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Abstract

Background: During the peak of the winter 2020-2021 surge, the number of weekly reported COVID-19 outbreaks in Washington
State was 231; the majority occurred in high-priority settings such as workplaces, community settings, and schools. The Washington
State Department of Health used automated address matching to identify clusters at health care facilities. No other systematic,
statewide outbreak detection methods were in place. This was a gap given the high volume of cases, which delayed investigations
and decreased data completeness, potentially leading to undetected outbreaks. We initiated statewide cluster detection using
SaTScan, implementing a space-time permutation model to identify COVID-19 clusters for investigation.

Objective: To improve outbreak detection, the Washington State Department of Health initiated a systematic cluster detection
model to identify timely and actionable COVID-19 clusters for local health jurisdiction (LHJ) investigation and resource
prioritization. This report details the model’s implementation and the assessment of the tool’s effectiveness.

Methods: In total, 6 LHJs participated in a pilot to test model parameters including analysis type, geographic aggregation,
cluster radius, and data lag. Parameters were determined through heuristic criteria to detect clusters early when they are smaller,
making interventions more feasible. This study reviews all clusters detected after statewide implementation from July 17 to
December 17, 2021. The clusters were analyzed by LHJ population and disease incidence. Clusters were compared with reported
outbreaks.

Results: A weekly, LHJ-specific retrospective space-time permutation model identified 2874 new clusters during this period.
While the weekly analysis included case data from the prior 3 weeks, 58.25% (n=1674) of all clusters identified were timely—having
occurred within 1 week of the analysis and early enough for intervention to prevent further transmission. There were 2874 reported
outbreaks during this same period. Of those, 363 (12.63%) matched to at least one SaTScan cluster. The most frequent settings
among reported and matched outbreaks were schools and youth programs (n=825, 28.71% and n=108, 29.8%), workplaces (n=617,
21.46% and n=56, 15%), and long-term care facilities (n=541, 18.82% and n=99, 27.3%). Settings with the highest percentage
of clusters that matched outbreaks were community settings (16/72, 22%) and congregate housing (44/212, 20.8%). The model
identified approximately one-third (119/363, 32.8%) of matched outbreaks before cases were associated with the outbreak event
in our surveillance system.

Conclusions: Our goal was to routinely and systematically identify timely and actionable COVID-19 clusters statewide.
Regardless of population or incidence, the model identified reasonably sized, timely clusters statewide, meeting the objective.
Among some high-priority settings subject to public health interventions throughout the pandemic, such as schools and community
settings, the model identified clusters that were matched to reported outbreaks. In workplaces, another high-priority setting, results
suggest the model might be able to identify outbreaks sooner than existing outbreak detection methods.
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Introduction

By March 2021, a total of 340,323 COVID-19 cases were
reported in Washington State. During the peak of the winter
2020-2021 surge, the weekly incidence rate was 284.9 per
100,000 population and the number of reported outbreaks per
week was 231 (Washington Disease Reporting System,
unpublished data, 2023). It is important to identify and
investigate outbreaks of COVID-19 to reduce the spread of the
disease and protect vulnerable populations, such as long-term
care facility residents [1,2]. Outbreaks in these settings are a
high priority because residents have a greater risk of severe
outcomes [3]. However, case and outbreak investigations can
be resource-intensive [4]; thus, it is helpful to use automated
and systematic methods as much as possible. To identify
outbreaks in long-term care facilities, the Washington State
Department of Health (WA DOH) routinely identified cases
occurring at known health care facility addresses through an
automated process; results are shared with local health
jurisdictions (LHJs) [5].

In Washington State, there are 35 LHJs, which are the
administrative public health authorities that manage and oversee
health services at the county or regional level, including case
and outbreak investigations for reportable diseases such as
COVID-19. Aside from facility address matching, other
systematic methods for cluster detection were rare. Reported
outbreaks likely undercounted the true number of outbreaks due
to varying detection methods and data disruptions. When the
volume of cases dramatically increased during short periods of
time, health care systems, including hospitals, laboratories, and
public health, experienced delays which impacted the
completeness and timeliness of reporting and processing case
information. Furthermore, limited testing capacity during surges
resulted in underreporting of mild or asymptomatic cases, further
contributing to incomplete data [6-10]. To aid outbreak detection
using systematic and automated methods, WA DOH initiated
statewide cluster detection using SaTScan, implementing a
space-time permutation model to identify timely and actionable
COVID-19 clusters for local investigation.

