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Abstract

Staff at public health departments have few training materials to learn how to design and fine-tune systems to quickly detect
acute, localized, community-acquired outbreaks of infectious diseases. Since 2014, the Bureau of Communicable Disease at the
New York City Department of Health and Mental Hygiene has analyzed reportable communicable diseases daily using SaTScan.
SaTScan is a free software that analyzes data using scan statistics, which can detect increasing disease activity without a priori
specification of temporal period, geographic location, or size. The Bureau of Communicable Disease’s systems have quickly
detected outbreaks of salmonellosis, legionellosis, shigellosis, and COVID-19. This tutorial details system design considerations,
including geographic and temporal data aggregation, study period length, inclusion criteria, whether to account for population
size, network location file setup to account for natural boundaries, probability model (eg, space-time permutation), day-of-week
effects, minimum and maximum spatial and temporal cluster sizes, secondary cluster reporting criteria, signaling criteria, and
distinguishing new clusters versus ongoing clusters with additional events. We illustrate how to support health equity by minimizing
analytic exclusions of patients with reportable diseases (eg, persons experiencing homelessness who are unsheltered) and accounting
for purely spatial patterns, such as adjusting nonparametrically for areas with lower access to care and testing for reportable
diseases. We describe how to fine-tune the system when the detected clusters are too large to be of interest or when signals of
clusters are delayed, missed, too numerous, or false. We demonstrate low-code techniques for automating analyses and interpreting
results through built-in features on the user interface (eg, patient line lists, temporal graphs, and dynamic maps), which became
newly available with the July 2022 release of SaTScan version 10.1. This tutorial is the first comprehensive resource for health
department staff to design and maintain a reportable communicable disease outbreak detection system using SaTScan to catalyze
field investigations as well as develop intuition for interpreting results and fine-tuning the system. While our practical experience
is limited to monitoring certain reportable diseases in a dense, urban area, we believe that most recommendations are generalizable
to other jurisdictions in the United States and internationally. Additional analytic technical support for detecting outbreaks would
benefit state, tribal, local, and territorial public health departments and the populations they serve.
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Introduction

Background
The Bureau of Communicable Disease (BCD) at the New York
City (NYC) Department of Health and Mental Hygiene monitors
electronic reports daily of >70 reportable infectious diseases
for an urban population of approximately 8.5 million residents
[1]. Since 2014, to help prioritize resources for case and
outbreak investigations and response activities, the BCD has
automated daily analyses to prospectively detect and monitor
spatiotemporal clusters of reportable communicable diseases
using SaTScan [2,3]. SaTScan (an abbreviation of Space and
Time Scan Statistics) is a free software that analyzes data using
scan statistics [4], which can detect increased disease activity
without a priori specification of temporal period, geographic
location, or size. SaTScan has effectively detected clusters of
enteric and respiratory diseases and of antimicrobial-resistant
infections using varied data sources from settings worldwide
[5-11]. The BCD has applied several prospective SaTScan
analyses to address varied surveillance needs in NYC, with
early detection and near–real-time monitoring of salmonellosis,
legionellosis, shigellosis, and COVID-19 outbreaks [2,12-14].

For example, in 2015, SaTScan analyses provided the first signal
for the second largest outbreak of community-acquired
legionellosis in the United States [13]. Detecting serious
outbreaks even a day or 2 earlier can potentially save lives.

In the absence of centralized training and technical support for
designing and fine-tuning such systems, we have provided
informal consultations for other health departments. While there
are scientific papers describing the statistical methods [4,15-19]
and the SaTScan user guide [20] explains input data
requirements and various software features, this is the first such
practical resource for health department staff.

Objectives
We aimed to share our recommendations for health departments
to design and fine-tune a system to detect community-acquired
reportable communicable disease outbreaks using SaTScan
(Tables 1-3). This guide describes requirements and parameter
settings for a variety of analytic aims and how to use built-in
features to interpret results. Methods for detecting building-level
outbreaks, hospital-associated outbreaks, purely temporal
clusters such as seasonal increases, or early warning signs of
diseases with pandemic potential are described elsewhere
[21-24].
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Table 1. Summary of input file and parameter setting recommendations for designing a system to detect reportable communicable disease outbreaks
using SaTScan.

RecommendationsSection and subtopic

1. The case file for each reportable disease should contain the census tract of the patient home address
and the best approximation of illness onset date and can contain additional patient information such
as gender and age.

2. Include all reported events in the case file, whether subsequently confirmed or not.

3. The coordinates file should include 1 row per census tract with its latitude and longitude.

4. A network file can be used to avoid clusters that span hard-to-cross boundaries, such as lakes,
rivers, and mountain ranges.

Input data

Parameter settings

5. Use prospective space-time analysis.Analysis type

6. Use the space-time permutation probability model.

7. If case ascertainment over both space and time is highly affected by testing variability, the
Bernoulli or Poisson model may be used instead. This additionally requires a control file of negative
tests or a population file of all tests.

Probability model

8. The space-time permutation model automatically adjusts for purely spatial variations and for
purely temporal patterns.

