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Abstract

Background: Adverse events associated with vaccination have been evaluated by epidemiological studies and more recently
have gained additional attention with the emergency use authorization of several COVID-19 vaccines. As part of its responsibility
to conduct postmarket surveillance, the US Food and Drug Administration continues to monitor several adverse events of special
interest (AESIs) to ensure vaccine safety, including for COVID-19.

Objective: This study is part of the Biologics Effectiveness and Safety Initiative, which aims to improve the Food and Drug
Administration’s postmarket surveillance capabilities while minimizing public burden. This study aimed to enhance active
surveillance efforts through a rules-based, computable phenotype algorithm to identify 5 AESIs being monitored by the Center
for Disease Control and Prevention for COVID-19 or other vaccines: anaphylaxis, Guillain-Barré syndrome, myocarditis/pericarditis,
thrombosis with thrombocytopenia syndrome, and febrile seizure. This study examined whether these phenotypes have sufficiently
high positive predictive value (PPV) to ensure that the cases selected for surveillance are reasonably likely to be a postbiologic
adverse event. This allows patient privacy, and security concerns for the data sharing of patients who had nonadverse events can
be properly accounted for when evaluating the cost-benefit aspect of our approach.

Methods: AESI phenotype algorithms were developed to apply to electronic health record data at health provider organizations
across the country by querying for standard and interoperable codes. The codes queried in the rules represent symptoms, diagnoses,
or treatments of the AESI sourced from published case definitions and input from clinicians. To validate the performance of the
algorithms, we applied them to electronic health record data from a US academic health system and provided a sample of cases
for clinicians to evaluate. Performance was assessed using PPV.

Results: With a PPV of 93.3%, our anaphylaxis algorithm performed the best. The PPVs for our febrile seizure,
myocarditis/pericarditis, thrombocytopenia syndrome, and Guillain-Barré syndrome algorithms were 89%, 83.5%, 70.2%, and
47.2%, respectively.

Conclusions: Given our algorithm design and performance, our results support continued research into using interoperable
algorithms for widespread AESI postmarket detection.

(JMIR Public Health Surveill 2024;10:e49811) doi: 10.2196/49811
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Introduction

Background
The US Food and Drug Administration (FDA) Center for
Biologics Evaluation and Research (CBER) is responsible for
ensuring the safety, purity, potency, and effectiveness of
biological products. This includes vaccines; allergenics; blood
and blood products; and cell, tissue, and gene therapies for the
prevention, diagnosis, and treatment of human diseases,
conditions, or injuries [1]. The FDA’s history of safety
surveillance for vaccines includes the creation and monitoring
of the Vaccine Adverse Event Reporting System (VAERS).
VAERS, jointly administered by the FDA and the Centers for
Disease Control and Prevention (CDC), accepts spontaneous
reports of suspected vaccine adverse events (AEs) after
administration of any vaccine licensed in the United States.

VAERS has been successfully used as an early warning system
to identify rare AEs; however, it has limitations. VAERS is a
passive surveillance system that relies on individuals, patients,
and clinical staff to send in reports, as opposed to automatically
collecting them based on clinical data. This can lead to
undercounting AEs. In addition, a causal relationship cannot
be established using information from VAERS reports alone
[2]. Because of VAERS’s limitations, more robust data systems
are needed to enhance AE detection. These systems would be
especially important for detecting the most severe AEs that
require medical attention so that the FDA and CDC can offer
guidance for these potentially life-threatening events and ensure
that product labeling reflects known risks.

To address this gap, CBER established the Biologics
Effectiveness and Safety Initiative (BEST) Initiative in 2017 to
build data assets, analytics, and infrastructure for an active,
large-scale, efficient postmarket surveillance system that can
evaluate the safety and effectiveness of biologic products and
develop innovative methods [3]. The BEST system is a
collection of real-world data (RWD) sources: data related to
patient health status and the delivery of health care that are
routinely collected from several sources, such as electronic
health record (EHR) or claims data [4]. EHR databases,
specifically, are a rich source of information. They include data
such as clinical notes, which can help address the limitations
of VAERS. They also include entire populations of patients to
identify whether cases are underreported. In addition, they may
include patients’ entire clinical history, which can help establish
a causal relationship for an AE. BEST has reached agreements
with a limited number of foundational data partners. Access to
these data partnerships does not fully address the possible
undercounting of AEs of special interest (AESIs). However,
these partnerships allow accelerated development and testing
of AESI detection algorithms.

BEST is currently researching a system of distributed
computable phenotype algorithms that could be applied at scale
to many or all EHR systems across the United States to

semiautomatically detect and report potential AESIs from RWD.
Such a system could increase the speed and scope of AE
surveillance beyond what is currently available to public health
agencies through data partner agreements. To be candidate
phenotypes for distributed surveillance use, the phenotypes need
to identify probable AEs and avoid false detections. This reflects
the need to balance the correct detection of AESIs with the
protection of privacy and the reduction of burden on health
provider systems. For the wider population of health providers
to consider deploying such detection algorithms, these
phenotype algorithms need to have reasonably high performance
(measured by positive predictive value [PPV]) to ensure that
the cases identified as AEs are likely to be verifiable cases with
the outcome of interest. Toward this goal, the computable
phenotypes in this study focus on existing EHR data reflecting
a detected AE, which are reportable events for public health
purposes. The algorithmic identification of undetected AEs or
AEs that were not coded properly is beyond the scope of this
study. Such research must include data from patients who had
no AEs to fully evaluate the performance of a computable
phenotype algorithm. Although scientifically desirable in the
long term, the inclusion of non-AE cases falls outside of initial
goals for a distributed surveillance system, which is assessing
performance (measured by PPV) of the phenotypes for
wide-scale surveillance purposes. The goal of distributing the
phenotypes also poses limitations on designing the algorithms.
Specifically, the components and complexity of the underlying
algorithms need to take into account the current EHR standards
and technology because they must be deployable and executable
across EHR databases without imposing large overhead on
health provider systems. If the phenotypes have sufficient PPV
and are sufficiently easy to implement at health provider sites,
the FDA could share the phenotypes to detect AESIs following
vaccination in EHRs across the country, which could then be
reported to the FDA for further review. The ability to detect
AESIs using RWD could create an active surveillance system
that enhances overall vaccine safety and helps make
recommendations to minimize risks for postvaccination AESIs.
The implementation of algorithmic detection and automated
reporting of AESIs found in RWD has been shown to increase
the odds of submitting a VAERS report by >30 times the
preimplementation rate [5].

Objective
Although there is a history of studies around postvaccination
AESIs, including those for influenza [6-8] and COVID-19
vaccines [9-13], there has been an increased interest in the
analysis of vaccine safety and surveillance since the emergency
use authorization (EUA) of 3 COVID-19 vaccines in the United
States (Pfizer-BioNTech, Moderna, and Novavax) and their
subsequent boosters (eg, bivalent boosters). The FDA hopes to
contribute to this research through the development and
performance validation of phenotypes for 5 postvaccination
AESIs to identify potential vaccine safety events within EHR
databases for this study. The 5 AESIs chosen include
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myocarditis/pericarditis, anaphylaxis, Guillain-Barré syndrome
(GBS), intracranial or intra-abdominal thrombosis with
thrombosis with thrombocytopenia syndrome (TTS), and febrile
seizure. These AESIs were chosen because they are documented
priorities of the CDC’s vaccine surveillance [14] for COVID-19
vaccine safety. In addition, several of these AESIs (anaphylaxis,
GBS, and febrile seizure) are found following exposure to other
vaccines, such as influenza; shingles; pneumococcal conjugate;
and measles, mumps, and rubella. This study describes the
methods to develop and validate these 5 computable phenotype
algorithms on an EHR database and the validation results. It is
part of the FDA’s efforts to improve postmarket surveillance
and is valuable for public awareness, safety, and transparency.