Infectious disease space-time surveillance allows health officials
to target resources and interventions in specific areas of
emerging disease [11,12]. Scan statistics are a public health
surveillance method using data models to identify and evaluate
emerging clusters of cases in a temporal, spatial, or space-time
setting [13]. SaTScan is a free software widely used for
spatial-temporal analysis. In public health, SaTScan has been
used for many reportable conditions [14], including foodborne
illnesses [15-17], Lyme disease [18], HIV [19], and opioid
overdoses [20,21]. Space-time cluster detection of COVID-19
cases was implemented throughout the pandemic in many
jurisdictions [11,22-26]. SaTScan is a flexible and adaptable
tool, allowing users to specify a variety of parameters (eg,
analysis type, probability model type, geographic and temporal

data aggregation, study period length, or spatial and temporal
cluster sizes) [26]. The user can tailor the analysis to their
specific data sets and objectives through this customization.
Daily prospective Poisson models [11,22,23,27] were frequently
used for COVID-19; however, models varied based on data
availability, the geographical area of study, and specific study
goals [12,28]. This report details our efforts to implement a
customized systematic approach for COVID-19 cluster detection
in Washington State using SaTScan along with an assessment
of the tool’s effectiveness.

Methods

Data Sources and Model Development

Case Data
During this period, laboratories in Washington State were
required to report all SARS-CoV-2 test results to public health.
The results included specimen collection date and patient
demographics. COVID-19 cases were defined according to
national surveillance [29]. Cases were geocoded based on
residential address using WA DOH’s Geocoder Web Service.
Cases were excluded if the patient resided out of state, did not
have a positive molecular or antigen test during the model study
period (which is defined as the time period included in each
analysis), or if their address could not be geocoded.

Model Development
For the pilot, we chose a state-level retrospective space-time
permutation model. The space-time permutation model was
used because it does not require population testing rates which
were not reliably available at the time. Case patients were
aggregated on specimen collection date, as a proxy for infection
date, and census tract of their residential address, which was
the most complete address available. We selected a maximum
cluster duration of 7 days based on the median incubation period
of COVID-19 [30]. Given this maximum cluster duration, we
selected 21 days for this study’s period, which is the minimum
recommended (ie, 3 times the maximum cluster duration). We
used a day-of-week adjustment given the variability in reporting
on weekends. We tested 3 maximum cluster radii of 5 km, 10
km, and 20 km to determine which provided the best yield across
urban and rural settings. We used a 3-day lag to account for
data reporting delays.

In total, 6 LHJs (Benton-Franklin Health District, Clark County
Public Health, Kitsap Public Health District, Tacoma-Pierce
County Health Department, Spokane Regional Health District,
and Whatcom County Health Department) participated in the
pilot and provided feedback on the initial model. LHJs reported
that the clusters identified from the initial model were larger
(in both size and radius) than were actionable. Based on this
feedback, we tested the following parameters to identify smaller,
more actionable clusters: for analysis type, statewide versus
LHJ-specific and weekly retrospective versus daily prospective;
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for geographic aggregation, census tract versus census block
group; for maximum cluster radius, 5 km versus 10 km versus
20 km; and for data lag, 1-day versus 2-day versus 3-day. To
compare the retrospective and prospective models, we ran the
daily model for 14 days and the weekly model on days 7 and
14. To determine the most appropriate lag, we analyzed data
over several weeks using each lag and compared the identified
clusters. We used heuristic criteria, prioritizing smaller (size
and radius) and timely clusters, to finalize the parameters and
features. Timely clusters were defined as having occurred within
1 week of the analysis—early enough for intervention to prevent
further transmission. The final model was an LHJ-specific,
retrospective space-time permutation with case patients
aggregated on specimen collection date and census block group
of their residential address. The maximum cluster duration was
7 days, the study period was 21 days, and the maximum cluster
radius was 20 km. We used a day-of-week adjustment and a
2-day lag.