9. Adjust for day-of-week by space interaction.

Spatial and temporal adjustments

10. To quickly detect outbreaks before many events accrue, use the default minimum number of
events of 2.

11. To support resource allocation to areas with high and increasing disease transmission rather than
prioritize case investigations, the minimum number of events can be increased.

Minimum number of cases

12. For most jurisdictions, allow the cluster to expand in size to include up to 50% of all events
during the study period.

13. For geographically large jurisdictions, either use 10% as the maximum cluster size or add another
maximum cluster size (eg, 200 km).

Maximum spatial cluster size

14. For most communicable diseases, scan for clusters with a minimum of 2 days and a maximum
of 30 days.

Temporal cluster size

15. The study period should preferably be at least 3 times as long as the maximum temporal cluster
size. A study period of 1 year is usually reasonable.

16. The end of the study period should be set to previous day or the most recent day with sufficiently
complete data.

Study period

17. Aggregate to daily resolution.Time aggregation

18. Run analyses daily.Frequency of analysis

19. Use the default P value method with the maximum number of Monte Carlo replications set to
999.

20. Use a signaling threshold of RI≥100 days.

21. Consider an RI of 100 to <365 days as a weak cluster, an RI of 365 days to <5 years as a mod-
erate cluster, an RI of 5 to <100 years as a strong cluster, and an RI of ≥100 years as a very strong
cluster.

RIsa and inference

22. Enable the Most Likely Clusters, Hierarchically option and choose No Cluster Centers in Other
Clusters.

Secondary clusters

aRI: recurrence interval.
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Table 2. Summary of output files and built-in feature recommendations for cluster interpretation when using SaTScan to detect reportable communicable
disease outbreaks.

RecommendationsSection and subtopic

Output files and built-in features

1. Review information about the detected clusters and the analysis performed.Text-based results file

2. Review line list of events in clusters exceeding the RIa signaling threshold.

3. Distinguish events that are newly added to ongoing clusters by using an events cache input file.

4. Inspect the line list for data quality problems that may have been missed by other routine checks,
such as duplicated events in the case file, misreported patient addresses, or addresses unrelated to
possible exposure sites.

5. Inspect the line list to determine whether the cluster affects multiple households and suggests
community transmission vs primarily affects persons in the same household or building.

Line list of cluster events

6. Visualize the spatial extent of clusters.

7. Observe patterns of event locations and group by any chosen variable included in the case file.

Map

8. Visualize observed and expected event counts inside and outside the geographical cluster area,
marking the period before and during the cluster.

Temporal graphs

9. Conduct a drilldown analysis if you wish to determine whether events in a cluster are randomly
distributed within that cluster.

10. In parallel, consider rerunning the analysis applying a maximum reported spatial cluster size as
both approaches may detect significant clusters within larger clusters.

Drilldown analysis

aRI: recurrence interval.
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Table 3. Summary of recommendations for assessing and fine-tuning a system to detect reportable communicable disease outbreaks using SaTScan.

RecommendationsSection and subtopic

System assessment

1. Identify at least 1 known historical acute, localized, community-acquired
outbreak and mimic prospective surveillance around that period to assess the
speed and precision with which the outbreak could have been detected.

Proof of concept

2. If the system consistently produces clusters that are too large or too delayed
to be useful, misses signals, or produces too many false or weak signals, first
examine data quality by inspecting input files and line list output files for
data errors before fine-tuning the system.

System performance

System fine-tuning when outbreak detection is delayed or missed

3. Disaggregate data into smaller geographic units.Difficulty detecting geographically small outbreaks or outbreaks
at the boundaries of geographic units

4. Conduct additional age-restricted subgroup analyses, such as for children
aged <5 years.

Difficulty detecting outbreaks affecting a particular age group

5. Collect and analyze multiple addresses per patient, such as both home and
work.

Difficulty detecting outbreaks in which people are exposed far
from their home

6. Conduct quality assurance to detect and resolve drop-offs in laboratory
reporting by laboratory and disease.

7. To avoid missing outbreaks affecting unsheltered patients experiencing
homelessness and without a geocodable address, assign them to an artificial
census tract.

Difficulty detecting outbreaks because of missing data

8. From the baseline period in the case file, exclude days during major previ-
ous outbreaks.

9. For previous outbreaks limited to a specific building or institution, exclude
those events from the baseline period in the case file.

Difficulty detecting new outbreaks in areas with previous outbreaks

10. Add more connections to the network file.Difficulty detecting outbreaks affecting people who reside in areas
not connected in the network file

11. If using an RIa threshold for signaling of ≥1 year, decrease the threshold.Difficulty detecting weak clusters that are potentially actionable
outbreaks

System fine-tuning when consistently finding large, uninteresting clusters

12. Use the network input file.Clusters span hard-to-cross boundaries, such as lakes, rivers, and
mountain ranges

13. Impose a minimum relative risk restriction.Clusters with a relative risk near 1 are of limited public health in-
terest

System fine-tuning when there are too many signals

14. Proactively check for and correct data errors.Clusters are driven by duplicate events or incorrect patient address-
es

15. Shorten the baseline study period.Clusters are driven by changing nature of input data, such as recent
adoption of culture-independent diagnostic testing

16. Use stricter disease definition inclusion criteria and impose a time lag to
allow for investigating and ruling out cases.

