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Abstract

Background: Increasingly, survey researchers rely on hybrid samples to improve coverage and increase the number of respondents
by combining independent samples. For instance, it is possible to combine 2 probability samples with one relying on telephone
and another on mail. More commonly, however, researchers are now supplementing probability samples with those from online
panels that are less costly. Setting aside ad hoc approaches that are void of rigor, traditionally, the method of composite estimation
has been used to blend results from different sample surveys. This means individual point estimates from different surveys are
pooled together, 1 estimate at a time. Given that for a typical study many estimates must be produced, this piecemeal approach
is computationally burdensome and subject to the inferential limitations of the individual surveys that are used in this process.

Objective: In this paper, we will provide a comprehensive review of the traditional method of composite estimation. Subsequently,
the method of composite weighting is introduced, which is significantly more efficient, both computationally and inferentially
when pooling data from multiple surveys. With the growing interest in hybrid sampling alternatives, we hope to offer an accessible
methodology for improving the efficiency of inferences from such sample surveys without sacrificing rigor.

Methods: Specifically, we will illustrate why the many ad hoc procedures for blending survey data from multiple surveys are
void of scientific integrity and subject to misleading inferences. Moreover, we will demonstrate how the traditional approach of
composite estimation fails to offer a pragmatic and scalable solution in practice. By relying on theoretical and empirical
justifications, in contrast, we will show how our proposed methodology of composite weighting is both scientifically sound and
inferentially and computationally superior to the old method of composite estimation.

Results: Using data from 3 large surveys that have relied on hybrid samples composed of probability-based and supplemental
sample components from online panels, we illustrate that our proposed method of composite weighting is superior to the traditional
method of composite estimation in 2 distinct ways. Computationally, it is vastly less demanding and hence more accessible for
practitioners. Inferentially, it produces more efficient estimates with higher levels of external validity when pooling data from
multiple surveys.

Conclusions: The new realities of the digital age have brought about a number of resilient challenges for survey researchers,
which in turn have exposed some of the inefficiencies associated with the traditional methods this community has relied upon
for decades. The resilience of such challenges suggests that piecemeal approaches that may have limited applicability or restricted
accessibility will prove to be inadequate and transient. It is from this perspective that our proposed method of composite weighting
has aimed to introduce a durable and accessible solution for hybrid sample surveys.
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Introduction

The survey sampling landscape is rapidly evolving. In an era
of diminishing response rates and escalating costs, more
effective survey sampling alternatives are no longer academic
curiosities [1]. While the new realities suggest that departures
from traditional methods are becoming inevitable, they also
beckon an immediate question as survey researchers continue
to experiment with hybrid sampling techniques. That is,

Are such sampling alternatives conducive to the
inferential integrity of scientific surveys by reaching
a representative subset of the target population in a
pragmatic and cost-effective manner?

In addition to adopting multiple modes of data collection [2] it
has become a customary practice to use less expensive samples
selected from online panels to supplement costly alternatives
from address or telephone frames [3]. The so-called opt-in
panels are compiled using a potpourri of recruitment techniques,
mostly relying on social media to fish for individuals willing
to partake in surveys—hence the term river sampling [4]. The
resulting convenience of these recruitment methods, however,
is often achieved at the expense of compromising the organic
representation that has been a natural byproduct of
probability-based samples. This trade-off becomes of elevated
concern since with samples obtained from opt-in panels, typical
geodemographic weighting adjustments may no longer be
adequate for ensuring their representativity [5].

It has been suggested that with such samples more granular
weighting and calibration adjustments become necessary to
ameliorate their compromised representations [6]. Specifically,
calibration adjustments to behavioral and attitudinal benchmarks
that go beyond geodemographic corrections might be needed
to improve the representation of survey respondents from less
representative samples [7,8]. Moreover, when mixing samples
secured from different sampling frames, special procedures
must be used to combine the various sample components in an
optimal fashion [9]. If conducted effectively, the resulting hybrid
samples may address both cost and coverage challenges of
traditional single-frame sample surveys—especially when
surveying rare or hard-to-get cohorts.