Methods

Ethical Considerations
Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. This study was part of the Sentinel activities
conducted by the FDA as part of its postmarket surveillance
duties. The Office of Human Research Protection (OHRP) in
Health and Human Services (HHS) determined that the studies
done under the Sentinel programs are not subject to regulation
(45 CFR part 46) administered by OHRP. Written informed
consent to participate in this study was not required from the
participants or the participants’ legal guardians or next of kin
in accordance with the national legislation and the institutional
requirements.

Computable Phenotype Development

Overview
In total, 5 AESIs were selected to develop computable
phenotypes for our validation study. The study’s main focus
was detecting COVID-19 vaccine–related AESIs; therefore, we
selected AESIs that the CDC specifically identified for
monitoring after COVID-19 vaccination [14] or AESIs that
have been reported for some subpopulations [15]. Given the
uncertainty about the future use of COVID-19 seasonal boosters,
the FDA also wanted to ensure that the AESIs selected had

broad applicability to the safety surveillance of other widely
used vaccines such as influenza; shingles; pneumococcal
conjugate; diphtheria-tetanus-pertussis; and measles, mumps,
and rubella. Three of our 5 selections met those criteria given
in the CDC’s documented monitoring of anaphylaxis [16], GBS
[17], and febrile seizures [18] for at least one of the vaccines
listed.

The phenotype algorithms were designed to be relatively simple
and interoperable so that any new health care organization’s IT
department could translate and run them on their EHR database.
They were built to query only structured data for interoperable,
standard codes, such as Logical Observation Identifiers Names
and Codes, Systematized Nomenclature of Medicine Clinical
Terms, and RxNorm, so that the algorithm can be generalized
or translated across different EHR systems. Historically, this
has been a challenge for developing algorithms, since EHR
databases often contain their own local code systems specific
to the EHR vendor. For example, for this effort, we worked
with the study partner to map Cerner Multum medication and
observation codes to standard RxNorm and Logical Observation
Identifiers Names and Codes, respectively.

Recent regulation now requires each EHR database to have an
application programming interface (API) endpoint that translates
any EHR data and many of the EHR’s proprietary codes to the
United States Core Data for Interoperability (USCDI)
implementation of the Fast Healthcare Interoperable Resources
(FHIR) specification [19]. This specification requires the use
of interoperable, published code lists [20] (Table 1). These code
systems cover almost all clinical events for the detection of
AEs, such as medical diagnoses, medication prescriptions,
laboratory tests or vital signs taken, and procedures performed.
These APIs currently focus on supporting use cases where a
single patient’s data are queried as opposed to aggregate
searches across patients; therefore, we were unable to use them
to identify the cohort that our phenotype would select. We were,
however, able to use the FHIR API endpoints to pull data for
each patient in our validation samples so that the participating
clinicians could have data with the standard, interoperable code
sets for their review.
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Table 1. AESIa case definitions and descriptions.

Case definition refer-
ence

DescriptionAESI

Morgan et al [21],
2008

Myocarditis and pericarditis are inflammatory processes involving the myocardium, pericardium, or both
(myopericarditis).

Myocardi-
tis/pericarditis

Rüggeberg et al
[22], 2007

Anaphylaxis is an acute hypersensitivity reaction with multiorgan system involvement that can present as,
or rapidly progress to, a life-threatening reaction. It may occur following exposure to allergens from a variety
of sources, including food, aeroallergens, insect venom, drugs, and immunizations.

Anaphylaxis

Sejvar et al [23],
2011

GBS constitutes an important proportion of acute flaccid paralysis cases worldwide. It is a condition charac-
terized by various degrees of weakness, sensory abnormalities, and autonomic dysfunction due to damage
to peripheral nerves and nerve roots.

GBSb

Chen and Buttery
Monashm [25], 2021

Several cases of unusual thrombotic events and thrombocytopenia have developed after vaccination with the
recombinant adenoviral vector encoding the spike protein antigen of SARS-CoV-2 (ChAdOx1 nCov-19,
Astra Zeneca). More data were needed on the pathogenesis of this unusual clotting disorder [24].

Intracranial or
intra-abdominal

TTSc

Marcy et al [26],
2004; Bonhoeffer et
al [27], 2004

There is no Brighton Collaboration definition of febrile seizure, so we used both the fever and seizure case
definitions. Fever is defined as an elevation of body temperature above normal. It is usually caused by infection
but can also be associated with several immunologic, neoplastic, hereditary, metabolic, and toxic conditions.
Seizures are episodes of neuronal hyperactivity, most commonly resulting in sudden, involuntary muscular
contractions.

Febrile seizure

aAESI: adverse event of special interest.
bGBS: Guillain-Barré syndrome.
cTTS: thrombosis with thrombocytopenia syndrome.

To facilitate health provider organizations’ability to implement
these queries on their EHR, phenotypes were rules based, used
only certain types of structured data, and used common logic
across AESIs. The general phenotype logic has been used
previously for several postvaccination AESI studies at the FDA
to identify potential AESI cases [28,29] and reuses concepts
and methods from past literature from US-based collaborative
health research groups, such as Observational Health Data
Sciences and Informatics (OHDSI) [30], or from similar efforts
in the United Kingdom [31] to develop computable phenotype
libraries. A health organization only needs to write the general
query logic once and then this logic would be able to detect

different types of AESIs by referencing different lists of medical
codes that represent the different medical events providing
evidence that the various AESIs occurred. The logic common
to all phenotypes is shown in Figure 1. The code lists that we
developed for necessary types of medical evidence are described
in more detail below and listed in Table S1 in Multimedia
Appendix 1 [21-23,25-27]. The circled items in Figure 1
represent a search for an FHIR resource element containing a
code in one of the developed code lists. These were applied
within the windows of time denoted by the brackets identifying
windows of time before and after a condition diagnosis. The
concepts in Figure 1 are described in additional detail below.

Figure 1. Composition algorithm modified for each adverse event.

AESI Diagnoses and Problem List Items
The algorithm first looks for evidence of the AESI represented
by a coded final or discharge diagnosis. Only final or discharge
diagnoses are used since they best represent the ultimate
determination of what was diagnosed during the patient’s care.

The variability of admitting, working, and other diagnosis types
lack the specificity required for the algorithm in this study.

Care Setting Filters
In addition, the care setting for every diagnosis was collected
based on the medical encounter type for the diagnosis. All
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diagnosis care settings values were grouped into inpatient,
outpatient, or emergency care setting types. Care setting was
used to filter out diagnosis codes made during encounters with
care settings unlikely to have the specific AESI diagnosis in the
phenotype. The included care settings are defined by case
definition and clinician input.

Clean Window
Next, a clean window (ie, a period before the coded diagnosis
identified in step 1) is checked to ensure that the target diagnosis
is the first known diagnosis of its type. This prevents the
inclusion of historical or ongoing conditions. For all algorithms
in this paper, the clean window is defined by all historical patient
data in our data set. To make sure that all patient cases had at
least a 1-year clean window, we pulled an additional historical
year of data from our data partner before the study period. Cases
where there were multiple occurrences of an AESI diagnosis
suggested possible evidence of a chronic condition unrelated
to vaccine exposure and thus were excluded.

Condition Window
Finally, the algorithm searches for sufficient supportive evidence
within a condition window. The condition window is defined
around the AESI diagnosis date and includes the entire medical
encounter period when the condition was diagnosed, as well as
2 days before and 10 days after a condition is diagnosed. Clinical
subject matter experts defined condition windows as the
timeframe around a diagnosis that supportive evidence would
likely present itself in the medical record.