Clusters are driven by reports that do not represent true illnesses,
such as reports of patients with only negative laboratory test results

17. Retain only 1 event per household.Clusters are driven by within-household transmission, so they do
not represent community transmission

18. If using an RI threshold for signaling of <1 year, increase the threshold.Clusters represent weak outbreaks that are not actionable given
available resources

aRI: recurrence interval.

Organization
Providing context and examples to build intuition, we discuss
system setup requirements, data quality assurance, input file
preparation, parameter setting recommendations derived from
public health and statistical principles, and new features in the
2022 SaTScan release that simplify routine analyses. Multimedia

Appendix 1 [2,13,14,25-37] provides further details about
parameter settings and advanced options, demonstrates cluster
interpretation using artificial but realistic data, and offers
strategies for fine-tuning analyses. In Multimedia Appendix 2,
a video demonstrates how to set up a cluster detection system,
and sample input and output files are provided.
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Analysis Design

Ethical Considerations
The BCD’s prospective cluster detection activity was deemed
nonresearch, public health surveillance by the NYC Department
of Health and Mental Hygiene Institutional Review Board.
Figures in this tutorial are for illustrative purposes only and
reveal no confidential patient information.

Requirements and System Setup
A strong informatics infrastructure and uninterrupted data
streams are key for a successful prospective reportable disease
outbreak detection system. Near–real-time electronic laboratory
reporting with patient location data is required, as well as
epidemiologists to interpret signals and resources to investigate
outbreaks.

Local installation of SaTScan is needed, and confidential
information is never transmitted elsewhere. Google Earth
installation and mail server information are optional
requirements for certain SaTScan features.

To ensure optimal system performance, we recommend
proactive data quality assurance practices, including monitoring
for data feed interruptions, deduplicating events reported more
than once, and correcting patient information (eg, correcting
typographical errors in addresses failing to geocode, correcting
when laboratories misreport patients’ residential addresses,
maintaining geocoding reference files to account for newly
constructed buildings, and correcting implausible onset dates).

SAS or R can be used to prepare input data, run SaTScan in
batch mode, create output summary files and visualizations,
and send email alerts. Sample code for these systems is freely
available [2,38-40], but the 2022 SaTScan release eliminates
the need for much of this complicated, external code.

Defining the Aim
Most routine prospective SaTScan analyses of reportable
communicable diseases are designed to quickly detect and
monitor spatiotemporal outbreaks using patients’ home
addresses [2]. We refer to this as our base analysis. In these
disease-specific analyses, cluster summaries and patient line
lists are routed to in-house disease experts for interpretation
and potential action to stop transmission or to focus public health
resources. We believe this system is relevant for all acute
infectious diseases except for diseases of which a single case
is a public health emergency, such as anthrax or botulism. For
a few diseases, we modified the base analysis (Table S1, Figure
S1, and the Analysis Design: Supplement section in Multimedia
Appendix 1).

Input Data

Overview
SaTScan detects data aberrations, which can represent true
clusters or data errors. Hence, input data require attention to
detail. A case file contains all disease events with their
epidemiologically relevant location (eg, census tract of home
address) and date (eg, illness onset date), and a coordinates file
includes all locations (eg, census tracts) together with the

latitude and longitude of their center points. We refer throughout
to events as all reported disease events and cases as the subset
that meet the surveillance case definitions established by the
US Centers for Disease Control and Prevention and the Council
of State and Territorial Epidemiologists [41].

Case File
The case file must contain a location ID (eg, census tract
number), a temporal element such as a date, and the number of
events at that location and time. The case file may be aggregated
by location and date. Alternatively, it can be formatted as having
1 row per event and may contain additional columns that are
not used in the analysis but can be output in a line list or used
to group events on a map (refer to the Built-In SaTScan
Implementation and Output Interpretation Features section).

For our base analyses, the temporal element is the best
approximation of the date when patients became ill, prioritizing
symptom onset date, diagnosis date, or report date such that
there is no missingness in the temporal data element. The spatial
location is the census tract of patient residence. Some degree
of spatial aggregation is necessary to scan along a network (refer
to the Network File section), and geocoding to census tracts is
sufficiently fine resolution. Even if the public health action
occurs at a larger spatial unit, using smaller geographic units
increases both the precision and statistical power to quickly
detect emerging outbreaks, including those that are
geographically small or that do not conform to the boundaries
of larger administrative areas. Patients who have a missing,
inaccurate, or undefined spatial location can either be purposely
excluded from the analysis or included by assigning them a
location (eg, assigning patients whose home address is a post
office box to the census tract of the post office holding their
mail and assigning unsheltered patients experiencing
homelessness to a unique, artificial census tract).

For some analyses, we restrict the case input file. For amebiasis,
cryptosporidiosis, giardiasis, and shigellosis, we analyze all
ages combined as well as children aged <5 years separately to
detect outbreaks that might affect patients attending childcare
programs. For diseases for which household transmission is
likely, for example, norovirus and shigellosis, we restrict the
case input file to include only 1 event per household (refer to
the Difficulty Detecting Outbreaks Affecting a Particular Age
Group and Clusters Are Driven By Within-Household
Transmission sections in Multimedia Appendix 1).

