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Abstract

Background: Population size, prevalence, and incidence are essential metrics that influence public health programming and
policy. However, stakeholders are frequently tasked with setting performance targets, reporting global indicators, and designing
policies based on multiple (often incongruous) estimates of these variables, and they often do so in the absence of a formal,
transparent framework for reaching a consensus estimate.

Objective: This study aims to describe a model to synthesize multiple study estimates while incorporating stakeholder knowledge,
introduce an R Shiny app to implement the model, and demonstrate the model and app using real data.

Methods: In this study, we developed a Bayesian hierarchical model to synthesize multiple study estimates that allow the user
to incorporate the quality of each estimate as a confidence score. The model was implemented as a user-friendly R Shiny app
aimed at practitioners of population size estimation. The underlying Bayesian model was programmed in Stan for efficient
sampling and computation.

Results: The app was demonstrated using biobehavioral survey-based population size estimates (and accompanying confidence
scores) of female sex workers and men who have sex with men from 3 survey locations in a country in sub-Saharan Africa. The
consensus results incorporating confidence scores are compared with the case where they are absent, and the results with confidence
scores are shown to perform better according to an app-supplied metric for unaccounted-for variation.

Conclusions: The utility of the triangulator model, including the incorporation of confidence scores, as a user-friendly app is
demonstrated using a use case example. Our results offer empirical evidence of the model’s effectiveness in producing an accurate
consensus estimate and emphasize the significant impact that the accessible model and app offer for public health. It offers a
solution to the long-standing problem of synthesizing multiple estimates, potentially leading to more informed and evidence-based
decision-making processes. The Triangulator has broad utility and flexibility to be adapted and used in various other contexts
and regions to address similar challenges.

(JMIR Public Health Surveill 2024;10:e48738) doi: 10.2196/48738
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Introduction

One of the more daunting tasks for policy makers in the public
health arena is the synthesis of data and information into

actionable insights. Population size, prevalence, and incidence
are crucial metrics that play a significant role in shaping public
health programs and policies. However, stakeholders are often
faced with multiple estimates of these quantities, originating
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from different sources and of differing quality. Often, estimates
of the same quantity will be incompatible, with confidence
bounds completely disjoint from one another.

Stakeholders face the task of weighing their knowledge about
the population along with the various estimates to triangulate
to a single number that represents the most likely value.
Typically, this has been done without a formal framework,
where decisions about how the final number was arrived are
shrouded by a nontransparent process. How much stock was
each estimate given by the stakeholders? Did any of the
stakeholders express strong prior beliefs about what the true
number was that could affect the result? Did political
considerations color the findings, and if so, how? Without
transparency, these questions are difficult to answer.

The goal of this study is to present a statistical tool that can be
used to guide the triangulation process. Prior beliefs, study
quality, and estimate uncertainty are all components of the
process of generating a consensus estimate. However, because
these components are put together in a rigorous statistical
framework, all of them are made completely transparent and
inspectable by third parties.

A particular focus is paid to population size estimation (PSE).
PSE is one of the fundamental estimates required for policy
decisions in HIV treatment and prevention. Understanding the
population size is essential for determining the appropriate scale
of the public health response. Without this knowledge, it
becomes challenging to tailor interventions effectively. This is
especially true for key populations (KP), which are less visible
groups disproportionately at risk for HIV, such as female sex
workers (FSW), men who have sex with men (MSM), and
people who inject drugs [1]. Globally, KP and their sexual
partners account for more than half of the new HIV infections
as of 2019 [2]. Reliable estimates of KP sizes are needed to
inform the planning and implementation of prevention and
treatment programs as well as to assess the outcomes of these
control measures. In particular, evaluating progress toward the
Joint United Nations Programme on HIV/AIDS 95-95-95 goals
(95% of people living with HIV know their status, 95% of those
who know their status are receiving antiretroviral therapy [ART],
and 95% of those receiving ART are virally suppressed) [3]
requires accurate population size estimates.

Although these estimates have significant implications, there
is currently no gold standard method for PSE [4]. In the absence
of such a standard, various techniques have been developed,
each with varying degrees of rigor [5]. On the one hand,
estimates can be based on nonempirical data such as the opinion
or experience of subject matter experts, such as the wisdom of
crowds [6,7] or the Delphi method [8,9]. On the other hand,
empirical data–driven biobehavioral survey (BBS)–based
techniques including service or unique object multipliers [10]
and recruitment information captured in surveys using
respondent-driven sampling [11] can provide more reliable
population size estimates [12] but can still produce incongruous
results [13]. Moreover, CIs only capture part of the uncertainty

we have in an estimate. Mistakes in implementation, violation
of method assumptions, and incorrect statistical model
application can all add additional bias and uncertainty that are
not captured by the CI. A major question is how to synthesize
multiple estimates of varying quality and certainty, given the
practical need of policy makers and scientists for a single best
estimate of population size. Although a range of estimates with
uncertainty bounds derived from multiple statistical methods
may be a more comprehensive snapshot, multiple estimates are
often challenging to interpret if they are disparate and difficult
to apply to problem-solving or performance evaluation. To
address this issue, a consensus best estimate is often arrived at
somewhat arbitrarily by round table discussions of subject area
experts; however, the absence of empirical evidence in such
processes makes them susceptible to bias or statistical errors.