Supporting Evidence
Within the condition window period, the algorithm may filter
cases based on supporting evidence of an AESI. This filter looks
for either laboratory test results found in observations, AESI
treatment procedures, AESI treatment medications, or procedure
or a combination of the 3 supporting evidence with a code that
matches a code on to the phenotypes’concepts code lists. These
code lists in the lists aim to include all medical codes that could
represent a particular concept, such as administration of
epinephrine for an anaphylactic reaction. This AESI supporting
evidence filter was applied to all phenotypes except for our
febrile seizure AESI phenotype because a review of existing
research [32] showed febrile seizure algorithms, in general, had
the highest PPV among the selected AESIs. The concepts to
build code lists for the supporting evidence were identified using

case definitions. Following this, we prioritized improving
specificity in the other AESI phenotypes by including filters
requiring additional supporting evidence [32-35] and our
clinician’s input.

Vaccine Exposure
In real-world operation, the algorithm would also include a
vaccine exposure and risk window or a period surrounding
vaccination in which diagnoses are searched. For the study’s
purposes of having sufficient volume and statistical power to
estimate operating characteristics of the algorithm, these
exposure rules were not included.

Additional Details
Ideally, to assess whether these algorithms generalize to other
sites, we would have a multisite validation study. Because of
the high cost of data agreements, however, we only had data
available for a single EHR site. To avoid overfitting and
ungeneralizable results, we designed our algorithm development
methods to only use our EHR data as a validation set and not
use any of it to train, develop, or fine-tune the algorithm. While
this does not remove the need for additional external validation,
it reduces the likelihood of finding ungeneralizable results. To
identify what medical concepts the algorithm should use as
evidence, clinicians identified observations, medications,
conditions, and procedure concepts from the AESI’s case
definition, their relevant clinical experience, or other research
from their literature review. A brief description of the AESI and
the reference of the case definition used is captured in Table 1,
and additional information on the case definition is saved in
Table S2 in Multimedia Appendix 1 [21-23,25-27].

An analyst completed a text search for a list of terms for these
identified concepts, a list of which is captured in Table S2 in
Multimedia Appendix 1, to build the code lists of relevant codes
from selected interoperable coding libraries (Textbox 1)
[21-23,25-27]. This was accomplished by searching the
open-sourced OHDSI Observational Medical Outcomes
Partnership concepts table and ATLAS tool (OHDSI
community) [36], which is a collection of thousands of
interoperable codes and their definitions and descriptions. The
table was searched for any definition or description that matched
the identified concept for the interoperable code systems that
we listed in Textbox 1 and then was reviewed by a clinician for
their suitability for the algorithm.

Textbox 1. Codes used for each type of clinical data.

Clinical data and interoperable code lists used

• Diagnosis: International Classification of Diseases, Tenth Revision, Clinical Modification, Systematized Nomenclature of Medicine Clinical
Terms

• Medication or immunization: National Drug Code, RxNorm

• Procedures: Current Procedural Terminology, International Classification of Diseases, 10th Revision Procedure Coding System

• Observations: Logical Observation Identifiers Names and Codes

The immunization and the diagnosis International Classification
of Diseases, 10th Revision, clinical modification (ICD-10) and
Systematized Nomenclature of Medicine Clinical Terms code
lists have been published on the Value Set Authority Center

[37], and the additional observation, medication, and evidence
code lists may be added in the future after this study is
published.
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For a surveillance use case, the algorithms need be run regularly
(eg, daily or weekly) to collect batches of historical cases once
all the data are available (as opposed to a real-time
implementation to collect cases as they are happening). Because
the algorithms were created to prioritize simplicity and
interoperability rather than maximize total performance (eg,
metrics beyond PPV such as sensitivity and, negative predictive
power, etc), this study aimed for improved performance
(measured by PPV) to existing AESI claims-based algorithms.
Given our knowledge of how some crucial distinguishing
information is part of unstructured clinical notes, which are not
considered by the algorithms in this study, we expect further
analysis is needed to improve accuracy [38,39]. Natural
language processing techniques can improve algorithm
performance but greatly increase the deployment complexity
across health care organizations. Therefore, no natural language
processing techniques were used for any phenotypes designed
for this study.

Study Period
The study period spanned from January 1, 2018, through May
1, 2022, to ensure that the study’s data sampled patients both
before and after the FDA issued the EUA and full licensure for
COVID-19 vaccines. We also pulled at least 1 year of historical
data for all patients; therefore, our data set includes historical
information from January 1, 2017, to January 1, 2018, for all

patients with medical encounters in the study period. Patients
were included even if there were no clinical events in their
historical period.

Data
The study population came from a single academic health system
in the United States, with EHR medical encounter data from
>2.6 million patients and >20.7 million medical encounters for
the study period. Table 2 shows the demographic breakdown
for age, gender, race, and ethnicity of this population.

The entire EHR population during the study period was eligible
to be selected by one of our developed phenotype algorithms.
There were no age-related, medical condition–related, or other
exclusions on the population for the algorithm to select cases.
Clinical data necessary to select and validate cases selected by
the algorithm were provided to the study team through a series
of EHR data extracts for all patients in the study period. The
algorithm required the following clinical data categories:

• demographic
• encounter
• condition
• procedure
• medication
• observation
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Table 2. Demographics of academic health system for study population (N=2,666,974).

Patients, n (%)Category and demographic group

Age (y)

96,146 (3.6)<5

224,941 (8.4)5-17

224,631 (8.4)18-24

840,395 (31.5)25-44

689,075 (25.8)45-64

591,497 (22.2)≥65

289 (0.01)Missing

Sex

1,167,374 (43.8)Male

1,494,096 (56.1)Female

5504 (0.2)Missing

Race

748,746 (28.1)Black or African American

5834 (0.2)American Indian or Alaska Native

53,666 (2)Asian or Pacific Islander

1,030,834 (38.7)White

198,265 (7.4)Other

629,608 (23.6)Unknown

21 (0)Declined to answer

Ethnicity

94,207 (3.5)Hispanic

1,866,561 (70)Non-Hispanic

706,206 (26.5)Unknown

EHR data extracts were mapped and loaded into an OHDSI
Observational Medical Outcomes Partnership database [40].
Medication, observation, and procedure data extracts were
requested and loaded into the database only for patients who
would not be disqualified by other algorithm criteria. For
patients selected to be in the validation sample, these data along
with the clinical data for allergies, immunizations, and clinical
notes were pulled from the EHR’s FHIR API endpoints, patient
by patient, using a custom Python script to loop through the
patients in the sample. The data were loaded into a Health Level
7 API (HAPI) FHIR server. We only pulled FHIR data for cases
not initially disqualified by the vaccination and diagnosis filters
to avoid unnecessary large data transfers and storage. The
algorithm flagged potential AESIs that met the specified criteria.
Samples of these cases were sent to physicians for validation.

Validation Sample
Once the algorithm identified cases, a random sample was drawn
for each AESI for clinician adjudication. We used stratified
sampling to ensure cases during pre– and post–COVID-19 EUA
periods were represented (Figure 2). This was due to concerns
regarding potential confounding introduced by the COVID-19
vaccines, when attention to possible AESIs or medical charting
of AESIs may have shifted. Where possible for each AESI, 100
cases were sampled from the pre–COVID-19 EUA period and
35 from the post–COVID-19 EUA period. If there were <100
or <35 cases during these periods, respectively, the sample
would contain all cases the algorithm selected. Febrile seizure
was the exception, as we believe the COVID-19 vaccine EUA
should not affect the algorithm’s performance because febrile
seizure AEs are usually associated with pediatric populations,
and the COVID-19 vaccine was not approved for these
populations during the study period [27].
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Figure 2. Study population CONSORT (Consolidated Standards of Reporting Trials) diagram. EUA: Emergency Use Authorization; GBS: Guillain-Barré
syndrome; N/A: not applicable; TTS: thrombosis with thrombocytopenia syndrome.