SaTScan Cluster Data
The SaTScan cluster data set included all clusters detected since
the inaugural weekly analysis in August through December
2021, representing cases with specimen collection dates from
July 17 to December 17, 2021. This period was selected for its
relatively stable incidence and predominance of the Delta
variant. Variables included were LHJ, cluster start and end date,
radius, number of cases, and P value. Statistical significance
was defined as α<.1 to account for multiple testing. Due to the
weekly retrospective design with the 21-day study period, the
same or similar cluster could be identified in subsequent weeks.
To deduplicate clusters included in this comparison, we
compared clusters week-to-week using the Jaccard similarity
(JS) index [31]. Clusters with a JS index ≤12% were categorized
as new; all other clusters were considered ongoing.

Reported Outbreak Data
Outbreak detection and reporting varies statewide and by
outbreak setting. Known COVID-19 outbreaks are captured in
our state surveillance system, where they are linked to cases.
Due to COVID-19 outbreak definitions and reporting
requirements differing by setting and changing over time, we
applied a standardized definition for this analysis. Outbreaks
were defined as ≥2 cases that were associated with an outbreak
event in the state surveillance system and had specimen
collection dates within 14 days of each other. Start and end
dates were based on the first and last specimen collection date.
We included outbreaks with start and end dates from July 17
to December 17, 2021, and collapsed the original 64 outbreak
settings into 11 broad categories: school and youth programs,
workplace, retail, congregate housing, food and beverage
establishments, community, colleges, travel, long term care
facilities, and outpatient and inpatient settings. Outbreaks linked
to military settings as indicated by LHJs were excluded.

Analysis

Descriptive Analysis
We compared SaTScan clusters among LHJs categorized by
population size. LHJs with a population ≥400,000 persons were
classified as large, 90,000-399,999 as medium, 25,000-89,999

as small, and ≤24,999 as rural. Statistical significance was
determined using chi-square and Wilcoxon tests, using α<.05.
To assess correlation among study period incidence (SPI) and
cluster characteristics, we calculated Pearson correlation
coefficients. SPI was defined as the average number of cases
per 100,000 population during the SaTScan 21-day study period.
Cluster size was defined as the number of cases per cluster and
timeliness as clusters ending within 1 week before the analysis
date.

Outbreak-Cluster Comparison
To assess the ability of the model to detect true outbreaks, we
matched SaTScan clusters, including statistically significant
and nonsignificant clusters, with reported outbreaks. We
validated a random sample of outbreak-cluster pairs with ≥1
case in common to refine the matching criteria. Due to the mean
size of outbreaks and clusters vastly differing, we selected 2
matching criteria. First, ≥20% of outbreak cases had to be
identified in a cluster and, second, ≥6% of cluster cases had to
be identified in an outbreak. We calculated summary statistics
of the matched pairs. Matched and unmatched outbreaks were
compared to determine the types and characteristics of outbreaks
identified as SaTScan clusters. Statistical significance was
assessed using chi-square tests and α<.05. We used R (R Core
Team, 2021) to run SaTScan (version 9.6) and for all other
analyses.

Ethical Considerations
Original data collection was conducted as part of WA DOH
COVID-19 surveillance. As such, per the Office for Human
Research Protections guidelines, institutional review board
approval was not required [32]. As part of public health
surveillance activities authorized by a public health authority,
the secondary analysis of the data described in this study was
excluded from the definition of research provided by the revised
Common Rule [33] and did not receive approval or an
exemption from an institutional review board. The researchers
were granted access to the data as part of their official duties
within the WA DOH.

Results

Model Development
During pilot testing, the statewide model identified clusters that
were large in radius and size, which did not meet the goal of
actionable clusters. Independent models for each LHJ with the
same parameters produced smaller clusters, which did meet that
goal. Therefore, our final design included LHJ-specific models
that were combined to provide statewide results.

