 2015 to 2019. Out of
these countries, 10 were removed from our study as neither
malaria nor dengue was present during the time span under
study (according to prevalence data from GHDx), resulting in
39 exporting countries. Table 1 shows the number of incoming
travelers from each of these countries and the average
prevalences of dengue and malaria from 2015 to 2019 as
provided by GHDx.
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Table 1. Exporting countries.

Dengue prevalence

(/100,000 population)b
Malaria prevalence

(/100,000 population)b
Incoming travelersbCountrya

0.5406,845,337United States

65.4078.963,472,397Brazil

54.97197.473,053,635Colombia

15.4702,972,990Argentina

41.37323.492,101,286Peru

37.297.262,063,577Mexico

49.111.501,611,336Dominican Republic

04.921,562,772Algeria

48.171065.281,241,154Venezuela

37.9301,062,531Cuba

36.41135.171,054,106Cape Verde

37.8486.971,027,244Ecuador

67.740810,214Costa Rica

32.432464.71630,192Senegal

56.47115.70566,765Panama

60.84181.43556,092Bolivia

33.784237.62522,809Gambia

10.880466,705Egypt

58.1068.10365,318Thailand

68.440360,619Singapore

39.1832981.86360,393Equatorial Guinea

24.630.14359,372China

41.90536.27306,321Pakistan

24.574095.70300,521Mauritania

130.858.95293,976El Salvador

015.80254,457Republic of Korea

38.7318792.47200,813Nigeria

12.450182,431Jordan

27.9711182.79176,690Angola

45.25169.12174,030Guatemala

15.523.98166,730Saudi Arabia

40.6518512.96149,374Ghana

38.3530131.1278,545Guinea

39.30049,010The Bahamas

44.2515756.9038,016Gabon

45.43014,802Jamaica

036.4312,394South Africa

34.9619904.668994Cameroon

31.1916024.211165Mali

aCountries with no malaria or dengue prevalence have been removed from the list.
bTotal incoming travelers and average malaria and dengue prevalences (total cases per 100,000 inhabitants) from 2015 to 2019 for the 39 exporting
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countries considered in our study, ranked by the number of travelers.

Estimates and Model Assessment
High correlation values were found for both malaria (0.94) and
dengue (0.86) between the best model’s estimates for 2019 and
the notified cases. The models that provided the most accurate
estimates included public limited companies, foreign travelers
at hotels, and foreign residents by birthplace in the computation
of the travelers’ index. The same variables led to the best
estimates for both malaria and dengue. While considering
weighted averages in the construction of the travelers’ index
did not improve the accuracy of the models, different

motivations were obtained for travelers carrying each of the
diseases: economy seemed to best capture the appeal of each
region for imported cases of malaria (relative weight of 0.7,
with GDP being the most accurate indicator) and visits to friends
and relatives seemed to be the main motivation for travelers
with dengue (relative weight of 0.9, assigned to the number of
foreign residents in the province by birthplace). Different
proportions of overestimation were found for each disease (99%
for malaria and 86.5% for dengue). A summary of the relevant
features of the models provided by the fitting and selection
process is presented in Table 2.

Table 2. Summary of the models that most accurately approximated the reported cases in 2015-2018.

OverestimationPearson correlation of mod-
el’s estimate with 2019 data

Visits to friends and rela-

tives indicator (weighta)

Tourist indicator

(weighta)

Economic indicator

(weighta)

Disease (model)

98.9%0.94Foreign residents by birth-
place

Foreign travelers at
hotels

Public limited com-
panies

Malariab (simple)

99.0%0.94Foreign residents by birth-
place (0.2)

Foreign travelers at
hotels (0.1)

GDPc (0.7)Malariab (weighted)

86.5%0.86Foreign residents by birth-
place

Foreign travelers at
hotels

Public limited com-
panies

Dengueb (simple)

86.7%0.87Foreign residents by birth-
place (0.9)

Foreign travelers at
hotels (0.1)

No contribution (0)Dengueb (weighted)

aFor the models including weighted averages, the weight ai of each indicator is included in parenthesis. If the weight of a given indicator is 0, no
contribution to the estimate is provided by the corresponding indicator.
bEach row shows the statistics that provide the best estimate of imported cases of each disease, the correlation with the actually reported data in 2019,
and the approximation for the proportion of overestimation as obtained from the linear models.
cGDP: gross domestic product.