Case counts sampled in each period were based on the incidence
of diagnosis code occurrence within each period, as well as the
period covered. In addition, we added negative controls selected
randomly from every encounter in the period to establish a
baseline comparison for the case validation process. We included
negative controls as a quality control step to reduce the chance
of quality issues with the data and to review the methods our
clinicians were following and not for the purpose of making
inferences about the phenotypes’performance for non-AE cases
(eg, through metrics such as sensitivity, negative predictive
power, or an overall metric for performance). This study did
not focus on the algorithmic identification of undetected AEs
or AEs that were not coded properly. The focus of this study
was to determine the phenotypes’ PPV. Given the expense of
clinicians’ time for validations and the rarity of the AESIs, there
would be minimum benefit to this study to have a negative
control sample large enough to draw strong inferences.
Furthermore, negative case controls would not further validate
the utility of the phenotypes as tools for identifying probable
AESIs through distributed surveillance. We added 20 negative
controls from the pre–COVID-19 EUA period and 7 from the

post–COVID-19 EUA period. Physicians were blinded to which
cases were controls and which were not.

Chart Review Process
The sample of cases used to validate the algorithm was loaded
into a chart review tool for clinician review. This allowed the
clinicians to sort through the clinical information for a case and
record the determination. Each case was assigned to 2 clinicians
for review. The clinical validation used a patient’s full clinical
history, which included EHR data, including all clinical notes
for each case. The full EHR data used for clinician review
included data unused by the detection algorithm described in
the Computable Phenotype Development section, including
different types of data (eg, allergies and clinical notes) and data
filtered out (eg, admitting diagnosis and encounters with
different care settings).

For each case, the clinician evaluated whether the clinical data
evidence met the specified case definition criteria. Relevant
patient data for the case window were available and presented
to the clinicians in an easy-to-use, browser-based tool with a
custom user interface. In the tool, clinicians were able to group
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items by type, search across all items and text, and request
additional chart data to expand the window and access any
available historical patient data, if desired.

All suspected AEs were validated using published case
definitions [21-23,25-27] according to the levels of diagnostic
certainty: level 1 (definite), level 2 (probable), and level 3
(possible). If a case did not meet one of the levels in the case
definition, it was assigned as level 4 (doubtful) or level 5 (ruled
out). “Ruled out” is distinct from “doubtful” in that “ruled out”
cases have definitive evidence disqualifying them from being
a correct diagnosis. If a case was determined to be “definite”
or “probable,” it was considered a positive case of the AESI.

In the event of a disagreement between a positive and negative
clinical review, a third clinician made a final determination by
reviewing the case EHR data. If the clinicians found the
structured or unstructured EHR data was insufficient, they
marked this in their review by creating a level 3 (possible,
insufficient evidence) designation, where an AESI could have
occurred, but where there was not enough documentation to
fulfill the requirements of the case definition.

Statistical Analysis

PPV of Algorithms
Each algorithm’s PPV was the proportion of positive AEs the
algorithm identified that were confirmed by clinical
adjudication. PPVs were calculated for each AESI overall, as
well as stratified by pre– and post–COVID-19 EUA periods
and care setting (inpatient, emergency department, or
outpatient). Sensitivity analyses were performed to evaluate the
impact of medication use, different case definitions, and levels
of evidence. PPVs were calculated in 2 different ways for each
AESI algorithm. The first PPV calculated removed all possible
cases with insufficient evidence from the denominator (cases
labeled “definite” and “probable”/total cases minus any labeled
“possible, insufficient evidence” by clinicians). PPV was then
calculated with the cases with insufficient evidence added back
into the denominator (cases labeled “definite” and
“probable”/total cases). Reporting both PPV calculations can
help with understanding the performance for different algorithm
uses. Algorithm performance should ideally be compared with
past literature of detection algorithms for the same AESI.

CI Values
Because PPV is a binominal proportion, we calculated CIs for
the PPV using the Agresti-Coull interval [41], which is the
recommended method for estimating accurate CIs for binomial
proportions such as PPV [42].

Interrater Reliability
Interrater reliability was used to measure the extent to which 2
physicians agreed in their AESI assessment. It was calculated
using Cohen κ between the first 2 reviewers. Cohen κ measures
the agreement between 2 raters classifying instances into
mutually exclusive groups [43].

Stratification Analysis and Sensitivity Analysis
After validation was completed, we conducted a stratification
and sensitivity analysis. We selected 2 stratification variables
that could reasonably impact the generalizability of the results.
First, we stratified the data by pre- and post-EUA date to
confirm that the algorithm behavior did not change for AESIs
after the COVID-19 vaccine was approved and administered to
a large portion of the population. Ideally, the algorithms would
perform consistently across these eras, but there are multiple
factors that could impact the performance over these time
periods. We also stratified the data by the care setting of the AE
diagnosis, given that care settings may be associated with
varying EHR data elements (eg, emergency departments
compared with inpatient settings). Algorithm performance was
computed using PPV within each stratum.

We also completed a post hoc sensitivity analysis where we
investigated whether the algorithm could be improved, as
measured by PPV, through small changes to it or by updating
the process for evaluation. These changes were based on insights
from clinicians or data analysts reviewing validation results, so
results may not generalize to other data sets. However, we did
attempt to limit our analysis to decisions that could have been
feasibly made without postvalidation insights. The changes to
the algorithms were either removing medications, observations,
procedures, or diagnosis codes that are not specific enough to
the AESI in question or adding logic to further filter out cases
by requiring more supporting evidence (Table 3).

The stratification or sensitivity analyses are meant as exploratory
analyses to prompt additional research, but subgroups often
have too small a sample size that have narrow enough CIs for
meaningful results.

We also completed a sensitivity analysis on the GBS algorithm
to calculate the PPV if we relaxed some of the specific case
definition evaluation criteria and if more general evidence was
available. We found that the 2 pieces of evidence that the case
definition required were often missing in the chart review tool:
lack of cerebrospinal fluid (CSF) white blood cell (WBC) count
in cases of elevated CSF protein and limited or inconsistent
documentation of diminished or absent reflexes. In some of
these cases, we saw evidence that a neurologist was consulted
and felt there was strong suspicion of GBS despite the missing
documentation for these tests. This could be explained by 2
mechanisms.

First, and most likely, this could be due to data loss during the
delivery or translation of EHR data to our chart review tool.
Because we did not have direct access to the data, our process
for obtaining, translating to different common data models or
standards, and presenting the data to clinicians using the chart
review tool could cause the data for these tests to be incorrectly
mapped.
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Table 3. Total list of all sensitivity analyses for each adverse event of special interest (AESI).

ReasoningSensitivity analysisData typeAESI

NSAIDs are medications that can be used to treat many different
conditions besides myocarditis and pericarditis.

Removal of NSAIDsa from our list of qual-
ifying medication supporting evidence

MedicationMyocardi-
tis/pericarditis

Diagnostic criteria differ for these related conditions and may lead
to different performance.

Stratification by diagnostic code (myocardi-
tis vs pericarditis)

Diagnostic codeMyocardi-
tis/pericarditis

Gabapentin was originally used as supporting evidence of a GBS
episode due to its use for nerve pain associated with GBS events
[44]. However, it is also used for a variety of other conditions with
neuropathic pain and is not specific to GBS.

Removal of gabapentin from our list of
qualifying medication supporting evidence

MedicationGBSb

Documentation required for definite or probable GBS as defined
by the case definition diagnosis was often missing from our data

set due to failure to capture in EHRe or failure to translate to our
data set and can be supplemented by an expert’s judgment (eg, a
neurologist).

Update case definition criteria to allow for
a case to be validated as positive if there is
a missing documentation for absent or di-

minished reflexes in the weak limbs, CSFc

WBCd count with neurology consult, or
clinical note indicating evidence of the test
result of GBS more generally

Case definitionGBS

The original febrile seizure algorithm did not filter out cases
without suggested evidence, but we believed adding suggested

evidence could improve PPVf.