Recently, more rigorous statistical methods have emerged for
finding a consensus-based estimate based on approaches in the
field of meta-analysis. Meta-analysis is a branch of statistics
concerned with synthesizing the results of multiple studies that
aim to estimate the same quantity, often an effect size, in
medical or epidemiological studies [14]. Traditional
meta-analysis approaches have been based in frequentist
statistics, although Bayesian techniques are becoming more
common. Table 1 shows a component of the spectrum of
frequentist models in meta-analysis for combining the effects
of studies. In the fixed effects model, it is assumed that each
study estimates the same effect, and only within-study variation
is incorporated. In the random effects model, each study is
assumed to estimate a different effect drawn from a population
distribution and thus incorporates between-study variation.
However, both models take the results of each study at face
value. With the goal of incorporating bias adjustment into more
traditional models, the quality effects model [15] has recently
been introduced, and it has been shown to have fewer limitations
than competing models [16]. In the quality effects model, each
study considered is appraised on its methodological quality and
given a quality score, which is then used to adjust the study
variance within the model. Although other meta-analysis
methods have Bayesian PSE analogs, such as the Anchored
Multiplier, which draws on both fixed and random effects
models [17,18], the quality effects model has yet to be adapted
for use triangulating public health quantities.

In this study, we present a Bayesian hierarchical model to
synthesize multiple study estimates that allow the user to
incorporate the quality of each estimate as a study confidence
score. We developed a mathematical framework for the model
as well as a metric to assess the variation between estimates
that have been captured by the model. We also introduced an
implementation of the model as a user-friendly R Shiny app
aimed at practitioners of PSE. To demonstrate both the model
and the app, we provide several examples of their use in
combining KP size estimates in several cities in a country in
sub-Saharan Africa, showing the potential of our model to
provide a valid best estimate in a practical context.

JMIR Public Health Surveill 2024 | vol. 10 | e48738 | p. 2https://publichealth.jmir.org/2024/1/e48738
(page number not for citation purposes)

Fellows et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Meta-analysis pooled effects modelsa.

Quality effectsRandom effectsFixed effects

Weights

Estimator

Estimator variance

a is the estimated effect size of jth study, vj is the sampling error variance of jth study, τ2 is the DerSimonian and Laird estimator of the between-study

variance, Qj is the jth study rank (scaled between 0 and 1), and is a bias correction (where N is the number of studies).

Methods

Overview
We began the construction of our model by considering a
Bayesian hierarchical model that is fundamental in meta-analysis
[19]. The primary goal of such a meta-analysis is to estimate
the mean of the distribution of effect sizes, synthesizing the
estimates of individual studies. Our goal was similar: to estimate
a population quantity of interest θ which can be a population
size, population proportion, incidence, among others. We aimed
to synthesize several estimates yj of this quantity from different

studies, where the variance σj
2 of each estimate is known.

Despite the assumption that the variance σj
2 is known (ie, has

been computed during the processing of the jth study), it may
not truly reflect the uncertainty in the estimate of yj. The

variance σj
2 only accounts for the sampling uncertainty and not

any additional uncertainty that there may be about potential bias
in the study design. For example, in PSE, certain size estimation
techniques result in incongruous estimates and nonoverlapping
CIs [13], indicating that there is additional nonsampling error

not accounted for by the CIs and σj
2. Nonsampling bias can be

introduced for a number of reasons, including study design
assumption violation, a mismatch between the study population
and the population of interest, or an out-of-date sample. Our
model provides a simple way for the user to account for their
assessment of the degree of this additional uncertainty in the
study. We allow the model user to adjust this uncertainty based
on their confidence level cj∈(0,1) in the study, where cj=1
represents full confidence in the study’s estimate and
uncertainty. The SD is scaled by the transformation σj→σj/cj

to adjust for this additional uncertainty at the discretion of the
user. This allows practitioners and experts, whose expertise

may carry information about each estimate not accounted for
in the given CIs, to manually incorporate the potential for study
bias.