Figure 3 shows the fit of the weighted models and their estimates
for 2019, together with the officially reported number of cases
of each disease (malaria and dengue) at each province in Spain.
Upon visual inspection, 2 provinces seemed to have a high
influence on the fit of the models. These corresponded to Madrid
and Barcelona, which hosted a much larger number of reported
cases of both diseases. We excluded these provinces from the

input data set and repeated the analysis (Table S1 and Figure
S4 in Multimedia Appendix 1). While a decrease in correlation
was found overall (approximately 0.12 over all models), the
resulting estimates still showed high agreement with the official
report for 2019 (above 0.74 correlation with 2019 data; see
Figure 3, and Table S1 and Figure S4 in Multimedia Appendix
1).
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Figure 3. Summary of the best linear models for 2019 imported cases of malaria (top row) and dengue (bottom row). The left column shows the
predictions of the models (in red), together with the number of reported cases (in blue) for 2019 at each province in Spain. The right column shows the
fit between the estimates of the models and the official records (inset figures correspond to the fit after removing Madrid and Barcelona from the data
set).

We performed a residual analysis to check for normality and
autocorrelation of the residuals of the models. The malaria
model showed close-to-normal residuals with no autocorrelation
(statistically significant W=0.67 and DW=2.03 in the
Shapiro-Wilk and Durbin-Watson tests, respectively). For the
dengue model, a relevant deviation was caused by the estimate
for Barcelona (Figure 3). Exclusion of this outlier resulted in
normally distributed and not autocorrelated residuals
(statistically significant W=0.94 and DW=1.87). See Table S3
in Multimedia Appendix 1 for complete details on the residual
analysis.

Variable Performance
The models constructed using simple averages provided a
unanimous choice of indicators associated with tourism,
economy, and visits to friends and relatives. On the contrary,
the best weighted models included different economic indicators.
GDP provided the best estimate for imported malaria cases,
while no influence of the economic indicator was considered

in the best dengue model. In addition, different drivers were the
most important ones for each disease, as shown by the much
higher relative weight for economic motivations in malaria cases
and for visits to friends and relatives in dengue cases (Table 2).

When ranking the contribution of each of the variables to the
accuracy of the models, similar results were found for both
diseases, with some minor variations across variables (Table
3). Several statistics concerning tourism ranked the highest in
this classification, although several others ranked in a low
position, indicating that appropriate choices of indicators may
be important and may need careful examination. All economic
indicators provided an improvement (or absence of a decrease)
in correlation, except for GDP per capita, which resulted in less
accurate estimates (average decrease of approximately 0.08 in
correlation with 2019 data). Indicators corresponding to visits
to friends and relatives had mild average effects on the outputs
of the models (the largest variation in correlation with 2019
data was −0.02).
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Table 3. Contribution of each variable to model accuracy.

Dengue

(loss)b
DengueaMalaria

(loss)b
MalariaaVariable

0.050.740.080.83National travelers in hotels

0.050.730.070.83Overnight stays by national travelers in hotels

0.080.760.070.82Foreign travelers in hotels

0.050.740.050.81Total hotel capacity

0.040.720.050.81Public limited companies (Sociedades Anónimas)

0.010.700.030.79National travelers in tourist apartments

0.020.700.030.79Overnight stays by national travelers in tourist apartments

0.020.710.020.78GDPc

0.010.700.020.78Private limited companies (Sociedades Limitadas)

0.010.700.010.77Foreign residents by country of nationality

0.010.700.010.77Foreign residents by country of birth

0.000.690.000.76Population

0.000.69−0.010.75Overnight stays by foreign travelers in hotels

−0.020.68−0.020.75National residents by country of birth

−0.060.64−0.060.71Total tourist apartment capacity

−0.070.63−0.090.69GDP per capita

−0.080.62−0.100.67Foreign travelers in tourist apartments

−0.130.58−0.150.63Overnight stays by foreign travelers in tourist apartments

aThe average correlation of the estimates of the models including each variable in their fit with the officially reported 2019 data.
bThe average difference in correlation between models including each variable in their fit and models not including each of the variables (variables
ranked by the average correlation for predictions).
cGDP: gross domestic product.

A similar procedure was followed for the weighted models. The
average correlation between the models including each variable
and the 2019 official data was computed in this case with
stratification by the weight assigned to the variable (Figure 4).
In addition to the ranking of variables (similar to data in Table
3), this provided a measure of the variability of each variable’s
contribution to the accuracy of the model in terms of the weight

assigned to it. Smaller overall variations in model accuracy
were identified for variables measuring visits to friends and
relatives, for instance, while much larger variability was
recorded for some tourist indicators. This shows the higher
potential loss in accuracy that would result from including these
variables in the models than including other variables.
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Figure 4. Summary of each input variable’s performance on the estimates for malaria (A) and dengue (B). Each square in the figure is colored according
to the average correlation between the official 2019 reports and the estimates provided by the weighted models including each of the variables, with
the associated weight ranging from 0 (no contribution from the variable is assumed in the model) to 1 (the model only includes that variable). The
variables are ranked from top to bottom according to the overall average correlation with 2019 data of the estimates of the models including each
variable. GDP: gross domestic product; SA: Sociedades Anónimas; SL: Sociedades Limitadas.