Next, we compared daily prospective and weekly retrospective
models. There were 12 significant clusters identified by the
daily prospective model; 10 (83%) of which were also identified
by the weekly retrospective model. While the daily prospective
used more recent data, the model required more resources to
produce and review. Given the overlap between the model
output and resource constraints, we selected the weekly
retrospective analysis for the final model.
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In comparing 1-, 2-, and 3-day lag periods, we found about half
(47/90, 52%) identified similar clusters regardless of lag. The
remainder identified similar clusters across the 2- and 3-day
lag. We chose a 2-day lag to maximize timeliness.

The initial model, which aggregated cases to census tracts,
produced clusters that were too large geographically for public
health action. Using the smaller unit of census block group was
favorable based on heuristic criteria.

Lastly, we tested various maximum cluster radii. The 5-km
model identified the smallest clusters (median radius 3.3, range
0-5, IQR 1.5-4.5 km), followed by the 10-km model (median
radius 5.2, range 0-10, IQR 2.3-8.3 km), and then the 20-km
model (median radius 6.1, range 0-19.5, IQR 2.9-11.3 km). The
20-km radius was determined to capture both smaller clusters
in urban areas and larger clusters in rural areas, and thus was
selected for the final model.

Descriptive Analysis
From July 17 to December 17, 2021, there were 341,505
COVID-19 cases reported among Washington State residents.
Of these, 316,642 (92.72%) had a geocoded residential address.
A median of 41,217 cases was included in each weekly SaTScan
analysis (range 24,996-61,069, IQR 30,863-52,842); a total of
4659 clusters were identified (weekly median 236, range
197-275, IQR 218-248). Clusters included 98,172 unique cases

(28.74% of reported COVID-19 cases); most (2874/4659,
61.68%) were new clusters. The remaining analyses are limited
to new clusters.

Among the 2874 new clusters, 887 (30.86%) occurred in large
LHJs, 890 (30.96%) in medium LHJs, 734 (25.54%) in small
LHJs, and 363 (12.63%) in rural LHJs (Tables 1 and 2). Overall,
the median cluster size was 15 cases (range 2-1045, IQR 8-29)
and significantly differed across population groups (large
P<.001, medium P<.001, small P<.001, and rural P<.001).
Rural LHJs had the smallest median cluster size (4 cases, range
2-28, IQR 3-6) and large LHJs the largest (27 cases, range
5-1045, IQR 16-49). The median number of weekly clusters
per LHJ also differed significantly: rural LHJs had the least (2,
range 1-6, IQR 1-3; P<.001), followed by small (3, range 1-9,
IQR 2-4; P<.001), medium (5, range 1-12, IQR 3-6; P<.001),
and large LHJs (9, range 2-21, IQR 6-11; P<.001). Overall, the
median cluster radius was 2.4 (IQR 0.9-6.88) km. The radius
significantly differed for medium (2.5 km; P=.045), small (3.8
km; P<.001), and rural LHJs (0 km; P<.001). Of the 2874
clusters, 486 (16.91%) were statistically significant in the
weekly analysis. Rural LHJs had a significantly smaller
percentage of significant clusters (37/363, 10.2%; P<.001).
There was no significant difference in duration (overall 4 days,
range 1-7) or timeliness (overall 1674/2874, 58.24%) by the
LHJ population group.

Table 1. Characteristics of new COVID-19 clusters identified by the SaTScan model, by LHJa population group, Washington State, July 17 to December
17, 2021.