The synthesis itself is based on a Bayesian hierarchical model
that is often used in meta-analysis. At the first level of the
hierarchy, we assume that each yj is a point estimate of the
quantity vj estimated by the jth study:

A normal model is chosen because many point estimates tend
to be asymptotically normal according to the central limit
theorem. That the yj are estimates of vj, and not θ directly, is an
important distinction; individual studies may have bias, and that
bias may not be accounted for by the user-specified study
confidences. At the second level of the hierarchy, we assume
that each study’s quantity of interest vj itself is centered around
the true population quantity of interest θ with uncertainty

characterized by the between-study variance τ2. At this level,
we assume that the vj are distributed normally as

Although the vj provide a bridge between the data yj and the

target quantity θ, the between-study variance τ2 provides an
important source of uncertainty beyond the adjusted study-level

variances (σj/cj)
2. When τ2 is small, the vj are similar, and most

of the uncertainty in the model comes from the data level; when

τ2 is large, most of the uncertainty comes from differing vj.
However, from a practical perspective, the vj represent a
nuisance parameter that can significantly slow down the
computational model. Eliminating this parameter by
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marginalizing it out yields the reduced model (refer to
Multimedia Appendix 1 [18] for details):

In collapsing the hierarchical model to a single level, we can
quickly and efficiently infer the mean of the distribution of the
quantity of interest, given our data θ|yj.

Prior Distribution for θ and τ
As this is a Bayesian model, we must consider the distribution

of the hyperparameters θ and τ2. In general, we assume a normal

prior for θ with mean μ0 and variance σ0
2:

The specification of this prior distribution for θ is an important
part of the inference process, as experts and stakeholders will
often have informed beliefs about reasonable values for the
population quantity.

Setting a prior distribution for τ2 is more complex, as there are
multiple candidate distributions, each with advantages and
disadvantages; refer to the study by Williams et al [20] for
discussion of the choice of prior on τ and why it may be

desirable to place the prior on τ instead of τ2. We choose a
half-Cauchy distribution for our prior on τ, which is a Cauchy
distribution truncated so that only positive values have a nonzero
probability density. The distribution is heavy tailed, which is
important because the model must allow for the possibility of
large between-study variance. That said, we wish to trust that
our stakeholders have accounted for the additional study
variability in the confidence score step and thus wish to
construct an informative prior that puts most of its mass at a

very small τ2 but which allows for it to be large if the data are

incompatible with a small τ2. This has the effect of flexibly
controlling the model complexity, with the vj values only being
appreciably different from θ if the data require it.

We control this distribution with a single-scale parameter γ, and
thus, we choose that parameter to accumulate most of the

probability mass for τ2 at 0. We use an empirical Bayes–flavored
choice, which is scaled to be a fraction of the sample SD of the
estimates yj:

where s2=Var(yj). As a heuristic justification for the choice of
0.1 as the value of the multiplier on the sample SD, we note
that the quantile function for a half-Cauchy distribution with

scale parameter γ is , and thus, the 95th percentile
is given by Q(0.95)≈12.7γ. As such, with γ=0.1s, a little more
than 95% of the probability mass of τ is below the sample SD
s which we have found is often sufficient to create a high burden

for values of τ2 away from 0.

Transforming the Data and Parameter Space
The hierarchical model assumed a normal distribution for the
estimates. This is generally justifiable, as most estimates follow

the central limit theorem and are therefore approximately normal
if the sample size of the study is large enough. However,
depending on the quantity, the central limit theorem may be
applied to smaller sample sizes when transformed. Regardless,
the Delta method provides some assurance that transformed
point estimates are asymptotically normal if the untransformed
estimate is also asymptotically normal.

For instance, a log transform is typically used in PSE, where
log-linear models are a prime example. Models of proportions
often involve a logistic transformation, as seen in techniques
such as logistic regression. With our model, the user may apply
a transformation to the data, run the model, and then apply an
inverse transformation to obtain inferences regarding the
quantity of interest.

Working in a transformed space also transforms the prior, which
can be desirable in and of itself. The log transform of PSE causes
the prior to be log-normal. This may be a more reasonable prior
distribution for this quantity because it is always >0. Similarly,
for the logistic transform, the prior becomes a logistic normal
distribution whose values are bounded from 0 to 1.

Transformations may induce infinities in some edge cases (eg,
a point estimate of zero or one with a logistic transformation).
In these cases, either the estimate may be dropped, or the analyst
can choose not to use a transformation.

Relationship With Frequentist Meta-Analysis Models
The frequentist methods in Table 1 describe increasingly
complex models for estimating the combination. The fixed effect
model simply calculates a weighted average of the estimates,
weighted by the inverse variance of each estimate. Our model
is the Bayesian analog of this fixed effect model when all study
confidences are set to 100% and τ→0. For τ>0 and the study
confidences set to 100%, our model is the Bayesian analog of
the frequentist random effects model, where the τ in the random
effects model is approximately analogous to our τ. By positing
a heavy-tailed prior for τ highly concentrated at 0, our model
leans toward a fixed effect model when the data are compatible
with it and a random effects model when the data are not
compatible with it.

The quality effects model introduces a researcher-defined quality
metric to the random effects model in much the same way that
our study confidence does. Thus, when study confidence was
included, the features of the quality effects model were
incorporated.