If there is a spatiotemporal outbreak in the baseline, it may
become harder to prospectively detect a subsequent outbreak.
If a purely spatial adjustment is applied, either explicitly or
implicitly as in the space-time permutation model, then it will
be harder to detect subsequent outbreaks around the same
location. This problem can be resolved by removing historic
outbreaks from the input files (refer to the Difficulty Detecting
New Outbreaks in Areas With Prior Outbreaks section in
Multimedia Appendix 1).

We include all reported events during the study period specified
in the parameter settings regardless of whether they are
subsequently confirmed according to Centers for Disease
Control and Prevention and Council of State and Territorial
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Epidemiologists surveillance case definitions [41] upon
investigation. By analyzing all reported events, timeliness is
preserved in that events can be analyzed as soon as they are
reported rather than waiting until investigation and case
classification processes are complete. Ensuring consistent event
inclusion criteria across the study period supports a valid
comparison of total reporting volume between current and
historical periods [42].

Coordinates File
The coordinates file has 1 row per location with a location ID
and its geographic coordinates. Most BCD analyses use the
latitude and longitude of each census tract centroid per census
2010 definitions.

Alternatively, space need not be conceptualized as geographical
coordinates. To identify temporal clusters of infections by
particular Salmonella serotypes, we replace space with arbitrary
coordinates for serotype and detect citywide clusters of
particular serotypes that could not be explained by the overall
seasonality of Salmonella infections [25].

Network File
Spatial scan statistics can be used with windows of different
shapes, including circular, elliptical, and nonparametric [43-46].
SaTScan is typically used with a circular scanning window,
which also has very good statistical power to detect clusters of
other geographical shapes and sometimes better power to detect
irregularly shaped clusters than flexibly shaped spatial scan
statistics [47]. This is because flexibly shaped spatial scan
statistics without some form of noncompactness penalty will
often detect spindly, octopus-like clusters that cherry-pick areas
with high rates and with long, thin connections between them
[47].

An enhancement in SaTScan version 10.0 is the option to scan
locations along a network, which may represent travel distance
between locations or the amount of interaction between different
communities. For example, census tracts or zip code tabulation
areas may be geographically close but separated by lakes, rivers,
or mountain ranges. We recommend constructing a network file
connecting neighboring locations unless separated by those
barriers so that clusters can form around rather than through
them (Figure 1; refer to Figure S2 and the Network File:
Supplement section in Multimedia Appendix 1).

Figure 1. Illustrative cluster detected using a circular scanning window (in yellow) versus scanning along a network (in red) using the same input data.
Scanning along a network accounts for limited connectivity across water bodies, resulting in more precise spatial clusters, such as illustrative cluster 4
in the Rockaway peninsula in Queens, New York City.
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Parameter Settings
Unlike machine learning methods, in which hyperparameters
are tuned using real data during model development, SaTScan
parameter settings are derived from underlying public health
and statistical principles that should be generalizable across
jurisdictions.

Type of Analysis and Probability Model
We use the prospective space-time permutation scan statistic
for almost all routine SaTScan analyses conducted at the BCD,
including the base analysis [2,17,25]. Prospective analyses
detect currently active unusual clusters, evaluating only the
subset of possible clusters that encompass the last day of the
study period together with a flexible number of previous days.
Cluster statistics are determined by the counts of observed and
expected events within a cluster window, which is bounded by
the user-specified minimum and maximum temporal cluster
size. For the space-time permutation scan statistic, the expected
number of events for any area is a function of the observed
counts during the baseline period and the jurisdiction-wide trend
during the temporal window [17]. For example, if a collection
of 5 census tracts has 2.3% of cases during the baseline period
and there are 100 total cases in the jurisdiction during the cluster
period, then the expected number of cases during the cluster
period in those 5 census tracts is 2.3.

SaTScan compares a statistical likelihood function calculated
from the real data sets with likelihoods calculated from random
data sets generated under the null hypothesis of no clustering.
There is a cluster if a geographical area has a higher proportion
of its events in the cluster period compared with the previous
baseline period or, equivalently, if a period has a higher
proportion of its events within versus outside the geographical
cluster area. For example, if Manhattan’s Upper East Side has
10% of all NYC events during the last 7 days but only 3% of
all events during the previous months, a prospective space-time
permutation analysis will detect a cluster in the Upper East Side
during the most recent week. Note that, while such a cluster is
most likely due to an outbreak or increased testing in the Upper
East Side, it can also be generated by a sudden decrease in
disease occurrence or ascertainment in the rest of the city. The
former is more likely for geographically small clusters, whereas
larger clusters could have either explanation.

The permutation in the space-time permutation model refers to
keeping all observed locations and dates fixed when simulating
random data sets under the null hypothesis while randomly
shuffling which observed event locations are connected to which
observed dates. By conditioning on locations and dates with
observed events, the space-time permutation model
automatically adjusts nonparametrically for any purely temporal
patterns, including seasonality, secular trends, and day-of-week
effects, as well as any purely geographical variations in disease
occurrence, diagnosis, and reporting, such as due to insurance
coverage and access to care. An area’s larger population size,
which also affects disease incidence, is accounted for by having
more disease counts observed in the baseline period.