Addition of medications used to treat feverMedicationFebrile seizure

The original febrile seizure algorithm did not filter out cases
without suggested evidence, but we believed adding suggested
evidence could improve PPV.

Addition of observation of clinician describ-
ing the symptoms of seizure activity

ObservationFebrile seizure

Diagnostic criteria differ for these related conditions and may lead
to different performance.

Stratification by most prevalent diagnostic
code I81 versus all other codes

Diagnostic codeTTSg

aNSAID: nonsteroidal anti-inflammatory drug.
bGBS: Guillain-Barré syndrome.
cCSF: cerebrospinal fluid.
dWBC: white blood cell.
eEHR: electronic health record.
fPPV: positive predictive value.
gTTS: thrombosis with thrombocytopenia syndrome.

Second, case definition requirements for GBS are extremely
strict, and physicians in this study believed that some of these
might have represented valid GBS cases while not meeting
every requirement. For example, several of the cases with
missing CSF WBC count did mention cytoalbuminologic
dissociation (or similar); in the presence of such a clinical
statement, we might infer that CSF WBC count was performed
and acceptable to meet the case definition criteria despite a
missing test result.

Furthermore, in cases where a neurologist felt strongly that GBS
was a likely diagnosis, along with other supporting evidence,
it may be acceptable to rely on documented progressive and
significant muscle weakness, especially with conflicting reflex
findings. In these instances, we placed more weight on the
clinician review (which may account for any unforeseen
difficulties in data processing and the strictness of the case
definition), not relying solely on the available (nonmissing)
data types of the algorithm for assigning case diagnostic
certainty.

Results

Population Sample
Figure 2 illustrates the identification of the study populations
and validation sample. From the study population of 20.7 million
medical encounters for 2,666,974 patients over the study period,
the algorithm selected 1195 (0.04%) cases of
myocarditis/pericarditis, 550 (0.02%) of anaphylaxis, 123
(0.005%) of GBS, 626 (0.02%) of febrile seizure, and 395
(0.01%) of TTS. Of these patient cases (n=2,666,974), a
stratified, random sample of 135 (0.01%) cases each was
selected from myocarditis/pericarditis, 135 (0.01%) from
anaphylaxis, and 135 (0.01%) from TTS populations. All 75
pre-EUA cases of GBS and a random sample of 35 post-EUA
cases were selected to be validated. A random selection of 100
cases from the pre-EUA period were sampled to validate febrile
seizure. An additional 27 negative control cases were sampled
for each algorithm from the roughly 20.7 million medical
encounters not selected by the algorithm in our study period.
In total, 20 of these cases were sampled from the period before
the COVID-19 vaccine EUA, and the remaining 7 came from
the period after the EUA.
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Overall PPV and Interrater Reliability Results
Table 4 presents algorithm performance measured by PPV for
each of the 5 AESIs using cases that had sufficient evidence
and all cases (ie, including cases unable to be confirmed as
positive by clinicians due to insufficient evidence). Counts for
the number of cases included in each PPV calculation can be
found in Table S3 in Multimedia Appendix 1 [21-23,25-27].

Overall PPVs, when removing all cases with insufficient
evidence, were highest for anaphylaxis (93.3%, 95% CI
86.4%-97%) and febrile seizure (89%, 95% CI 80%-94.4%),
followed by myocarditis/pericarditis (83.5%, 95% CI
74.9%-89.6%) and TTS at unusual sites (70.2%, 95% CI

61.4%-77.6%). The lowest was for GBS (47.2%, 95% CI
35.8%-58.9%). All negative control cases across the 5
phenotypes were correctly classified by the algorithms.

The PPV results from the chart reviews of the validation sample
for each AESI are reported for all cases as well as for only cases
with sufficient evidence to make a clear by chart reviewers. The
frequencies and percentages for insufficient evidence are
presented with the stratification results in Table 5. The interrater
reliability scores for clinician chart reviews all showed
substantial agreement between the clinicians (Table 6). Interrater
reliability, measured by Cohen κ, suggests substantial reliability
when the value is >0.61, with many similar texts recommending
a higher threshold of 0.80 [43].

Table 4. Total validation positive predictive value (PPV) results.

Detected cases, PPV % (95% CI)AESIa and metric

Myocarditis/pericarditis

83.5 (74.9-89.6)Cases with sufficient evidence only

63.7 (55.2-71.4)All cases

Anaphylaxis

93.3 (86.4-97)Cases with sufficient evidence only

72.6 (64.4-79.5)All cases

GBSb

47.2 (35.8-58.9)Cases with sufficient evidence only

30.9 (22.9-40.3)All cases

TTSc

70.2 (61.4-77.6)Cases with sufficient evidence only

64.4 (55.9-72.1)All cases

Febrile seizure

89 (80-94.4)Cases with sufficient evidence only

89 (80-94.4)All cases

aAESI: adverse event of special interest.
bGBS: Guillain-Barré syndrome.
cTTS: thrombosis with thrombocytopenia syndrome.
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Table 5. Stratification analysis: validation sample results.

Emergency de-
partment

OutpatientInpatientPost-EUA peri-
od

Pre-EUAb peri-
od

Detected casesAESIa and metric

Myocarditis/pericarditis (n=135)

18269135100135Total cases, n

4 (22; 7-48)10 (38; 21-59)72 (79; 69-86)18 (51; 35-68)68 (68.0; 58.1-
76.5)

86 (63.7; 55.2-
71.4)

Total TPc cases, n (PPV %; 95% CI)

8 (50; 15-85)16 (63; 36-84)79 (91; 82-96)24 (75; 53-89)79 (86; 76-92)103 (83.5; 74.9-
89.6)

Total cases with sufficient evidence,

n (PPVd % for TP cases with suffi-
cient evidence; 95% CI)

Anaphylaxis (n=135)

108—e2735100135Total cases, n

81 (75; 65.8-
82.4)

—17 (63; 42.9-
79.7)

28 (80; 63-90.9)70 (70; 60.2-
78.3)

98 (72.6; 64.4-
79.5)

Total TP cases, n (PPV %; 95% CI)

86 (94.2; 86.6-
97.9)

—19 (89.5; 65.6-
99.7)

31 (90.3; 73.4-
98)

74 (94.6; 86.2-
98.4)

105 (93.3; 86.4-
97)

Total cases with sufficient evidence,
n (PPV %; 95% CI)

GBSf (n=110)

——1104565110Total cases, n (%)

——34 (30.9; 22.8-
40.3)

20 (44; 30.4-
59.4)

24 (40; 25.9-
49.5)

34 (30.9; 22.9-
40.3)

Total TP cases, n (PPV %; 95% CI)

——72 (47.2; 35.8-
58.9)

20 (50; 28.1-
71.9)

52 (46.2; 32.9-
60)

72 (47.2; 35.8-
58.9)

Total cases with sufficient evidence,
n (PPV %; 95% CI)

TTSg (n=135)

1113335100135Total cases, n

0 (0; 0-100)1 (100; 0-100)86 (64.7; 56.1-
72.4)

23 (66; 48.2-
80)

64 (64; 54-72.9)87 (64.4; 55.9-
72.1)

Total TP cases, n (PPV %; 95% CI)

1 (100; 0-100)1 (100; 0-100)122 (70.5; 61.7-
78)

33 (70; 51.6-
83.5)

91 (70.3; 60-
78.9)

124 (70.2; 61.4-
77.6)

Total cases with sufficient evidence,
n (PPV %; 95% CI)

Febrile seizure (n=100)

99—1—100100Total cases, n

73 (74; 64.1-
81.6)

—0 (0; 0-100)—73; (73; 63.3-
80.9)

73 (73; 63.3-
80.9)

Total TP cases, n (PPV %; 95% CI)

82 (89; 80-94.4)—1 (0; 0-100)—83 (88; 78.8-
93.6)

83 (88; 78.8-
93.6)

Total cases with sufficient evidence,
n (PPV %; 95% CI)

aAESI: adverse event of special interest.
bEUA: emergency use authorization.
cTP: true positive.
dPPV: positive predictive value.
eNot applicable.
fGBS: Guillain-Barré syndrome.
gTTS: thrombosis with thrombocytopenia syndrome.
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Table 6. Interrater reliability.