While the literature on how to improve the external validity of
survey estimates from nonprobability samples is maturing,
existing studies have focused solely on surveys of adults [10-12].
Moreover, proposed methods are often theoretical in nature or
pertain to ad hoc techniques with limited scalability. Given the
increasing inefficiencies of traditional survey sampling methods
on the one hand, and the growing possibilities of emerging
alternatives on the other, it is incumbent upon data scientists to
explore innovative options that can address the evolving
challenges facing the survey research community. This includes

being able to produce useful inferences even when working
with less-than-perfect data [13].

In this paper, we present practical weighting and calibration
techniques that can be used to address the unique nuances of
hybrid samples with varying representational properties,
including those for the surveys of hard-to-get cohorts such as
young adults. We will start with a review of the classical
statistical technique known as composite estimation for
combining survey estimates from 2 samples [14,15]. Next, as
an extension of the methodology developed by Fahimi [16], we
will introduce the method of composite weighting that is
significantly more efficient, both computationally and
inferentially, when pooling data from multiple surveys. For
empirical illustrations, we will demonstrate results using data
from 3 surveys with hybrid samples composed of
probability-based components from the United States Postal
Service address database and supplemental samples from online
panels.

Methods

Ethical Considerations
All study procedures were conducted in accordance with the
Declaration of Helsinki and its amendments. All study
participants provided informed consent prior to being included
in the study, which was approved by Advarra Institutional
Review Board (IRB protocol numbers: Pro00010120 and
Pro00009087).

Mathematics of Survey Data Integration
As mentioned earlier, there is a growing interest in hybrid
methodologies that combine 2 or more independent samples
with varying representational properties to reduce cost. This
includes combining probability samples that could be based on
random digit dialing or address-based sampling, as well as the
many instances where probability and nonprobability samples
are combined. Integrating survey data from independent samples
provides a larger analytical database with enhanced inferential
possibilities.

Data pooling is also relevant to regional surveys that are
conducted independently of their national counterparts, but in
which both surveys collect similar data from a common cohort.
In these situations, one might be interested in combining data
from a regional survey with those obtained from the
corresponding subset of the national survey. For example, the
National Health Interview Survey [17] and the Behavioral Risk
Factor Surveillance System [18] both have national as well as
local components that can be combined to produce more robust
estimates at overlapping domains.

While the various algebraic building blocks of composite
estimation methodology have been referenced in different
textbooks and papers, to the best of our knowledge, the entire
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inferential machinery underpinning this cumbersome process
has never been furnished in full detail in 1 place. As such, in
the following section, we will provide a comprehensive
description of the mathematics of this classical methodology
under varying scenarios.

Composite Estimation Methodology
Traditionally, the method of composite estimation has been
used to blend results from different surveys to improve the
robustness of the resulting estimates [19]. That is, individual
point estimates from different surveys are produced and then
blended together into 1 estimate at a time. In this section, we
will furnish the mathematical foundation for this arduous
approach before a more efficient alternative is introduced that
can produce more stable estimates while significantly reducing
the computational burden.

Consider a population of N units from which 2 independent
samples of size n1 and n2 have been selected. Under the
conventional composition methodology, individual estimates
from the 2 samples are produced separately and then combined
to produce composite estimates that might be more robust. When

the parameter of interest is, say population mean , the general
composite estimator will have the following form [20]:

(1)

In the above equation, and represent independent

estimates of from the first and second samples, respectively.
Using this decomposition, the optimal value for the blending
or composition factor α can be obtained by minimizing the

mean square error of , which is a function of the variance and
bias of this composite estimate [21]:

(2)

Under this general scenario when neither of the 2 estimates can
be considered unbiased, the optimal value of α can be obtained
by [22]:

(3)