For count data such as disease events, Bernoulli and Poisson
models are also available. However, the space-time permutation

model is often preferred because it requires only event data and
automatically adjusts nonparametrically for both purely temporal
and spatial variations (refer to the Bernoulli and Poisson
Probability Models section and Figure S1 in Multimedia
Appendix 1).

Space and Time Adjustments
If there is an overall increasing temporal trend, SaTScan may
identify an outbreak if there is no temporal adjustment. One
may want to adjust for naturally occurring seasonal variation,
for example, while still detecting local outbreaks not explained
by jurisdiction-level seasonal trends.

When applying a spatial adjustment, SaTScan will identify
clusters in which case counts are increasing faster or decreasing
slower than elsewhere in the jurisdiction even if the absolute
level is lower than that in surrounding areas.

The space-time permutation model automatically adjusts for
purely temporal patterns and purely spatial variations, unlike
the Bernoulli and Poisson models, for which these adjustments
must be explicitly requested. We additionally adjust for space
by day-of-week interaction in our base analysis because the
day-of-week pattern of health care–seeking behavior and
diagnoses may vary geographically in NYC. With this
adjustment, the dates in which events occurred are shuffled and
assigned to the original event locations, restricting them to the
same day of the week. This adjustment should only be applied
when there are several weeks in the study period; with only a
few weeks, the day-of-week–specific estimates become too
unstable. We do not use covariate adjustment because this is
unnecessary for prospective outbreak detection and doing so
could adjust away emerging outbreaks affecting a particular
demographic group.

Scanning for High or Low Rates
Most BCD analyses scan for areas with high rates as we are
interested in detecting outbreaks of excess events. The one
exception is data quality analyses, where we scan for low rates
to quickly identify laboratories with unusually low reporting
volume [26].

Minimum Number of Events
In the base analysis, we require only 2 events at minimum
because we want to quickly detect outbreaks before many events
accrue. For example, 2 salmonellosis events on the same day
residing on the same block could be of great interest. For
COVID-19, we set the minimum number of events in a cluster
to 100 when volume was high because the purpose was to
support resource allocation to areas with high and increasing
disease transmission rather than to conduct case investigations
and contact tracing to identify a common exposure source.

Maximum Spatial Cluster Size
The option that imposes the fewest assumptions is to allow the
cluster to expand in size to include up to 50% of all events
during the study period. This is reasonable for modestly sized
areas such as NYC but might yield too large and uninformative
clusters in national- or state-level jurisdictions. For
geographically large study areas, we recommend either using
10% as the maximum geographical cluster size or adding another
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maximum geographical cluster size. For example, a maximum
of 50% may appropriately limit the cluster size around
Anchorage, whereas Western Alaska may be better served with
a 200-km maximum cluster radius. When using a network file
and defining a geographical maximum spatial cluster size, a
cluster will expand until reaching a network location at the
specified distance from the cluster centroid, which allows for
irregularly shaped clusters. We recommend erring on the side
of searching for larger clusters, followed by using other
principled approaches to interpret or prevent large clusters (refer
to the System Fine-Tuning section in Multimedia Appendix 1).

The BCD has on occasion applied a maximum spatial cluster
size of a 1-km radius. To search for clusters of locally acquired
Zika virus infection, we assumed that a maximum 1-km radius
was consistent with the typical flight distance of an Aedes
mosquito [27] plus some additional distance to include
residences of people moving around and coming into contact
with the same infected mosquito. To search for clustering of
legionellosis events around cooling towers to guide
environmental sampling [13], we considered a 1-km radius to
be consistent with the area of highest risk of exposure around
a contaminated cooling tower.

Of note, setting the maximum spatial cluster size is different
from applying a maximum reported spatial cluster size in the
advanced output features, which limits the clusters reported in
the output rather than limiting the clusters evaluated by the
analysis. While it is OK to vary the maximum reported spatial
cluster size, an analysis should never be repeated with a different
maximum spatial cluster size as P values and recurrence
intervals (RIs) are inaccurate if one manipulates and tries
multiple such parameter settings [48].

Minimum and Maximum Temporal Cluster Size
The base analysis scans for clusters that are between 2 and 30
days long, which is enough to encompass the upslope of an
epidemic curve for point-source outbreaks, typically spanning
a few days or weeks depending on the pathogen. We extended
the maximum temporal cluster size to 60 days for salmonellosis,
Shiga toxin–producing Escherichia coli, paratyphoid fever, and
typhoid fever and to 120 days for listeriosis to align with
PulseNet USA definitions based on clustering in time and
genetic relatedness [49]. Although campylobacteriosis,
shigellosis, noncholera Vibrio spp. infection, and yersiniosis
are also PulseNet organisms, we kept the maximum temporal
cluster size at 30 days to slightly increase power to detect more
focal clusters of these diseases. These diseases are higher
volume and commonly detected using culture-independent
diagnostic testing such that laboratory subtyping is not routinely
available in NYC to support defining clusters. We similarly
extended the maximum temporal cluster size to 60 days for
hepatitis A because the incubation period can extend to 50 days
[50] and to allow additional time for patient care seeking.