Explained Variance and Unaccounted-For Variation
Although we use the reduced model for computational reasons,
the full multilevel model contains information about the sources
of uncertainty that may have a significant impact on the
confidence a user has in the resulting estimate of θ. To quantify
the sources of uncertainty, we computed a metric called

explained variance, or R2, which describes each level of the full

model [21]. In the full multilevel model, R2 calculated at the
study (data) level is defined as
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where E(⋅) the posterior mean and is the
sample variance operator. From this definition, an observation

can be made: when the vj more closely approximate the yj, R
2

is closer to 1, and when the vj more closely approximate θ, R2

is closer to 0. In the case where there is considerable variation

in the estimates yj, R2 reflects the proportion of estimate
variability attributable to unaccounted-for study bias. When the
variation in the estimates is largely owing to unaccounted-for

study bias, the vj will approximate the yj, leading to high R2.
When study bias is accounted for by increasing the uncertainty
of the estimates, the vj will more closely approximate θ, leading

to low R2. To reflect this relationship, we use the term

unaccounted-for variation to refer to R2.

A complication with the abovementioned formula is that it relies
on the parameters vj that have been eliminated in the reduced

model. However, we can compute R2 at the study level using

the data and posterior draws of θ and τ2 that are specific to the
model at hand. We find that

where and .

A full derivation of the preceding formulas can be found in
Multimedia Appendix 1 [18].

Example Using BBS-Based PSE Methods

Overview
The population size estimates used to demonstrate the Bayesian
hierarchical model using the Shiny app were all part of a 2019
BBS conducted among FSW in 3 cities (location A, location B,
and location C) and MSM in 2 cities (location B and location
C) of a country in sub-Saharan Africa. Priors and corresponding
plausibility bounds were based on nonempirical stakeholder
consensus during the 2014 BBS. In each survey city and for
each key population (FSW and MSM), 2 methods of PSE were
implemented: multipliers and successive sampling.

Multipliers
As part of a BBS, unique object, event, and service multipliers
provide data sources to facilitate PSE. Multipliers have 2
overlapping components, both of which include members of a
target population such as FSW or MSM. For each of the 3
multipliers, the first component takes place shortly before the
BBS implementation. For unique object multipliers, small,
inexpensive, and memorable unique objects (gifts) are
distributed to target populations by teams of key population
peers within the survey catchment area. For event multipliers,
a party or concert is hosted for target population members. For
service multipliers, client lists from HIV service providers are
cleaned and deduplicated. The counts are tallied of individuals

who received a gift, attended an event such as a survey kick-off
party or concert, or accessed HIV services from a particular
provider during defined dates. The second component is the
weighted proportion of BBS respondents who reported receiving
a gift, attending an event, or accessing HIV services. A
population size estimate results when the counts are divided by
the weighted proportion. These are reported with the
corresponding 95% CIs.

For FSW in all 3 locations and MSM in location C, the survey
multipliers included a unique object distributed in the survey
catchment areas, a special event for the target population, 2
providers of testing services, and 1 outreach provider. The MSM
survey at location B included an additional fourth outreach
service multiplier.

Successive Sampling
As part of a BBS using respondent-driven sampling for
recruitment, participants were asked a series of questions to
determine their personal network size that informs the survey
weighting. One assumption is that individuals with larger social
networks are more likely to be sampled and more socially visible
and, thus, recruited into surveys earlier than those with smaller
networks [22]. The successive sampling PSE (SS-PSE) method
has been described elsewhere [23] and applies this assumption
to self-reported personal network size and the order of
recruitment to estimate the population size. The SS-PSE used
in this study uses imputed visibility to adjust for errors in
network size reporting [24]. The SS-PSE was generated for
FSW and MSM in all survey locations.

Confidence Scores
The purpose of the confidence score is to quantify, on a scale
of 0 to 100, the quality or reliability of each individual PSE
generated by various methods. It aims to provide a measure of
how much trust or confidence one should place in each PSE.
Confidence scoring requires knowledge of the methods and
quality of PSE. Elements to consider for each PSE include
whether the definitions of the populations are aligned; when
(ie, Were the various studies conducted concurrently as part of
the same BBS? Within 1 to 2 years of each other? Several years
apart?) and how each of the PSE methods were implemented
and analyzed; and how to apply that information to each PSE
independent of, not relative to, other PSE. We have more
confidence in empirical methods implemented concurrently in
the same catchment area among populations with the same or
similar characteristics, such as age range, sex, residence, and
behaviors, with high-quality, complete data and minimal errors.
Therefore, we assigned a high score that reflects the confidence
we have in the PSE derived from an activity meeting these
criteria. In contrast, if we have data from similar but not the
same populations, conducted several years apart and sampling
different catchment areas, with some missing data, we have less
confidence in those PSE and assign a low score. Adjusting
confidence scores or dropping low-quality PSE to produce a
specific, desired outcome is strongly discouraged.