Interrater reliabilityTotal cases validated, nAESIa

0.814162Myocarditis/pericarditis

0.770162Anaphylaxis

0.832137GBSb

0.851162TTSc at unusual sites

0.965120Febrile seizure

aAESI: adverse event of special interest.
bGBS: Guillain-Barré syndrome.
cTTS: thrombosis with thrombocytopenia syndrome.

Stratification
To evaluate consistency across pre- and post-EUA periods and
care settings, we reported true positive and PPV results for each
stratum (Table 5).

None of the algorithms had notable differences between the
pre- and post-EUA periods since all 95% CIs had some overlap.
However, there were some differences between the PPVs for
the 2 periods that could be significant with a larger validation
sample. The difference in PPV for myocarditis/pericarditis
varied from 68% in the pre-EUA period to 51.4% in the
post-EUA period, while anaphylaxis showed the opposite pattern
with a 70% PPV in the pre-EUA period that increased to 80%
PPV in the post-EUA period.

We also reported stratified results by care setting (Table 5). For
myocarditis/pericarditis, the PPV of cases with an inpatient care
setting (79.1%, 95% CI 69.4%-86.4%) was notably higher than
that from the outpatient (38.5%, 95% CI 21.2%-58.8%) or
emergency department (22.2%, 95% CI 6.7%-47.9%) care
settings.

Anaphylaxis did not have a large difference across care settings,
as the 95% CIs overlapped between the 2 care settings.
However, they did show better performance with cases in an
emergency department (PPV 75%, 95% CI 65.8%-82.4%) care
setting over cases with an inpatient care setting (PPV 63%, 95%
CI 42.9%-79.7%). The other AESI algorithms filtered for only
1 care setting or had a vast majority of cases in 1 care setting.

Sensitivity Analysis

Medication and Observation Algorithm Changes
We analyzed whether changes to medication code lists for the
myocarditis/pericarditis and GBS algorithms could improve
performance. For the myocarditis/pericarditis algorithm, removal
of nonsteroidal anti-inflammatory drugs from the medication
code lists showed no change in PPV at 83.5% (Table 7), but
PPV values were higher for cases selected with the pericarditis
instead of myocarditis ICD-10 codes.

For the GBS algorithm, when cases were removed where
gabapentin (used for post-GBS pain management) was the only
supporting evidence, PPV increased to 38.1% (95% CI
28.2%-49.1%) from 30.9% (95% CI 22.9%-40.3%; Table 8).

Our initial febrile seizure algorithm did not use any supporting
evidence to filter out possible false positives since we believed
we could get adequate PPV without it.

For our sensitivity analysis, we tested requiring supporting
evidence in the condition period, such as the presence of
medications for reducing fever such as acetaminophen,
observation evidence when the patient’s chief complaint was
related to fever or seizure, or the presence of both. When filtered
to only cases with either medication or observation evidence,
febrile seizure PPV increased significantly to 93.3% (95% CI
84.7%-97.6%) from the original algorithm PPV of 73% (95%
CI 63.3%-80.9%), with no overlap in 95% CIs and a P value
of <.001 (Table 9). When the algorithm required both medication
and observation evidence, it performed even better (PPV 96.9%,
95% CI 88.5%-99.9%).
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Table 7. Sensitivity analysis: myocarditis/pericarditis validation sample results.

PPV, % (95% CI; change)Selected cases with suffi-
cient evidence, n (change,

n)d

PPVc, % (95% CI; change)dSelected cases,

n (change, n)c
Total TPb

cases, n
AESIa and sensitivity
analysis

83.5 (74.9-89.6; 0)103 (0)63.7 (55.2-71.4; 0)135 (0)86Removal of NSAIDse

88.1 (77.6-94.3; +4.6)67 (–36)72 (61.1-80.8; +8.3)82 (–53)59Pericarditis diagnosisf

75 (57.9- 87.1; –8.5)36 (–67)50.9 (37.4-64.3; –12.8)53 (–82)27Myocarditis diagnosisf

aAESI: adverse event of special interest.
bTP: true positive.
cPPV: positive predictive value.
dValues in parentheses reflect the change due to the modified algorithm features.
eNASID: nonsteroidal anti-inflammatory drug.
fAll International Classification of Diseases, Tenth Revision, Clinical Diagnosis codes that the algorithm used were broken into 2 groups: myocarditis
(I40.0 infective myocarditis, I40.1 isolated myocarditis, I40.8 other acute myocarditis, I40.9 acute myocarditis, unspecified, and I51.4 Viral myocarditis)
and pericarditis (B33.22 viral pericarditis, B33.23 acute rheumatic pericarditis, I30.0 acute nonspecific idiopathic pericarditis, I30.1 infective pericarditis,
I30.8 other forms of acute pericarditis, I30.9 acute pericarditis, unspecified, I32 pericarditis in diseases classified elsewhere, and I41 meningococcal
pericarditis).

Table 8. Sensitivity analysis: Guillain-Barré syndrome validation sample results.

PPV, % (95% CI; change)dSelected cases with suffi-

cient evidence (change)d
PPVc, % (95% CI; change)dSelected cases

(change)c
Total TPb

cases
AESIa and sensitivity
analysis

62.3 (48.3-74.5; +15)53 (–19)38.4 (28.6-49.2; 7.5)86 (–24)33Removal of gabapentin

68.1 (56.3-78; +20.8)72 (0)44.5 (35.4-54; +13.6)110 (0)49Adjusted case definition

72.1 (60-81.6; +24.8)68 (–4)57.1 (46.2-67.4; +26.2)86 (–26)49Adjusted case defini-
tion+removal of
gabapentin

aAESI: adverse event of special interest.
bTP: true positive.
cPPV: positive predictive value.
dValues in parentheses reflect the change due to the modified algorithm features.

Table 9. Sensitivity analysis: febrile seizure.

PPVd, % (95% CI; change)cSelected cases with suffi-
cient evidence, n (change,

n)c

PPVd, % (95% CI; change)cSelected cases,

n (change, n)c
Total TPb

cases, n
AESIa and sensitivity
analysis

95.9 (87.9-99.2; +7.9)73 (–10)93.3 (84.7-97.6; +20.3)75 (–25)70Cases with either medica-
tion or observation

100 (92.8-100; +12)63 (–20)96.9 (88.5-99.9; +23.9)65 (–35)63Cases with both medica-
tion and observation evi-
dence

aAESI: adverse event of special interest.
bTP: true positive.
cValues in parentheses reflect the change due to the modified algorithm features.
dPPV: positive predictive value.

Diagnostic Code List Changes
We also analyzed if changing diagnostic codes that were used
to identify the AESI might lead to higher performance for the
myocarditis/pericarditis and TTS algorithms.

For myocarditis/pericarditis, we found that an algorithm only
looking for the myocarditis code (PPV 50.9%, 95% CI

37.4%-64.3%) underperformed an algorithm with just
pericarditis codes (PPV 72%, 95% CI 61.1%-80.8%; Table 7).
For TTS, we found that the main ICD-10 code I81 for “portal
vein thrombosis” (73.5%, 95% CI 64%-81.3%) outperformed
all other codes in our code list, including G08 (intracranial and
intraspinal phlebitis and thrombophlebitis), I82.0 (Budd-Chiari
syndrome), I82.3 (embolism and thrombosis of renal vein), and

JMIR Public Health Surveill 2024 | vol. 10 | e49811 | p. 14https://publichealth.jmir.org/2024/1/e49811
(page number not for citation purposes)

Holdefer et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


I82.890 (acute embolism and thrombosis of other specified veins), with a PPV of 36.4% (95% CI 21.3%-54.4%; Table 10).