A maximum of 30 or 60 days may not be long enough for
diseases with long incubation periods, extended propagated
transmission, or intermittent common-source outbreaks. For
example, exposure to point sources of listeriosis can be
intermittent given persistent environmental contamination, and
the incubation period can be nearly 70 days [28], so for this

disease, we scan for clusters between 7 and 365 days at weekly
aggregation.

In the base analysis, we set the minimum temporal cluster size
to 2 days because few true outbreaks of the diseases we monitor
span only 1 day, and not evaluating clusters of only 1-day
duration slightly improves power given less statistical
adjustment for multiple comparisons. However, note that a
2-day cluster can have all cases on the same day. If there will
be no public health action unless a cluster has persisted for some
time, the minimum temporal cluster size can be lengthened. For
COVID-19, for example, we scanned for clusters with a
minimum temporal size of 14 days to support resource
reallocation to areas with sustained high test positivity.

Study Period
It is important to balance the need for a period long enough to
establish a stable local baseline for each spatial unit yet short
enough to avoid variable secular trends due to, for example,
geographical population shifts over time. As a rule of thumb,
the study period should preferably be at least 3 times as long
as the maximum temporal cluster size. This is analogous to a
case-control study, which has diminishing returns in statistical
power when the control-to-case ratio is increased beyond
approximately 3 [51]. If there is a permanent change in
surveillance so that recent and older data are no longer
comparable, the study period should be shortened. For example,
laboratories adopting a culture-independent diagnostic test can
lead to increased case ascertainment, and temporarily shortening
the study period to begin after the new test was adopted can
restore consistency in the baseline [29] (refer to the Clusters
Are Driven by the Changing Nature of Input Data section in
Multimedia Appendix 1).

For timeliness, the end of the study period should be set to the
previous day or the most recent day with sufficiently complete
data. In the base analysis, the study period is 1 year with an end
date set to the day before the analysis is run. Although 1 year
is >3 times longer than the maximum temporal cluster size of
30 days, case ascertainment is generally consistent over a 1-year
period for most diseases, and the longer study period provides
a more stable baseline. For COVID-19, we shortened the study
period to 63 days because volatility in testing access and
outreach during the public health emergency made older data
less comparable, and we set the end of the study period to 3
days before the run date because more recent testing data were
largely missing [14].

Time Aggregation
With thousands of locations, long study periods, and multiple
data streams, space-time SaTScan analyses can be
computationally intensive. To reduce computing time, data may
be aggregated into longer time intervals by, for example,
aggregating daily data into weekly data. Another reason for
aggregating to time intervals of 7 days is to remove day-of-week
effects. For the base analysis, we use a time aggregation of 1
day to detect outbreaks as quickly as possible, increase the
statistical power to detect outbreaks that do not conform to
weekly or other prespecified time intervals, and obtain a more
precise estimate of the cluster start date.
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Frequency of Analyses
With near–real-time electronic laboratory reporting, we run
analyses daily. If prospective analyses are conducted at a
different frequency than the aggregated time units, such as
weekly analyses with daily data, the analysis frequency must
be specified. This may be needed if data are reported weekly
but with daily resolution; if weekly analyses are sufficiently
frequent given limited staffing capacity; or to support public
health objectives other than acute outbreak investigations, such
as guiding resource allocation. If it is important to monitor for
unusual clusters near continuously (eg, hourly analyses to detect
early indications of a possible bioterrorist attack), consider
inputting data using the generic time precision option.

Secondary Clusters
Any disease may have multiple active outbreaks at any moment,
so secondary clusters should be reported by enabling the Most
Likely Clusters, Hierarchically option. We use the No Cluster
Centers in Other Clusters option rather than the default No
Geographical Overlap. This allows for reports of slightly
overlapping clusters so that clusters located close to each other
can be detected and can also help define the extent of irregularly
shaped outbreaks. At the same time, it avoids redundant clusters
that are almost identical to each other as well as clusters almost
completely driven by the primary cluster but with large outlying
areas with no or modest excess risk. Epidemiological judgment
must be used to determine whether events in overlapping clusters
are attributable to a single or multiple outbreaks or whether the
secondary cluster is of limited interest. It may not be worthwhile
to investigate every event in a large secondary cluster with a
much lower RI that has a large proportion of events that are also
in the primary cluster.

RIs and Inference
Monte Carlo hypothesis testing compares the maximum
likelihood value for the real data with the maximum likelihoods
from each of the random replicas of the data set. For prospective
analyses, SaTScan assigns an RI to each cluster. The RI is an
alternative to the P value (RI=1/P value), and the greater the
RI, the less likely the cluster is due to chance. If a cluster has
an RI of 1 year, then under the null hypothesis and during any
1-year period, the expected number of false signals with the
same and higher magnitude is 1. For rare diseases, this expected
number is lower depending on cluster size restrictions. While
P values are commonly used for determining statistical
significance, the typical cutoff of P<.05 is not meaningful for
prospective analyses. With daily analyses for 1 disease, applying
a P<.05 threshold would generate 1 false signal every 20 days
on average, or approximately 18 false signals per year, which
is too frequent.