Total (N=2874), me-
dian (IQR, range)

LHJ population groupb

Rural (n=363)Small (n=734)Medium (n=890)Large (n=887)

P val-
ue

Median (IQR,
range)

P val-
ue

Median (IQR,
range)

P val-
ue

Median (IQR,
range)

P val-
ue

Median (IQR,
range)

15 (8-29, 2-1045)<.0014 (3-8, 2-28)<.0019 (5-15, 2-113)<.00117 (10-30, 2-
362)

<.00127 (16-49, 5-
1045)

Cluster sizec,d

4 (2-6, 1-21)<.0012 (1-3, 1-6)<.0013 (2-4, 1-9)<.0015 (3-6, 1-12)<.0019 (6-11, 2-21)Weekly clusters

per LHJd

2.4 (0.9-6.8, 0-20)<.0010 (0-7.7, 0-
19.8)

<.0013.8 (0-11.8, 0-
20)

.0452.5 (1.2-6.3, 0-
20)

.302.2 (1.3-4.2, 0-
19.9)

Radius (km)d

4 (2-6, 1-7).0024 (2-5, 1-7)<.0014 (2-6, 1-7).114 (2-6, 1-7)<.0014 (3-6, 1-7)Duration (days)d

aLHJ: local health jurisdiction.
bLarge county population ≥400,000 persons, medium 90,000-399,999 persons, small 25,000-89,999 persons, and rural ≤24,999 persons.
cCases per cluster.
dStatistical significance tested with unpaired 2-sided Wilcoxon test.

The SPI was significantly positively correlated with the weekly
number of cluster cases among large (r=.82; P<.001), medium
(r=0.76; P=.01), and small (r=0.73; P=.01) LHJs and with
cluster size among large (r=0.73; P=.01) and medium LHJs
(r=0.82; P<.001; Figure 1). There were few nonsignificant

moderate correlations between SPI and median cluster size,
number of weekly clusters, and percentage of reported cases
associated with clusters. There was no correlation between the
timeliness of clusters and SPI (large r=–0.19, medium r=–0.22,
small r=–0.12, and rural r=–0.42).
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Table 2. Characteristics of new COVID-19 clusters identified by the SaTScan model, by LHJa population group, Washington State, July 17 to December
17, 2021.

Total (N=2874), n
(%)

LHJ population groupb

Rural (n=363)Small (n=734)Medium (n=890)Large (n=887)

P valuen (%)P valuen (%)P valuen (%)P valuen (%)

486 (16.91).00237 (10.2).07116 (15.8).47171 (19.2).30162 (18.3)Significant clus-

tersc,d

1674 (58.24).83207 (57).29452 (61.6).81525 (59).27490 (55.2)Timely clustersc,e

aLHJ: local health jurisdiction.
bLarge county population ≥400,000 persons, medium 90,000-399,999 persons, small 25,000-89,999 persons, and rural ≤24,999 persons.
cStatistical significance tested with chi-square test.
dCluster’s P value is <.01.
eCluster’s end date was within 1 week of analysis date.

Figure 1. Study period incidence by cluster characteristics stratified by LHJ population group. LHJ: local health jurisdiction.
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Outbreak-Cluster Comparison
There were 2874 reported outbreaks from July 17 to December
17, 2021, and 363 (12.63%) matched to ≥1 SaTScan cluster
(Table 3). Among reported outbreaks, the most common settings
were schools and youth programs (825/2874, 28.71%),
workplaces (617/2874, 21.47%), and long-term care facilities
(541/2874, 18.82%). Among the 363 matched outbreaks, the
most common settings were also schools and youth programs
(108/363, 29.8%), long-term care facilities (99/363, 27.3%),

and workplaces (56/363, 15.4%), as well as congregate housing
(44/363, 12.1%). Of the 2874 reported outbreaks, the settings
with the largest percentage of reported outbreaks that matched
clusters were community settings (16/72, 22%), congregate
housing (44/212, 20.8%), long-term care facilities (99/541,
18.3%), and school and youth programs (108/825, 13.1%).
Settings with <10% of matched outbreaks were workplaces
(56/617, 9.1%), food and beverage establishments (10/113,
8.8%), inpatient (6/77, 8%), outpatient (8/104, 7.7%), colleges
(1/16, 6%), and retail settings (14/287, 4.9%).

Table 3. Reported outbreaks compared with matcheda outbreaks by setting type, Washington State, July 17 to December 17, 2021.