All PSE methods are subject to errors during implementation.
Unique object, service, and event multipliers are commonly
included with BBS. The first of the multipliers (or, if sampled
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twice before a survey, 3-source capture-recapture) involves
offering unique objects to key population members in hot spots,
typically carried out by teams of their peers (eg, FSW teams
distributing unique objects to fellow FSW in venues where they
congregate, often referred to as hot spots). The selection of
which hot spots to visit (geographic coverage), who is
responsible for distributing the unique objects (ideally, peers
within the key population to increase acceptability), and the
distribution method used (eg, hasty, clustered distribution vs a
more systematic approach to peers in the hot spot) can vary
significantly, potentially introducing bias into the data collection
process. Broad geographic coverage implemented by peers using
a systematic or random approach to distribute enough (eg, twice
the survey sample size) unique objects would earn a high score.
Next, health service client lists may be outdated (ie, include
former or expired clients), contain duplicates, or exclusively
cover a portion of the population (eg, an ART client registry
representing only individuals who are HIV positive and actively
receiving treatment). These challenges would result in a low
score. Events may draw only a specific subgroup of the target
population or fail to attract enough participants, which may
compromise the reliability of the PSE. This was particularly
apparent when the PSE produced by the event multiplier was
smaller than the survey sample size. This scenario would result
in a nonplausible PSE and a very low score.

In respondent-driven sampling surveys, participants were tasked
with providing information regarding their personal network
size. This can present a significant challenge for respondents
to estimate, as it is a function of the clarity of survey questions
and a respondent’s ability to quantify the size of their network
quickly and accurately. The response may not reflect the actual

size. Even after adjusting the self-reported network size for
social visibility, the resulting data could potentially impact the
subsequent PSE during the successive sampling process.
Confidence scores were independently applied to each PSE
method and reflected the quality of implementation based on
the elements described in this section as well as the plausibility
of the estimates.

Ethical Considerations
The BBS survey was reviewed and approved by the ministry
of health in the sub-Saharan African country; the implementing
partner; and the Centers for Disease Control and Prevention
Global Health Center in Atlanta, United States. The data
collection staff completed training on human subjects research
and signed a confidentiality agreement before commencing their
survey duties. All participants provided written informed
consent.

Results

Confidence Scores
We reviewed all PSE methods for FSW and MSM at each survey
location and assigned a confidence score (Table 2). The
confidence score was based on our knowledge of the rigor of
the methods used for PSE and the quality of implementation of
those methods. The scores were assigned to each method
independent of other methods implemented in the survey; thus,
a confidence score for one method was neither relative nor
comparative to another method. Confidence scores were selected
from the interval (0,100), with 100 representing full confidence.
These scores were then divided by 100 to yield the confidence
score cj∈(0,1), as described in the Methods section.
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Table 2. Survey-based population size estimates by location and key population.

Population size estimate (95% CI)Confidence
score

MSM in location CFSW in location CMSMb in location BFSW in location BFSWa in location A

610 (475-685)900 (825-1500)2416 (850-4000)3000 (1800-3400)800 (300-2000)—cPrior

Estimate method

379 (280-681)690 (483-1191)221 (174-904)382 (228-949)679 (525-1024)80Unique object

122 (87-276)205 (146-378)96 (81-205)144 (69-354)162 (126-249)5Event

2322 (1158-6985)1540 (1181-2260)515 (384-4398)1984 (1033-7367)849 (630-1369)60Service 1

1917 (1394-4093)2937 (2127-4613)1917 (3493-1218)4459 (3082-10,219)2766 (1995-4622)60Service 2

156 (97-494)2004 (1138-5916)778 (660-5256)5449 (1769-30,997)668 (500-1082)60Service 3

N/AN/AN/A5900 (2674-45,597)N/Ad60Service 4

664 (405-1614)1057 (576-3369)2205 (382-10,409)2196 (1651-2382)674 (318-2426)70SS-PSEe,f

612 (517-730)1038 (781-1333)1412 (727-3111)2744 (2046-3768)890 (614-1342)—Consensus: confidence

scalede

606 (508-724)922 (701-1205)1638 (812-3416)2821 (2080-3856)729 (403-1335)—Consensus: unscalede

aFSW: female sex workers.
bMSM: men who have sex with men.
cNot applicable (this refers to the fact that confidence scores are only applicable to the estimates).
dN/A: not applicable (this refers to the fact that an estimate of type Service 4 was not collected).
e95% CI refers to the credible interval.
fSS-PSE: successive sampling population size estimation.

The implementation of PSE methods was similar across all
survey locations for FSW and MSM, so our confidence scores
were applied consistently by method. This was appropriate
because our FSW and MSM populations had the same
population definitions across survey sites and the methods were
concurrently and consistently implemented. Had any survey
site or population struggled with implementation, that site and
the PSE method would have been assigned a lower score. At
all survey sites, enough unique objects were broadly distributed
across the survey catchment area, and the PSE from unique
object distribution in FSW and MSM hot spots was plausible;
thus, we assigned a high confidence score of 80. Providers of
HIV testing and outreach services reviewed and used similar
methods to clean their client lists; however, the services did not
represent the entire FSW or MSM population in any of the cities,
only those who pursued testing or engaged in outreach services.
The service providers were unable to guarantee that the lists
contained only current clients (ie, no former or expired clients)
and were fully deduplicated; thus, they were assigned confidence
scores of 60. The service providers varied by key population
and city but were provided with the same instructions on how
to clean and deduplicate the client lists, so the confidence scores
were applied consistently for FSW and MSM services across
all cities. Finally, all event multipliers indicated low overall
participation, with only a small proportion of survey respondents
reporting attendance. The events were similar in content and
attendance for FSW and MSM across the survey cities. The
resulting PSE for FSW and MSM in each survey city was
smaller than the survey sample sizes. Despite being a
low-quality, nonsensical PSE, the results were not dropped from