Table 10. Sensitivity analysis: thrombosis with thrombocytopenia syndrome (TTS).

PPV, % (95% CI; change)cSelected cases with suffi-
cient evidence, n (change,

n)c

PPVd, % (95% CI; change)cSelected cases,

n (change, n)c
Total TPb

cases, n
AESIa and sensitivity
analysis

78.1 (68.6-85.4; +8)96 (–28)73.5 (64-81.3; +9.1)102 (–33)75I81

42.9 (25.4-62.1; –27.3)28 (–96)36.4 (21.3-54.4; –28)33 (–102)12All other TTS ICDe

codesf

aAESI: adverse event of special interest.
bTP: true positive.
cValues in parentheses reflect the change due to the modified algorithm features.
dPPV: positive predictive value.
eICD: International Classification of Diseases.
fAll other TTS ICD codes include G08, I82.0, I82.3, and I82.890.

Case Definition Validation Criteria
Finally, we analyzed whether a small update to our case
definition criteria for the GBS algorithms described in the
Stratification Analysis and Sensitivity Analysis section would
improve reported performance in Table 7. When we applied
both changes, the validation criteria change to the algorithm
and removal of gabapentin, as discussed in the Medication and
Observation Algorithm Changes section, the algorithm achieved
a PPV of 57.1% (95% CI 46.2%-67.4%).

Discussion

Principal Findings

Overview
The results of this study show that for 4 out of 5 AESIs, we can
build an interoperable computable phenotype with comparable
or increased performance to algorithms in the existing literature.
These algorithms are developed using a rules-based approach
to facilitate their application and increase the generalizability
of performance across EHR databases. For the phenotypes with
poorer performance, the issues were often that the case definition
required documentation of a test that was lost in our data
pipeline, or was not completed, or was not recorded by the
treating physician or nurse. While these cases are marked as
false positives based on our methodology, they may be true AEs
that are lacking the documentation to meet the case definition.
Some small updates to the algorithms or the case definition
evaluation method could be made to potentially improve the
algorithms’performances, but a more important next step would
be to validate our algorithms on other data partners to ensure
generalizability of the original algorithms and any updates.
Given the need for active AE surveillance, this study is still an
important first step toward building an algorithm that can be
distributed and implemented on health provider EHR databases
and can accurately detect AEs.

The PPV results of the phenotypes, negative control groups,
and stratification and sensitivity analysis are discussed in more
detail in the following sections. Note our negative control groups
and many of the stratification and sensitivity analyses have

sample sizes too small to draw strong conclusions as illustrated
by the width of the 95% CIs for those results. These were
exploratory analyses completed as a supplement to the main
findings of the study around the PPV of the algorithms.

Myocarditis/Pericarditis
The myocarditis/pericarditis algorithm showed strong PPV
performance using cases with sufficient evidence. The literature
appears to lack good comparison studies against which to
evaluate this algorithm’s performance. A meta-analysis from
2013 reviewed myocarditis/pericarditis algorithm studies and
found that none of them evaluated their algorithm by calculating
PPV [45].

When myocarditis/pericarditis was segmented via care settings,
algorithm performance was highest for inpatient settings, with
a PPV of 79.1%. This can be attributed to the availability of
supporting clinical data needed for accurate case detection in
such settings. Given that inpatient testing is necessary to meet
the criteria of the case definition, the algorithm performance
matches clinical expectations and adds to its public health
importance.

In emergency care settings, myocarditis/pericarditis is often
diagnosed for patients with a history of inpatient visits to one
or more other health systems. This increases the probability of
these patients having additional documentation necessary to
meet the case definition. This highlights the role of health
information exchanges in supporting public health use cases,
improving AE reporting, and enhancing postmarket surveillance.

Myocarditis/pericarditis had a notable difference in PPVs for
pre- and post-EUA date. The post-EUA date strata of the sample
had a higher percentage of cases coming from the emergency
department, which had few cases before EUA. This could be
explained by patients being diagnosed during previous inpatient
stays in other health systems and a lower threshold to provide
a preliminary diagnosis with limited information. This category
had a lower PPV on average for myocarditis/pericarditis, likely
due to less documentation in an emergency care setting than in
an inpatient care setting. This highlights the need for further
validation of the algorithm in these settings for an effective
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public health benefit and to gain confidence that our algorithm
is fit for purpose. Because the aim of the algorithms is
postvaccination AESI detection in support of public health
safety surveillance, any potential degradation in performance
in the post-EUA period is a concern. If performance decrease
in the post-EUA period is driven by postvaccination
myocarditis/pericarditis being more likely to have confounding
physical findings that could affect how quickly and in which
care setting it gets diagnosed, the PPV from this study may not
be applicable to a postvaccination version of the phenotype.
There is a small overlap in the 2 periods’ PPV 95% CI, and a
2-sample proportion test returns a P value of .08. This suggests
that the difference could also be due to statistical noise.
However, given the importance of the post-EUA period to the
algorithm’s future task and the size of the difference, we suggest
validating additional cases in the post-EUA period to confirm
whether the algorithm is actually less effective.

Anaphylaxis
In cases with sufficient evidence, our anaphylaxis algorithm
performed strongly with a PPV score of 93.3% (95% CI
86.4%-97%). This shows a possible slight improvement over
previous anaphylaxis research, although both results were within
the 95% CI [33,34]. When stratified by care setting, the
algorithm performed better in emergency department care
settings. This can be explained due to the anaphylaxis symptoms
and treatment being more likely to be well-documented in this
setting. Availability of additional evidence increases the PPV
of the algorithm. Since anaphylaxis cases related to vaccination
are more likely to culminate in visits to the emergency
department, the better performance of the algorithm would
provide a better public health benefit.

Overall, the performance of the algorithm was moderate
compared with that seen in literature. With no obvious avenues
for improvement available, no additional sensitivity analyses
were applied.

GBS Algorithm
Our initial GBS algorithm showed weak performance for GBS
with a PPV of 47.2% (95% CI 35.8%-58.9%). Given existing
research on GBS validations, this result is not surprising, since
our result is comparable with a study result showing GBS
algorithm validation PPV of 29% (95% CI 24%-34%) [35]. We
hoped that our algorithm would improve on this study’s results,
allowing us to meet the “moderate” performance threshold
defined in the Methods section, given that we added additional
logic to require suggested evidence and filter out historical
diagnoses. However, we believe that the algorithm’s
performance could be improved based on the sensitivity analysis
results.

An increase in performance was observed when adjusting the
case definition interpretation of GBS to allow for more general
written clinical notes or neurology consult evidence to replace
specific documented test results. The lack of standardization in
laboratory results is fraught with challenges such as inconsistent
data. The observed improvement in the GBS phenotype
highlighted the need for further standardization to have a better
impact on public health benefit.

Furthermore, the performance of the GBS algorithm was
improved by the exclusion of nonspecific medications such as
gabapentin, increasing its public health benefit. Gabapentin is
often used to treat generalized neuropathic pain for a variety of
conditions other than GBS, including diabetes, and can confound
the results.

With both case definition and medication adjustments to the
algorithm, the PPV rose to be closer to the moderate
performance threshold and an increase over the cited historical
study [35]. Because these changes were informed by the cases
in the validation study post hoc, they might be overfitted to this
validation sample and may not be generalizable. They should
be tested in other EHR systems.

The GBS algorithm performed slightly better in the post-EUA
period, but the performance of both periods was well within the
95% CI of the other period. The GBS algorithm only applies to
the inpatient care setting; therefore, no care setting stratification
analysis was performed.