Matched outbreaksReported out-
breaks, n (%)

P value (chi-
square test)

Report date after anal-

ysis dateb, n/n (%)

P value (chi-
square test)

Row percent-
age, %

Column per-
centage, %

N

Nonhealth care settings

<.00142/108 (38.9).6313.129.8108825 (28.71)Schools and youth programs

<.00124/56 (42.9).0039.115.456617 (21.47)Workplacec

.167/14 (50)<.0014.93.914287 (9.99)Retail settingsd

<.0018/44 (18.2)<.00120.812.144212 (7.38)Congregate housinge

.626/10 (60).228.82.810113 (3.93)Food and beverage establish-

mentsf

<.0014/16 (25).01224.41672 (2.5)Communityg

—h1/1 (100).4460.3116 (0.6)Colleges

—1/1 (100).80100.3110 (0.3)Travel

Health care settings

<.00120/99 (20)<.00118.327.399541 (18.82)Long-term care facilitiesi

.775/8 (63).127.72.28104 (3.62)Outpatient

.241/6 (17).2081.7677 (2.7)Inpatient

—119/363 (32.8)—12.631003632874 (100)Total

aMatched is defined as ≥20% of outbreak cases identified in a SaTScan cluster and ≥6% of SaTScan cluster cases identified in an outbreak.
bAll cases were associated with the outbreak event in the surveillance system after the SaTScan cluster was identified.
cWorkplace manufacturing (food: n=24; nonfood: n=162), agricultural employee provided housing (n=71), construction (n=49), professional services
or office-based (n=43), utilities (n=38), agencies, facilities, and similar (n=37), and other settings (n=193).
dRetail services includes grocery (n=144), retail (n=129), personal care and service (hair or nails; n=13), and other (n=1).
eCongregate housing includes shelter or homeless services (n=126), correctional settings (n=59), congregate housing (n=10), juvenile justice settings
(n=6), and others (n=11).
fFood and beverage establishments include food service or restaurants (n=101), bars or nightclubs (n=11), and others (n=1).
gCommunity includes those in places of worship (n=27), hospitality (n=16), large gatherings (n=13), private events (n=11), and others (n=16).
hNot available.
iLong-term care facilities include assisted living (n=260), nursing homes (n=158), adult family homes (n=88), enhanced services facilities or intermediate
care facilities for individuals with intellectual disabilities (n=18), senior living (n=14), and others (n=3).

The median duration among all reported outbreaks was 8 days
(range 1-151, IQR 4-14) and 10 days (range 1-151, IQR 5-16)
among matched outbreaks. Among all reported outbreaks, the
median size was 4 cases (range 2-256, IQR 2-7) and among
matched outbreaks, it was 6 cases (range 2-232, IQR 3-14).

Outbreaks in community settings (16/72, 22%; P=.01),
congregate housing (44/212, 20.8%; P<.001), and long-term

care facilities (99/541, 18.3%; P<.001) were more likely to
match to clusters than other settings, while outbreaks in
workplaces (56/617, 9.1%; P=.003) and retail settings (14/287,
4.9%; P<.001) were less likely to match. For one-third (119/363,
32.8%) of matched outbreaks, all cases were associated with
the outbreak event in the surveillance system after the SaTScan
cluster was identified. This resulted in a “report date” later than
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the “analysis date.” Of the 363 matched outbreaks, those in
workplaces (24/56, 43%; P<.001) and schools and youth
program settings (42/108, 38.9%; P<.001) were more likely to
have report dates later than analysis dates, while outbreaks in
community settings (4/16, 25%; P<.001), long-term care
facilities (20/99, 20%; P<.001), and congregate housing (8/44,
18.2%; P<.001) were less likely (Table 3).