the model; they were assigned a low confidence score of 5. The
distributions of self-reported personal network sizes for FSW
and MSM in each survey city were plausible with a few outliers;
therefore, we adjusted for social visibility to reduce the impact
of those outliers on the PSE. The SS-PSE using imputed
visibility for FSW and MSM was consistent with previous study
results and program data, so SS-PSE was assigned a high
confidence score of 70.

Using the Shiny App
The confidence-scaled consensus estimation model is deployed
in an easy-to-use Shiny app that requires only a few inputs from
the user. There are 3 pages on the app: Enter Estimates, Define
Prior Beliefs, and Synthesis.

As an example, we consider estimating the size of the population
of FSW in location A of our example country in sub-Saharan
Africa. The 6 PSEs and the prior are all specified in Table 2.
The results of the model after running the app are also included
in Table 2.

The prior estimate for the population is 800 FSW, with plausible
bounds of (300, 2000). This prior was arrived at by consensus
among stakeholders and experts based on the 2014 BBS-based
population size estimates using nonempirical methods such as
the wisdom of crowds and literature reviews. The relatively
wide bounds cover most of the new PSEs, which are all similar
except for the Event and Service 2. The low Event estimate is
mitigated by its low confidence, and as such, it will have less
of an effect during synthesis. However, the high Service 2
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estimate has relatively high confidence, so we would expect
this estimate to pull the posterior mean higher.

The estimates are entered in the Enter Estimates tab of the app
(Figure 1A) along with the upper and lower bounds of the CI
and the confidence in the study (ranked out of 100). The other

choice that the user must make on this tab is whether to apply
a transformation to the data, with the options being no
transformation, log transformation, and logit transformation.
The log transformation is recommended when working with
population size estimates, whereas the logit transformation is
recommended for percentage or proportion data.

Figure 1. The (A) Enter Estimate tab and the (B) Define Prior Beliefs tab of the Shiny app. The Enter Estimates tab requires the user to input any
number of estimates, upper and lower bounds of the 95% CIs of those estimates, and confidence scores (out of 100) as well as input the estimate type
to determine the most appropriate transformation of the input data. The Define Prior Beliefs tab requires users to input the median and 75th percentile
for the prior distribution of the quantity being estimated and optionally maximum and minimum values that the quantity estimated can take on.

The prior beliefs are then entered in the Define Prior Beliefs
tab (Figure 1B). The median of the prior should match the prior
estimate of the population size. The 75th percentile, which is
used to determine the spread of the prior, is also required. This
is meant to be a practical and flexible way to characterize the
uncertainty in the prior. If the user has reliable information
about the prior uncertainty, such as the 95% CI, the 75th
percentile can be computed and entered. If the user does not
have reliable information about the uncertainty, they may try
several options for the 75th percentile, and the app will resample
to create the prior distribution shown in Figure 1B until the user
believes the distribution shown reasonably reflects their
knowledge of the population size.

The lower and upper bounds on the prior are not required for
the model to run but can speed up the computation and provide
a more reliable synthesis of the estimates by ruling out
impossible prior values. In this example, the lower bound is set
to 1 because there must be at least 1 FSW to make the population
size worth estimating. The upper bound is set to 3000, which
is somewhat arbitrary but makes improbably large population
sizes unlikely.

Once prior information has been entered, the model can be run
on the Synthesis tab. One additional input is the τ multiplier,
which helps to set the scale parameter for the prior on τ. We
have found that this default works well in most cases, although
it is possible that it may be appropriate to change it in some
circumstances. For instance, one might wish to decrease the
multiplier (eg, to 0.01 or 0.001) if there is good reason to believe
that all PSEs are of precisely the same population, such as if

the studies were done at the exact same time with the exact same
catchment area. In this case, barring errors in the implementation
of the studies, the between-study variance would be expected
to be close to 0, and thus, the prior on τ can be adjusted to make
high values of τ unlikely. In contrast, if less is known about the
implementation of the studies and there is reason to believe that
there might be some true between-study variance, the multiplier
could be increased (eg, to 1) to allow τ to take on larger values
or to make the prior less informative.