Increasing the number of Monte Carlo replications generating
random data sets under the null hypothesis slightly increases
the statistical power of the scan statistic but also increases the
run time. Our base analysis uses 999 replications, with the
default P value option to end early if the P value is large. The
number of replications must be at least 999 to avoid unnecessary
loss of power.

Signaling Threshold
In the base analysis, we set the signaling threshold to RI≥100
days. We think of a cluster with an RI of 100 to <365 days as
a weak cluster, a cluster with an RI of 365 days to <5 years as
a moderate cluster, a cluster with an RI of 5 to <100 years as a
strong cluster, and a cluster with an RI of ≥100 years as a very
strong cluster. P values or RI thresholds determine which
clusters trigger an alert, but they should be considered alongside
other factors to establish whether a cluster is of public health
importance [52]. While we have suggested rules of thumb for
RI interpretation, investigators should holistically interpret other
cluster characteristics and apply epidemiological judgment
considering the disease severity, relative risk, location, period,
and patient characteristics in the line list (refer to the Cluster
Investigation and Response section).

Assessment of Analysis Design
Our SaTScan parameter settings are derived from underlying
public health and statistical principles. While we believe that
our recommendations are generalizable, parameter settings may
require adjustment for other diseases and jurisdictions. When
using real-world rather than simulated data, there is generally
no gold standard that can be used to evaluate results. For local
proof of concept, one way to determine whether an analysis
needs adjustments is to identify at least one known historical
acute, localized, community-acquired outbreak and mimic
prospective surveillance around that period to assess the speed
and precision with which the outbreak would have been
detected.

If an analysis consistently produces results that are
unsatisfactory and data quality issues have been ruled out as a
cause, then the input files or parameter settings may need
fine-tuning. Issues we have encountered include missed or
delayed outbreak detection, clusters too large to be useful, and
too many signals to be actionable given available resources
(refer to the System Fine-Tuning section in Multimedia
Appendix 1).

Built-In SaTScan Implementation and
Output Interpretation Features

SaTScan version 10.1 introduced several built-in features to
simplify adopting and implementing routine prospective
analyses and streamline output interpretation. These include a
tool for automating multiple prospective analyses, temporal and
geographical visualizations of clusters and events, line lists with
information about cluster events, and a feature that allows users
to send automated email alerts summarizing analysis results
(refer to the Cluster Output Interpretation section in Multimedia
Appendix 1 and video demonstration in Multimedia Appendix
2).

Multiple Analyses
When independently monitoring multiple diseases, running
multiple analyses is necessary. This is easily managed using
the multiple analyses feature. The only preanalysis coding
required is to generate the input files in the appropriate format
(refer to the video demonstration in Multimedia Appendix 2).
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Temporal Graphs
Temporal graphs are useful for visualizing epidemic curves.
SaTScan can produce temporal graphs that display observed

and expected event counts inside and outside the geographical
cluster area, marking the period before and during the cluster
(Figure 2; refer to the Temporal Graphs: Supplement section
in Multimedia Appendix 1).

Figure 2. SaTScan-generated temporal graph depicting the observed and expected event counts in the geographical area of the cluster during (band
shaded in gray) and before the cluster temporal window.

Visualizing Clusters and Cases on a Map
SaTScan can produce maps for visualizing the spatial extent of
clusters in HTML, KML, and shapefile formats. Locations of
events during the study period can be added to the map and can
be grouped by any variable (eg, case status, age group, and
gender), distinguished using different icons.

A legend that distinguishes events as being Inside Cluster, new
entry; Inside Cluster, not new entry; or Outside Clusters
exceeding the RI signaling threshold can be displayed. Events
are also distinguished as Recent versus Prior to a date specified
on the Recent Events time slider in the HTML file, by default
the start date of the most likely cluster (Figure 3; refer to the
Visualizing Clusters and Cases on a Map: Supplement section
in Multimedia Appendix 1).

Figure 3. HTML visualization produced by SaTScan depicting 4 clusters exceeding the signaling threshold with (artificially generated) events mapped
to their exact locations. Events are distinguished by disease status and whether they are newly identified in a cluster exceeding the signaling threshold.
Disease status may be replaced with any categorical variable included in the case input file.

Drilldown Analysis
Geographically large clusters can be further investigated using
the SaTScan drilldown tool to determine whether events are

randomly distributed or clustered within a cluster (Figure 4;
refer to the Drilldown Analysis: Supplement section in
Multimedia Appendix 1).
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Figure 4. Google Earth visualization of drilldown cluster C1C1 (in orange) identified within cluster 1. The drilldown analysis is one tool for identifying
smaller spatial clusters to help focus investigation efforts and resources.

Line List of Cluster Events
When a cluster is detected, SaTScan can produce a line list of
all events in clusters exceeding the RI signaling threshold with
information such as age, gender, and location of each event.
This may help with determining whether an outbreak
investigation is warranted, as well as with the investigation itself
(refer to the Line List of Cluster Events: Supplement section in
Multimedia Appendix 1).