A reported outbreak could match with more than one cluster
and vice versa. The 363 outbreaks matched 349 SaTScan
clusters, which resulted in 384 unique outbreak-cluster pairs.
Matched outbreaks had a median size of 6 (IQR 3-14) cases and

a duration of 10 (IQR 5-16) days. Matched clusters had a median
size of 17 (IQR 12-34) cases and a duration of 5 (IQR 3-6) days.
The median number of linked cases (those common to the
outbreak and cluster in a matched pair) was 3 (range 1-58, IQR
1-6). This represents a median of 40% (IQR 26.4%-60%) of
outbreak cases that were part of the cluster and 12.5% (IQR
8.3%-25%) of cluster cases that were part of the outbreak. The
median JS was 10% (IQR 7.2%-17.8%; Tables 4 and 5). For
an illustrative example, an 8-case workplace outbreak matched
a 29-case cluster by 8 linked cases, with 100% (8/8) of outbreak
cases in the cluster and 28% (8/29) of cluster cases in the
outbreak, resulting in JS was 28%.

Table 4. Characteristics of COVID-19 reported outbreaks and detected clusters that matched, Washington State, July 17 to December 17, 2021a.

Matched clusters (n=349), median
(IQR, range)

Matched outbreaksa (n=363), medi-
an (IQR, range)

17 (12-34, 4-147)6 (3-14, 2-232)Number of cases

5 (3-6, 1-7)10 (5-16, 1-151)Duration (days)

aMatched is defined as ≥20% of outbreak cases identified in a SaTScan cluster and ≥6% of cluster cases identified in an outbreak.

Table 5. Characteristics of COVID-19 reported outbreaks and detected clusters that matched, Washington State, July 17 to December 17, 2021a.

Matched outbreak-cluster pairs (n=384), median (IQR, range)

3 (1-6, 1-58)Number of linked cases

40 (26.4-60, 20-100)Outbreak cases linked (%)

12.5 (8.3-25, 6-100)Cluster cases linked (%)

10 (7.2-17.8, 5-100)Jaccard similarity (%)

aMatched is defined as ≥20% of outbreak cases identified in a SaTScan cluster and ≥6% of cluster cases identified in an outbreak.

Discussion

Principal Findings
During a time when LHJs were heavily burdened with case and
outbreak investigations, WA DOH initiated systematic statewide
cluster detection for COVID-19 using SaTScan. SaTScan
parameters can be adjusted based on study objectives, data
availability, and disease and population characteristics [26,34].
Washington State required a model tailored to its overtaxed
information systems and decentralized public health system,
which serves almost 8 million residents in 39 diverse counties.
We collaborated with LHJs to implement a space-time
permutation model that maximized real-time surveillance data
and identified opportunities for public health intervention.

We assessed a daily prospective model, which would have
provided the most real-time surveillance; however, it did not
produce substantially different results than a weekly
retrospective model. Considering the time and resource
constraints faced by LHJs, we determined the weekly
retrospective model was the most appropriate. Despite having
parameters unique from other studies [11,22,23], the model
worked well in Washington and identified clusters early enough
for intervention. It is important to identify outbreaks as quickly
as possible (when there are fewer cases) to prevent further
transmission and illness. While outbreak size may vary due to

population and disease transmission levels, our analysis showed
that 58.24% (1674/2874) of clusters were timely regardless of
population or incidence. By identifying clusters promptly, LHJs
can conduct targeted investigations, implement containment
measures quickly, and prioritize resource distribution to areas
with the greatest need.

The number of weekly clusters and cluster size were both
correlated with population; more and larger clusters were
identified in highly populated urban areas which generally have
larger health departments with greater epidemiologic capacity
[35]. These data support the use of a systematic statewide
approach as it benefits LHJs with varying populations and
resource capacity, ensuring that all LHJs, regardless of
resources, can effectively manage outbreaks by leveraging a
standardized, statewide surveillance system.

Space-time scan statistics have successfully identified
respiratory disease outbreaks [13,23,36], including COVID-19
[37]. To determine if the model could identify true outbreaks,
we compared clusters with reported outbreaks. Generally, we
did not expect a high degree of alignment between reported
outbreaks and SaTScan clusters, given SaTScan was intended
to fill gaps in current outbreak detection methods. Given the
use of residential address as the geographic input for the model,
outbreaks in congregate living settings (eg, long-term care
facilities or corrections) had a high cluster matching rate as
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expected. Outbreaks that occur further from the home, such as
in workplaces, would likely be harder for the model to detect.