The results show both the prior and the posterior distributions
of the population size θ as well as descriptive statistics for the
posterior distribution of θ (Figure 2). Notably, the posterior
median was higher and the uncertainty was lower when
compared with the prior. The observation that the posterior
variance is smaller than the prior variance is generally true:
even if the PSEs are given very low confidence (and thus very
high uncertainty), the posterior will look very similar to the
prior. Refer to the Discussion section for further observations
on this point. This tab also reports the unaccounted-for variation

at the study level (R2) as the “percent of estimate variability
attributable to unaccounted-for study bias.” In this example,

R2=11%, indicating that the confidence scaling in the model
accounts for most of the nonsampling error that explains the
differences among the study estimates. This is compared with

the unscaled case (Table 2), where R2=92%, indicating the
incongruity of the estimates. A forest plot of the prior, estimates,
and consensus results (for both confidence scaled and unscaled)
is also shown in Figure 2, with both the reported CIs for the
estimates (solid) as well as the scaled CIs (dotted).
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Figure 2. The Synthesis tab of the Shiny app, which includes the consensus estimate and a forest plot of the prior, the estimates, and the consensus
estimate as well as the unaccounted-for variation. For the estimates in the forest plot (black), the solid lines represent the unscaled 95% CI, whereas the
dotted lines represent the confidence-scaled 95% CI.

Other Cases
To further demonstrate the range of the model, we considered
4 other populations to estimate in our example country in
sub-Saharan Africa: FSW and MSM in location B and FSW
and MSM in location C (Figures 3 and 4). For each population,
we consider an unscaled consensus estimate (each estimate’s
confidence level is set to cj=1 as well as a confidence-scaled
estimate, where the confidence levels for each estimate are
selected by expert opinion. The priors, estimates, and consensus
estimates for these 4 populations are shown in Table 2. These
4 estimates show that the effects of confidence scaling are not
limited to always increasing or decreasing the consensus
estimate. Using confidence scaling over the unscaled version
of the model, the point estimate for the population size decreased
by 3% for FSW in location B, decreased by 14% for MSM in
location B, increased by 13% for FSW in location C, and
increased by 1% for MSM in location B. Furthermore, the

magnitude of difference in the estimates for FSW in location C
and MSM in location B shows that confidence scaling can have
a major effect on the estimates.

The unaccounted-for variation for both the confidence-scaled
and unscaled estimates for each population also shows the
positive effects of having expert-selected confidence levels for
the estimates. For the unscaled estimates, the proportion of
estimate variation owing to unaccounted-for study bias is 0.89
for FSW in location B, 0.84 for MSM in location B, 0.90 for
FSW in location C, and 0.91 for MSM in location C. For the
confidence-scaled estimates, the proportion of estimate
variability attributable to unaccounted-for study bias is 0.0.11
for FSW in location B, 0.02 for MSM in location B, 0.16 for
FSW in location C, and 0.23 for MSM in location C. These
results indicate that for the confidence-scaled models, there is
less unexplained variation in the yjs owing to between-estimate
variation when compared with the unscaled models.
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Figure 3. Forest plots of prior distribution of the true population size θ, population size estimates, and consensus estimates for (A) female sex workers
(FSW) in location B, (B) men who have sex with men (MSM) in location B, (C) FSW in location C, and (D) MSM in location C. Consensus estimates
include unscaled confidence (ie, all study confidence levels set at 100) and confidence scaling (with confidence scores given in Table 2).

Figure 4. Prior and posterior distributions of the true population size θ for (A) female sex workers (FSW) in location B, (B) men who have sex with
men (MSM) in location B, (C) FSW in location C, and (D) MSM in location C. The prior is shown in red, the posterior with unscaled confidence (ie,
all study confidence levels set at 100) is shown in green, and the posterior with confidence scaling is shown in blue.
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Discussion

Principal Findings
In this study, we presented a Bayesian hierarchical model for
triangulating estimates of public health interest, with our
examples focusing on PSE. It is a major challenge for
stakeholders to come up with a single population size estimate
for a given population informed by multiple, potentially
contradictory, estimates. Approaches used in the past could be
overly simplistic, such as the use of a simple median, or opaque,
with stakeholders picking a number after a discussion with no
record of their full reasoning.

The model we have proposed assists and formalizes the
triangulation process. It makes the decision for a consensus
estimate from stakeholders transparent and explicit, while
allowing them to retain control over how credible they find each
individual estimate. Furthermore, the tool we developed to
implement this model has a built-in assessment of the consensus
process in the form of unaccounted-for variation; thus, the Shiny
app can provide instant feedback on how successfully the
individual estimates were combined in consensus. For users
working with population size estimates, we recommend
rounding results when presenting them to stakeholders to avoid
any confusion stemming from noninteger counts of people. For
all estimates, we strongly encourage transparency by presenting
confidence scores with a rationale for each.