As mentioned earlier, a growing number of surveys complement
their main probability samples with less expensive supplements
secured from online panels from which the resulting estimates
may not be unbiased. When probability and nonprobability
samples are to be combined whereby only 1 of the 2 samples

can provide unbiased estimates, say when 
the optimal value of α becomes:

(4)

However, when the 2 independent estimates and  could
be assumed to have a negligible bias due to the application of

survey weights, then the optimal value of α can be obtained by

simply minimizing the variance of :

(5)

The minimum of the above quadratic function of α is that value
for which its derivative is equal to 0, that is:

(6)

Consequently,

(7)

Furthermore, when estimates from the 2 surveys are expected
to exhibit comparable variabilities as well, the above becomes
a simpler function in terms of the sample sizes n1 and n2 and

their associated unequal weighting effects (UWE) and

. In this case, the optimal value of the composition factor
can be obtained by [16]:

(8)

Finally, there are situations where it would be justifiable to

assume that and ratio to near unity. In such
instances, the optimal value of α reduces to a basic function of
the respective sample sizes of the 2 surveys:

(9)

Whether any of the above simplifying assumptions can be
justified or not, the fact remains that the composite estimation
methodology entails operational complexities and inferential
inefficiencies. First, this burdensome approach requires that
composite estimates be produced 1 estimate at a time. Given
that for a typical survey one must produce dozens of estimates
for key outcome measures, this computationally intensive
methodology requires serious time and resources.

Second, and more importantly, this piecemeal process produces
estimates that are based on individual samples of size n1 and
n2, and not the larger combined sample of size n = n1 + n2. This
means relying on 2 estimates that could have been created using
different methodologies with weighting adjustment granularities
that will be coarser than what would be possible with a larger
combined sample. In the next section, we will introduce an
alternative methodology that can bypass these inefficiencies
and complexities.
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Composite Weighting Methodology
As described above, the classical composite estimation
methodology is both cumbersome and inferentially inefficient.
Our proposed methodology detailed here eliminates the above
inefficiencies and complexities by allowing the 2 samples to be
integrated first so that a single set of composite weights could
be generated for estimation purposes. Specifically, instead of
producing composite estimates from the unintegrated survey
data 1 at a time, under this alternative, a single set of weights
will be generated so that estimates could be produced from the
combined sample. This huge convenience also benefits from
all the inferential dividends the larger combined sample can
offer. While the following derivation is for integrating data from
2 surveys, as demonstrated later, this scalable approach can
easily apply when more than 2 surveys are involved.

For ease of illustration and without the loss of generality, we
can assume there is only 1 weighting cell for poststratification
purposes, and let

B1i: Sampling base weights from sample 1, i=1,..., n1

B2j: Sampling base weights from sample 2, j=1,..., n2

Based on the conventional composition method, separately
poststratified weights for the 2 samples will have the following
form:

(10)

But rather than computing separate point estimates using the
above 2 sets of poststratified weights and then compositing
them 1 at a time, if the condition in equation 9 holds, one can
create component weights that could be combined to aggregate
to the same population total N. The resulting weights can then
be used to produce point estimates directly from the combined
data without any need for piecemeal compositions. These
weights could be produced by:

(11)

Given that the above approach still requires separate
poststratification of individual samples, it would be desirable
if the 2 sets of base weights could be combined first and then
poststratified jointly. This is a vastly superior option because it
can accommodate more consistent and granular weighting
adjustments, courtesy of the larger combined sample.
Mathematically, this can be accomplished by a simple rescaling
of individual base weights first and then combining them for a
join poststratification or raking by:

(12)

The above, however, magnifies the respondents’ base weights
across the 2 samples with the same poststratification factor
irrespective of any differential precision that would be associated

with the sample that has better representation. The procedure
described next introduces a simple calibration adjustment that
could be used to remove this inequity prior to a joint
poststratification.