Comparison With a Generic Mobility Model
For both dengue and malaria, the human mobility models ranked
higher in terms of correlation with 2019 data for higher values
of the assumed proportion of travelers who do not move from
their destination province upon arrival (q; see Figures S5 and

S6 in Multimedia Appendix 1). Models also favored the choice
of smaller values of the exponent of the power law distribution
(highest average correlation with 2019 data for γ=1), indicating
that longer movements may take place if a displacement occurs
after arrival. Much higher variability in the correlation with
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2019 data was due to the choice of q than the choice of γ (Figure
S6 in Multimedia Appendix 1).

In general, the estimates of the generic mobility model for the
distribution of imported cases were less accurate when compared
to actually reported cases than those resulting from the travelers’
index models. This was the case for both malaria and dengue
(0.59 and 0.66 correlation with 2019 data, respectively; Table
4). In both cases, the best estimate was obtained assuming that
imported cases were indeed reported at the region of arrival via
air travel in Spain (q=1), signaling that international travelers
more often choose their final destination as the end of their trip

and rendering the choice of γ (the scaling exponent associated
with the length of the displacement) arbitrary. Visual
examination of the resulting fit revealed a high influence of
some provinces in the results, as in the travelers’ index (Madrid,
Barcelona, and Las Palmas for malaria; Madrid and Barcelona
for dengue). We performed the same analysis after removing
these provinces from the input data set and identified a strong
decrease in the correlation of the model estimates for the number
of imported cases with the reported cases for 2019 (0.003 and
0.12 for malaria and dengue, respectively). See Table S2 and
Figures S5 and S6 in Multimedia Appendix 1 for more detailed
information on the generic human mobility model.

Table 4. Summary of the human mobility model that most accurately approximated the reported cases from 2015 to 2018 (including all provinces).

OverestimationCorrelation with 2019 dataExponent of the power law
distribution (γ)

Proportion of cases that do
not move after arrival (q)

Model

99.5%0.59Any1Malariaa

95.2%0.66Any1Denguea

aEach row shows the parameters of the model that provide the best estimate of imported cases of each disease, the correlation with the actually reported
data in 2019, and the overestimation of the models as obtained from the linear fit with official records.

Discussion

We computed estimates for the number of imported cases of
malaria and dengue at each province in Spain based on simple
methodological assumptions. Our approach makes use of readily
available data and provides approximations of the actually
declared number of cases of the disease. This advance may
contribute to the adequate modeling and monitoring of VBDs,
which might be relevant for effective outbreak prevention
strategies. More efficient resource allocation strategies for both
vector control and disease prevention can be designed if reliable
predictions of the geographical locations of imported cases are
available. By circumventing the need for detailed large-scale
data on human mobility or traveler behavior, this methodology
is accessible and suitable to be used in countries lacking more
exhaustive data infrastructure, for instance [39,50]. The
reasoning presented here could also be generalized to other
choices of territories.

The high correlation found between our estimates and real data
support the validity of our approach based on a priori theoretical
conceptualization. This agreement in trend suggests that our
estimates are reliable enough for the elaboration of scale-less
risk indicators, for instance. On the other hand, our estimates
of the raw number of imported cases were simplistic (product
of yearly prevalence and total number of travelers), which
resulted in substantial overestimation of the number of imported
cases. For the case of malaria, this is coherent with the
epidemiology of the disease, being more severe unless treatment
is available and having a higher incidence in economically
deprived populations [51]. These factors may prevent individuals
with malaria from engaging in international displacements. For
dengue, however, the identified overestimation (8 predicted
cases per notified case) lies relatively close to previously
obtained estimates of the underreporting of cases in other
contexts [52]. This suggests that our approach could also provide
a valid method for assessing the sensibility of epidemiological

systems. In any case, our focus was on assessing the validity of
the travelers’ index as a method to improve risk analysis, rather
than developing a predictive model for imported cases of the
diseases.

The proposed computation of the key indicators involved in our
model (the travelers’ index vik) has the advantage of being
partially robust considering errors in declaration or incomplete
data collection. Indeed, as these only involve the relative
importance of each region in the country, correction factors are
unnecessary in our approach, and incomplete data will yield
equally valid estimates as long as the underreporting can be
assumed to be comparable for all regions. Moreover, the little
variation in time shown by these quantities (see Figure S3 in
Multimedia Appendix 1) could allow for reliable estimates even
when only past statistics are available.