We presented a use case that represents a common challenge:
the need to synthesize multiple estimates, often derived from
methods of varying quality. In our example, we had the benefit
of all empirical PSE and knowing the limitations and errors
made during survey implementation. This provided a valuable
context for confidence scoring, which affects the consensus
estimate. When this information on implementation is not
available, the next best option may be to base confidence scores
on the strength of the method used to produce each estimate.
For example, we presented the PSE derived from events, and
all were smaller than the survey sample size. We did not need
to know about the implementation errors to know these were
nonsensical results that merited very low confidence scores.
The PSE were all produced from the same survey; therefore,
there were no differences in the age of our PSE to impact
confidence scores (eg, we would have low confidence in older
PSE and high confidence in the current PSE). As described
earlier, our priors were several years old and based on
stakeholder consensus. We were not present for the discussions
years before our survey and do not know whether this consensus
effort was influenced by a few with strong voices or more
representative of the entire group of experts. Analysis of our
data presented in Figures 3 and 4 suggests that the more
disparate our individual estimates were, the more influential
the prior was in the consensus estimate. Therefore, we encourage
users to gather as much information as possible on the quality
of the prior and how it was derived to provide context for the
consensus estimate.

Strengths and Limitations
Other Bayesian approaches such as the Anchored Multiplier
model [17,18] have been proposed for PSE. Our model differs

from the Anchored Multiplier (and its Variance-Adjusted
counterpart) in 4 ways. First, our model can directly handle any
estimated quantity, including both population proportions and
absolute sizes from any PSE technique, whereas the Anchored
Multiplier is designed for estimates of population proportions
and requires the selection of denominators to handle absolute
sizes. Second, the Anchored Multiplier uses a binomial
distribution as the sampling distribution and a beta distribution
as the prior distribution, whereas our model uses normal
distributions for both the sampling and prior distributions, with
transformations tailoring the model to the estimate type. The
effect of this difference in model structure is explored in detail
in Multimedia Appendix 1 [18]; the differing structures give
the models strengths in different cases, and as such, they
represent complementary rather than competing approaches.
Third, in the variance-adjusted case, the Anchored Multiplier

uses a frequentist estimator of τ2 to extend the CIs of the
estimates, whereas in our model, τ is a parameter that is fit
during the sampling process. This distinction is important, as
the DerSimonian-Laird estimator [25] used by the Anchored
Multiplier has the potential to underestimate the true value of
tau squared [26] and produces confidence (or credible) intervals
that are overly narrow, particularly when the number of
estimates is small or the true between-study variance is large
[27], both of which are frequently encountered when dealing
with PSE. A wholly Bayesian approach, such as the one offered
by the Triangulator, may better account for between-study
variance [27]. Fourth, and most critically, our model provides
users with a clear and transparent platform to input their
confidence for each estimate, which is displayed alongside the
estimates data and consensus results on the final tab of the Shiny
app. This is in contrast with the Anchored Multiplier and other
techniques, where any adjustments to the uncertainty
surrounding the estimates must be made before entering the
data, which may lead to confusion among observers regarding
the source of the data.

Results from the Triangulator are subject to several user
limitations. First, if a user lacks knowledge of the quality of the
estimates to be synthesized by the Triangulator, the confidence
scores may not reflect the actual quality. High scores given to
poor-quality data in the presence of other confidence-scaled
estimates may result in a biased consensus estimate, as can low
scores given to high-quality data. Next, users may try to adjust
the confidence scores and model parameters after running the
models to fit a specific, desired consensus estimate. Whether
this affects the Triangulator more than similar models is
debatable; the Triangulator, the data, confidence scores, and
prior information are all transparently presented in the app,
whereas with other methods, the inputs may be obfuscated. We
provided tutorials for the proper use of the Triangulator to avoid
spurious results by making such adjustments.

Conclusions
As a user-friendly app, the Triangulator has broad utility for
statisticians, epidemiologists, and other public health
officials—anyone seeking to combine multiple estimates of
population size, incidence, prevalence, or other quantities into
a single consensus estimate. It offers a solution to the
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long-standing problem of synthesizing multiple estimates,
potentially leading to more informed and evidence-based
decision-making processes. Single-point estimates are widely
used in decision-making, resource allocation, and policy
development. Ministries of health rely on them to meet global
health reporting requirements. Humanitarian organizations and
multilateral government donors use single-point estimates to
establish targets and assess their performance against those
targets. The Triangulator leverages the user’s knowledge of the
quality of the original estimates as well as prior knowledge of
the quantity being estimated. Although technical parameters
can be adjusted to meet the needs of certain users, for most use

cases, no additional information is required outside of the
estimates to be combined (and their uncertainty), confidence
scores for each estimate, and parameters to set the prior on the
quantity of interest. The functionality increases accessibility to
public health teams that may not have statistical support but
need to synthesize multiple estimates into a single estimate with
uncertainty bounds. The Triangulator has the flexibility to be
adapted and used in various other contexts and regions to
address similar challenges.

Software, including the Shiny web app source code, is freely
available and can be accessed on the internet [28]. The Shiny
app is hosted at Epi apps for convenient use [29].
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Abbreviations
ART: antiretroviral therapy
BBS: biobehavioral survey
FSW: female sex workers
KP: key populations
MSM: men who have sex with men
PSE: population size estimation
SS-PSE: successive sampling population size estimation
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