Calibration of Base Weights for Joint Poststratification
In order for the alternative weighting procedure to produce final
weights that are identical to the composite weights, the following
must hold:

(13)

Specifically, the above conditions would hold if the following
were satisfied:

(14)

This means that the alternative method can produce the same
composite weights, provided that base weights from the 2
samples are calibrated prior to poststratification. That is when
base weights from the 2 samples are first scaled to their
respective sample sizes. Having done this, instead of separately
poststratifying base weights from the 2 samples and then
producing composite weights, one can use the proposed
calibrated base weights from the 2 samples so that the 2 can be
combined and poststratified concurrently.

It should be noted that the above calibration correction easily
carries over to more realistic situations with more than 1
poststrata, where the underlying assumption in equation 9 is
easier to satisfy. Also, one can apply the above procedure under
the less restrictive condition in equation 8 when the UWE do
not ratio to unity. In this more realistic situation, the
corresponding base weights must be calibrated to their respective
effective sample sizes as shown:

(15)

Estimates of survey-specific UWE are often readily available,
or they can be quickly approximated as a function of
poststratified (or base) weights by the following formula when
finite population corrections can be ignored [23].

(16)

With the above correction applied, it would then be possible to
use the resulting calibrated base weights as input for a final
poststratification or raking of the combined sample using an
expanded set of benchmarks. Alternatively, the same
benchmarks could be used but with more granularity to improve
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the representation of the combined sample with respect to finer
categories of the weighting variables.

Of note, the above approximation for UWE in equation 16 can
also be used to assess the variability of estimates across surveys.
Recognizing that variance is an estimate-specific statistic and
mostly influenced by sample size and dispersion of the moments
of the given estimate, UWE can be used as a relative measure
of variability at the survey level as well. Typically, larger values
of UWE are indicative of less representative sample surveys
for which more variable weights have been needed to realign
respondents vis-à-vis their population benchmarks.

Extension and Generalization
An extension of the above applies to instances where more than
2 surveys are to be integrated. In such situations, the existing
weights for each survey can be calibrated by the following
optimal composition factors to produce the final blended weights
for combining S different samples:

(17)

It is worth noting when large samples from opt-in panels are
used to supplement probability samples of modest size since
selection probabilities for such samples are not available,
typically they are assigned a constant pseudo design weight
prior to poststratification. An implication of this shortcut is that
nonprobability sample components can carry artificially smaller
UWE, which means such sample components will have inflated
contributions when surveys are integrated. However, partitioning
the total UWE for the probability sample component into that
due to design weights and the residual due to poststratification
can address this problem. The residual UWE for the probability
sample component, which will be used for calibration correction
in equation 15 will be:

(18)

Results

To illustrate the applications of our proposed methodology, data
from 3 pairs of surveys were used. Each pair was comprised of
data from the Truth Longitudinal Cohort (TLC) survey and the
Truth’s Continuous Tracker Online (CTO) survey. The TLC is
a national representative panel of youths and young adults (aged
15-24 years) recruited via address-based sampling with online
data collection. The CTO is a weekly, cross-sectional survey
of participants aged 15-24 years. The CTO surveys are
conducted using a sample of approximately 300 respondents
per week from the national Dynata online panel. Participants
of the TLC and CTO are invited to complete short online surveys
about attitudes, beliefs, experimentation, and frequency of use
regarding tobacco and other substances.

For the first pair, the CTO component included weekly surveys
from July 20, 2020, to November 17, 2020. For the second pair,
these weekly samples span from July 18, 2020, to February 24,

2021. For the third pair, the CTO component was comprised of
weekly samples from July 14, 2021, to September 15, 2021.
For each pair, the TLC component included surveys conducted
during contemporaneous time periods. Table 1 provides a
summary of the 3 pairs of TLC and CTO surveys used for this
research.

For this investigation, we focused on 2 key outcome parameters,
prevalence of current use (eg, at least 1 day of the past 30 days)
of cigarettes and e-cigarettes. Prevalence estimates were
produced separately from each sample component of each
survey for respondents 15 to 17, 18 to 24, and 15 to 24 years
of age after each component was weighted to basic
geodemographic benchmarks of the given cohort.