During the COVID-19 pandemic, several settings have been a
high priority and focus for public health interventions, including
workplaces, community settings, and schools. Workplaces, the
second most common setting among reported outbreaks in
Washington State, play a central role in the COVID-19
community transmission [38-40] and have been subject to safety
prevention requirements throughout the pandemic [41] to reduce
the spread of the disease. As expected, workplace outbreaks
matched fewer clusters than all reported outbreaks. Incorporating
workplace addresses may have helped, however occupational
and industry data for COVID-19 are largely incomplete and
often not standardized, which may create barriers to
systematically identifying workplace outbreaks [39,42]. Efforts
to collect and standardize these data and improvement of
occupational health surveillance may address this [38].

Community settings have also been a high priority for public
health interventions. In fall 2021, when SaTScan was first
implemented in Washington State, many efforts were made to
implement safety precautions, including limiting capacity at
events and gatherings [43], masking [44], and vaccination
requirements at large events [45]. Outbreaks among community
settings made up only 2.51% (72/2874) of all reported outbreaks,
yet 22.2% (16/72) of these outbreaks were linked to clusters,
suggesting SaTScan might be a useful method for systematically
detecting these types of outbreaks.

The model performed moderately well for schools and youth
programs, another high priority and focus of public health
interventions. For the 2021-2022 school year in Washington
State, public health officials collaborated on guidance to allow
students to return safely to in-person instruction [46]. Given
their residential proximity, we expected a high cluster match
rate for educational settings. Schools and youth programs were
the most common setting among reported outbreaks as well as
matched outbreaks. However, only 13.1% (108/825) of school
outbreaks matched a cluster compared to 12.63% (363/2874)
overall, arguably leaving room for improvement. The model
could be further tailed to capture outbreaks in educational
settings by incorporating school district-level models or
including age as an input variable.

Lastly, about a third of outbreaks that matched clusters had a
report date in the surveillance system that was later than when
the cluster was identified by the model. This suggested that the
model might be able to identify outbreaks earlier than existing

outbreak detection methods. Detecting outbreaks sooner allows
for quicker implementation of containment measures, reducing
the spread of the disease and minimizing the impact on
communities. By automating the detection process, local public
health workers can spend more time on the outbreak intervention
measures and less on the initial outbreak detection and
investigation work.

The findings in this report are subject to several limitations.
First, the model does not account for irregular geographics, such
as major waterways. Second, residential address was used to
determine outbreak detection as this was the most complete and
available. However, residential addresses may not be the most
representative of where exposure occurs and may limit the
identification of clusters where transmissions happened away
from home. Third, reported outbreaks are identified through
many indicators and sources that vary by LHJ, contain known
biases including lags or gaps during surges [6-9], and likely
underestimate actual outbreaks [47,48]. Fourth, because the
final model was run independently for each LHJ,
cross-jurisdictional clusters were not identified and thus not
matched with similar outbreaks. Lastly, as expected, relatively
few SaTScan clusters matched outbreaks, and without further
investigation to identify epidemiologic or genomic linkages,
we cannot determine if unmatched clusters are true outbreaks.

Conclusion
Our goal was to implement a statewide systematic cluster
detection process to identify COVID-19 clusters. WA DOH
successfully developed and implemented a SaTScan space-time
permutation model that met these goals within the state’s unique
structure and systems. Regardless of the LHJ population, the
model identified reasonably sized, timely clusters for
investigation and resource prioritization. Cluster size increased
with incidence but likely remained actionable even for smaller
LHJs. Among reported outbreaks that matched clusters, the
model performed well in congregate living settings, schools,
and events, which have been high-priority settings throughout
the COVID-19 pandemic. There is an opportunity to tailor the
model to further improve cluster detection in some settings,
such as workplaces and schools. Evidence suggests running a
weekly model might identify some outbreaks sooner than
existing outbreak detection methods, particularly in workplace
outbreaks where data collection remains a challenge. In
summary, our SaTScan model was able to identify timely,
actionable clusters, especially in high-priority settings, which
can serve to support outbreak detection to reduce further
COVID-19 transmission.
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