Examining the line list is also an opportunity to check for data
quality issues and other unintended drivers of signals, such as
duplicate individuals, erroneous addresses, multiple events in
the same household, events that do not ultimately meet the
surveillance case definition, or events for which it can be
determined that an available address is unrelated to an exposure
site (eg, a person experiencing homelessness whose address is
a hospital). Because the purpose of the system is to detect
ongoing community clusters of disease, an analysis may be
rerun excluding these events to determine whether the
community cluster persists. At the BCD, we proactively check
for and correct data quality issues (refer to the Requirements
and System Setup section), but inspecting the line list can detect
problems missed by other routine checks.

In addition, the line list may be useful for filtering detected
clusters by the number of events with certain statuses, for
example, requiring a minimum number of confirmed or probable
cases to investigate. At the BCD, although we scan for clusters
with as few as 2 events, we normally require ≥3 confirmed,
probable, suspected, or pending events to warrant further
investigation. Thus, producing a line list that includes a case
status field can support cluster prioritization.

Automated Email Alerts
The email alert feature can be used to automatically notify up
to 2 groups of recipients of analysis results. One email can notify
that the analysis has been completed, irrespective of the results,
and another email can notify the same or a different group of
recipients when a cluster exceeds the RI signaling threshold
(refer to the Email Alerts section in Multimedia Appendix 1).

Cluster Investigation and Response

A well-developed cluster detection system focuses staff attention
on emerging outbreaks to catalyze field investigations [53]. At
the BCD, disease experts interpret cluster output and determine
whether to launch an investigation and response, which,
depending on the disease, might involve prioritizing patient
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interviews, conducting environmental investigations (eg,
inspecting cooling towers or food service establishments), and
conducting community outreach and education to rapidly
identify outbreak sources and interrupt ongoing transmission.

Discussion

Overview
This tutorial is intended to support public health officials in
understanding the details of the successful communicable
disease outbreak detection system in NYC [2,12-14] and how
to adapt and fine-tune a similar system for their own
jurisdictions. For early outbreak detection, spatiotemporal
methods are preferable to purely temporal methods (eg, the
refined historical limits method [42] and other time-series
analyses) because, if data are analyzed at one resolution (eg, by
county and week) while an outbreak is emerging at a different
resolution (eg, a collection of a few census tracts over a few
days), the outbreak may be difficult to detect. Unlike other
software for spatiotemporal cluster detection (eg, the ArcGIS
Emerging Hot Spot Analysis tool [54]), SaTScan analyzes data
using scan statistics to search flexibly over time and space rather
than within arbitrary administrative boundaries while accounting
for multiple comparisons. SaTScan also avoids the modifiable
areal unit problem [55] when using input data at the finest
geographic resolution available, allowing for more precise
identification of areas with elevated rates, and has options for
spatial adjustments and nonparametric temporal adjustments to
account for jurisdiction-wide trends. SaTScan version 10.1
includes multiple enhancements allowing for increased
customizability, automation, and output visualization, which
have not previously been described in real-world applications.
Assuming input data are timely, complete, and accurate, the
primary limitation of the system is diminished power to detect
spatiotemporal outbreaks involving very few patients or
involving patients located in a long and narrow area, such as
along a river [56].

Health Equity
Our cluster detection system supports the NYC Department of
Health and Mental Hygiene’s mission to protect and promote

the health of all New Yorkers. Many communicable diseases
disproportionately affect residents of high-poverty areas [57].
The faster that public health officials can detect outbreaks
anywhere, the sooner disease transmission can be interrupted
to support health equity and harmful environmental exposures
can be remediated. To minimize the number of patients excluded
from spatiotemporal analyses, we maintain data quality by
proactively correcting typographical errors in addresses failing
to geocode and assigning persons who are unsheltered and
without a geocodable address to a separate category. By
selecting the space-time permutation probability model for our
base analyses, we account for purely spatial patterns, such as
areas with comparatively lower access to care and testing for
reportable diseases. Nevertheless, if very few patients in an
outbreak access care (eg, as a consequence of systemic racism),
then outbreak detection may be delayed or missed entirely.
Hence, better and wider access to health care will not only
benefit those patients but also strengthen public health
surveillance and response efforts that benefit all residents.

Future Directions
Going forward, we advocate for more centralized analytic
technical support for outbreak detection for state, tribal, local,
and territorial public health departments in keeping with the
Data Modernization Initiative [58] and other public health
system investments. We hope to provide video tutorials to orient
new users and foster a community of users to share knowledge
and best practices. While we believe our recommendations
should be generalizable to other jurisdictions in the United States
and internationally, our practical experience is limited to
monitoring certain reportable communicable diseases in one
dense, urban area. To better understand generalizability,
additional jurisdictions will similarly need to add their voices
to this conversation and contribute their experiences using this
system. We are particularly interested in the experiences of
jurisdictions covering larger geographic and rural areas;
experiences using the network locations file with user-specified,
non-Euclidean distances; and the adaptation of this system for
other data streams for infectious diseases, including syndromic
surveillance, social media, wastewater, antimicrobial
susceptibility testing, and veterinary data.
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