A key finding in this direction is that while the impact of each
particular indicator in the quality of the estimate was similar
for both diseases, the relevant drivers for case importation were
different (economic motivations for malaria cases and visits to
friends and relatives for dengue cases). This may be due to the
different nature of the motivation for international travel across
countries in the world. Most malaria cases were imported from
African countries, while travelers carrying dengue usually
arrived from America or Asia (see Table S1 in Multimedia
Appendix 1). Travelers arriving from these continents are
expected to follow different motivations for international
displacement. Actually, malaria cases imported to Spain in the
prepandemic era were mainly due to visits to friends and
relatives or migration in almost 75% of cases, corresponding
to travelers following economic motivations [53]. On the other
hand, dengue cases were imported mainly by tourist travelers
or visits to friends and relatives [54].

Further evidence of the appropriateness of our approach was
provided by a comparison with the human mobility model.
While the validity of this model has been established in many
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contexts and is widely acknowledged [47], it provided much
less accurate estimates and was highly sensitive to data retrieval
from provinces with a larger number of disease cases. This
demonstrates the need to consider specific designs that take into
account travelers’behaviors and differentiate them from general
resident population dynamics.

Future developments of our approach should cover the following
improvements:

• Coupling with postimportation dynamics: Our framework
could be integrated into more complicated models
incorporating transmission dynamics that involve the life
cycle of the disease within the vector and the host [55-58].
Well-developed approaches, such as compartmental models,
could benefit from more precise estimates on the expected
location of arrival of imported cases of diseases.

• Refining the gross estimate of imported cases: As mentioned
above, we computed simple estimates for the total number
of cases arriving to the importing country (product of yearly
prevalence and total number of travelers). We focused on
how these cases distribute over the regions of the importing
country. Consideration of more elaborate estimates of these
quantities or the local distribution of the disease in the
exporting countries would probably yield more precise final
estimates.

• Extending the scope of the model to other diseases: A
particular feature of the treated examples is that virtually
all incoming streams of travelers into Spain from regions
where malaria and dengue are endemic, which may result
in transmission, may be assumed to be associated with air
travel. This may not be the case for other diseases and
countries, for which detailed data on the total traveler flow
or further development of the proposed methodology could
be necessary. Similarly, other importation phenomena that
may depend on human behavior or allocation of resources
could be analyzed under our assumptions, such as passive
mobility of vectors by human means of transportation [59]
or migratory flows [60,61].

It should be noted that our model was focused on countries with
high dengue and malaria prevalences, and hence, they were
likely to export these diseases to Spain. However, this concept

could be generalized to other types of risk-related importation
scenarios like the transport of new vectors or exotic species
(invasion biology), which is another crucial process in the spread
of VBDs.

Several factors may be limiting the extent of our results. First,
both malaria and dengue are diseases known to be subject to
high underreporting [51,52]. Second, we validated our models
with annual data, as data on the number of monthly reported
cases were too noisy. In any case, model predictions could be
generated at a higher temporal resolution by incorporating
monthly numbers of arriving travelers in the country, for
instance. Third, our model was designed to address the
motivations of international travelers; however, a significant
number of imported cases may correspond to national travelers
returning to the country or individuals from other nonendemic
regions, especially for dengue. It would be desirable to devise
an accurate method to differentiate between these 2 types of
travelers and incorporate both motivations in the model. Finally,
geographical borders are not always the best spatial human
structure [62], and therefore, the availability of data with a finer
geographical resolution could result in significant improvements
in our estimates. We also note that our model has been validated
with data obtained prior to the COVID-19 pandemic, and
differences may arise in the postpandemic era. Therefore, further
validation with future data is desirable.

We have shown the validity of the travelers’ index as a method
to estimate the distribution of imported cases of malaria and
dengue from endemic regions. This is an appropriate way to
improve disease risk prediction on the basis of human mobility
patterns. Our methodology adds value to available
socioeconomic information relevant to public health.
Nonetheless, human mobility is just 1 component of VBD risk
models. The other key components that need to be added are
vector (mosquito) distribution and suitability. Our work will be
combined with multi-sourced presence/absence and suitability
vector data in Spain, including both authoritative and citizen
science data collections [63], and integrated into the Spanish
National Surveillance System for VBDs. Pairing the risk of
importation of cases and the risk of local transmission through
the presence of vectors will provide a more comprehensive
evaluation of the threats posed by VBDs to public health.
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