Febrile Seizure
Our febrile seizure algorithm performed strongly, with a PPV
score of 89% using cases with sufficient evidence. This
performance is in line with existing febrile seizure algorithm
validation research [32], where a febrile seizure validation study
on the FDA Sentinel database showed a PPV of 70% (95% CI
64%-76%). Our sensitivity analysis suggests that even better
performance could possibly be achieved by adding additional
filters to select cases with supporting medication and observation
evidence, which are well-documented in EHRs. The better
performance of the algorithm provides better public health
benefits and further supports the use of EHRs in the detection
of AEs. For cases that met either or both criteria, the PPV
increased. Since these changes to the algorithm happened after
the validation was completed, they overstate the general
performance increases when applied to a new EHR setting but
offer avenues for a future validation study. Future research can
test whether stronger performance is possible with these filters
and focus on reviewing the algorithm’s application to AEs
following pediatric vaccinations.

TTS Algorithm
The TTS algorithm showed moderate performance for PPV at
70.2% which is similar to a separate FDA TTS validation study
which estimated the performance at 76.1% (95% CI 67.2-83.2%)
[29]. TTS had consistent performance across both pre- and
post-EUA periods and did not have enough cases in the
outpatient and emergency department care settings for any
defensible findings around diagnosis care setting stratification.
Our sensitivity analysis revealed that when the AESI was
diagnosed with the ICD-10 code I81 (portal vein thrombosis),
the algorithm showed a significant increase when compared
with the performance of all other ICD codes (73.5%, 95% CI
64%-81.3%, compared with 36.4%, 95% CI 21.3%-54.4%).
Although if an increase to specificity is desired at the cost of
some sensitivity, the TTS algorithm could be limited to only
select the higher performing I81 diagnosis code.
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Limitations
There are several limitations to this study. First, it only evaluates
general AESIs and not postvaccination AESIs specifically since
the algorithms do not require the evidence of vaccine
administration as criteria. While this was necessary due to the
rareness of the postvaccination AESIs in our data, it is possible
that the algorithms perform worse detecting postvaccination
AESIs specifically since they will often present slightly
differently in different populations when occurring after a
vaccine administration. For example, the major presenting
symptoms appeared to resolve faster in cases of myocarditis
after COVID-19 vaccination than in typical viral cases of
myocarditis [9]. To guard against this, we included both pre–
and post–COVID-19 EUA data with the hope that post-EUA
cases would include some postvaccination AESIs. However,
we did not have enough post-EUA cases available to build a
large enough sample size for a comparison with sufficient
statistical power to provide definitive evidence on this topic.
Another limitation in this vein is the general small sample size
for all stratification, sensitivity, and negative control analyses.
We make sure to state that these analyses are exploratory in
nature, and the reader should not form strong conclusions from
them given their small samples size and large CI range. Future
research could address these concerns by identifying a data
source with enough postvaccination AESI cases to complete a
comparably large validation study.

An additional limitation of this study is that it only measures
algorithms’ PPVs instead of investigating other metrics that
could give a better picture of the algorithm’s holistic
performance such as sensitivity and specificity. Specifically,
these other metrics would estimate how many of the total
positive cases are being identified and how well the algorithm
is able to identify cases without the AESIs. However, we believe
that this limitation is necessary for the following reasons: (1)
the main purpose of this study was to assess the PPV of
phenotypes because it answers the most relevant public health
question, if the algorithms will generate a quality detected set
of AE cases for the public health surveillance and (2) a much
higher cost and more extensive data sharing are needed to
properly estimate sensitivity and specificity because of the
required validation sample size necessary for a negative control
group. To calculate PPV, one only needs a sample of the cases
selected by the algorithm. To estimate the sensitivity and
specificity, however, it would be necessary to also validate an
extremely large negative control group sample since the AESI
conditions that the algorithms try to detect are often rare events.
We would expect it to be even more rare for these conditions
of interest for AESIs to happen and not be recorded with types
of structured data elements that are being used in the phenotypes.
In fact, the lack of structured data elements in some negative
control cases led to a clinician asking the research team if
something was wrong because their case had no relevant charted
events to be reviewed. A much larger validation study would
also expose clinicians to a larger set of patient data for cases
that have a low likelihood of having an AE. This approach limits
the interaction with protected health information data until the
algorithms’ PPVs support continued research with broader
samples and methodologies.

Another limitation is that although they were designed to be
simple to deploy, the algorithms are still time-consuming to
apply to different EHR systems. Although a hallmark of this
algorithm is its interoperability, the algorithm logic still must
be applied to the EHR common data model or extracted and
translated into another common data model as was done for this
study. Interoperable codes should be available for all patients,
given the requirement to provide patient data in an interoperable
FHIR standard. However, given the recency of the requirement,
they might not be available in all systems and require some
code translation on the health organization side, especially when
analyzing at the population level. In addition, since the
interoperable codes will only be available through a FHIR API,
this adds another data pull and integration with the EHR system
to obtain these codes for the algorithm.

In the future, the evolving landscape of health IT may facilitate
the public health use cases of detecting and reporting
postvaccination AESIs in a safe and secure manner that protects
patient privacy. This could be achieved by EHRs supporting
secure querying of patient cohorts with probable postvaccination
AESIs using clinical query language [46] or other interoperable
query language. Reducing the burden of automatic detection of
postvaccination AESIs would help public health organizations
improve AE surveillance with minimal additional burden to
health care organizations and providers.

A final limitation of this study is that the algorithms were only
applied to 1 site. Going forward, algorithm performance should
be validated at other sites to ensure their generalizability.
Although the algorithms were generated without prior input
from the data, the study is still limited to 1 health care
organization, and this method could have different operating
characteristics (PPV, sensitivity, etc) at a second location.

Future research can be performed to improve algorithm accuracy
and as stated previously would require additional partner EHR
data systems. To create a better performing algorithm, machine
learning techniques could be used to train the model to identify
specific patterns of data instead of relying on rules-based
methods that incorporate published case definition criteria and
clinical subject matter expert experience. When given enough
data, machine learning approaches generally outperform
rules-based approaches across domains, and some prior research
suggests that this is true in the medical domain as well [47].

However, machine learning methods will not generalize across
EHR systems because the data patterns that machine learning
identifies could be specific to an individual health care
organization. Trying to build a large data set that combines
multisite data is extremely difficult and costly due to concerns
over infrastructure, regulations, privacy, and data
standardization. A method such as federated learning could be
explored to alleviate this problem. Federated learning allows
multiple sites to collaboratively train a global model without
directly sharing data and has been used to train machine learning
algorithms at EHR sites previously [48].

Conclusions
In summary, this study presents strong initial evidence that
creating simple, interoperable, rules-based phenotypes can detect
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AESIs on a new data source and that the phenotypes outperform
the PPV outcomes for historical validations studies for these
conditions. The study validates 5 different AESIs to prove that
this approach can work for a broad range of AESIs, while also
highlighting where the approach might be less successful. For
example, the GBS algorithm was built using ICD-10 codes that
previous validation studies have demonstrated are not accurate
predictors of a GBS case that meets case definition criteria;
subsequently, our GBS algorithm performed poorly. The
validation study sample sizes for all AESIs allowed for adequate
precision to evaluate algorithm PPV against historical studies.

An active surveillance system can enhance vaccine safety and
aid in the development and use of safer vaccines and

recommendations to minimize the AE risks after vaccination
[49]. The algorithms were developed using a method that should
be able to be applied to and generalize performance for new
EHR databases, but more research is needed to confirm this. If
the methodology can be successfully used to detect
postvaccination AESI cases across EHR databases, these
algorithms could be deployed widely to inform FDA
decision-making, promote public safety, and improve public
confidence. Going forward, further research and investigation
are needed to enhance algorithm performance and integrate the
algorithms across health care organizations for active
surveillance in the interest of public health.
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