Table 2 provides a summary of weighted point estimates for
each survey and cohort, while Table 3 shows the corresponding
overall estimates for 15- to 24-year-olds. All estimates are
accompanied by their associated lower confidence limit and
upper confidence limit at 95% CI, for which SEs were estimated
using the method of Taylor Series Linearization in SAS [24].

To compare survey estimates produced under our proposed
method of composite weighting against those using composite
estimation, first the above point estimates had to be combined
using the latter method. That is, point estimates from individual
surveys were blended one by one using the coarse weighting
methodology each sample survey could tolerate. Table 4
provides a summary of the resulting composite estimates by
survey pair, cohort, and outcome measure.

Subsequently, composite weights were computed for each
sample pair using our proposed methodology outlined above.
These weights were computed for the combined TLC and CTO
samples, where more granular weighting adjustments were
possible due to larger sample sizes. Moreover, additional
calibration adjustments were applied to the combined sample
for which the needed benchmarks were generated from the TLC
sample component for each survey pair. These adjustments
included corrections with respect to the following behavioral
attributes, which were shown to differentiate between young
adult respondents from online panels and their cohorts. (1)
Length of residence: about how long have you lived at your
current address? (2) Household (dwelling) type: which of the
following best describes your home? (3) Financial comfort:
how would you describe your family’s overall financial
situation? (4) Living with parents: do you currently live in a
household with at least 1 of your parents? (5) Social media
influencer: do you like to be a social media influencer?

While the rationale for the above calibration adjustments for
general population surveys is detailed in [6,10], for the CTO
surveys further investigations were carried out to identify
differentiating attributes unique to teens and young adults. It is
worth noting that for instances when a probability sample
component like the TLC is not available in parallel, it is possible
to use government sources, such as the monthly Current
Population Survey or the American Community Survey, to
secure relevant benchmarks for calibration adjustments.

It is of particular importance to note that the above calibration
adjustments would not have been possible under the traditional
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composition methodology, whereby estimates are generated
from individual surveys and then combined. Table 5 provides
a summary of the resulting estimates produced by integrating
the TLC and CTO sample components first and then weighting
them to a more granular set of benchmarks and calibration
adjustments listed above.

While independent estimates of tobacco use behaviors among
teens and young adults can vary greatly due to methodological
differences between their corresponding surveys, the following
statistics from the National Youth Tobacco Survey [25]

conducted by the Centers for Disease Control and Prevention
were used to assess the external validity of estimates produced
using our proposed methodology. Confounding differences
among surveys could be due to study design and mode of
administration, as well as other differences in periodicity and
questionnaire wording. Cognizant of these differences,
nonetheless, our estimates using composite weighting
methodology produce comparable estimates to those from the
National Youth Tobacco Survey 2020, as summarized in Table
6.

Table 1. Sample size summary for the TLCa and CTOb sample components by survey pair.

Total, NPair 3, nPair 2, nPair 1, nSurvey and cohort

TLC

197555542299815-17

461112291019236318-24

658617841441336115-24

CTO

30108571112104115-17

773621132876274718-24

10,74629703988378815-24

TLC+CTO

498514121534203915-17

12,34733423895511018-24

17,33247545429714915-24

aTLC: Truth Longitudinal Cohort.
bCTO: Continuous Tracker Online.
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Table 2. Point estimates and confidence limits by outcome measures, survey pair, and cohort.

18 to 24-year-old15 to 17-year-oldSurvey pair and outcome

(%), estimate (95% CI)Sample, n(%), estimate (95% CI)Sample, n

Pair 1

2363998TLCa

6.7 (5.5-7.9)2.2 (1.3-3.1)Cigarette

15.0 (13.2-16.7)8.2 (6.2-10.2)e-Cigarette

27471041CTOb

22.1 (19.9-24.2)5.5 (3.7-7.4)Cigarette

25.5 (23.1-27.9)10.4 (7.9-12.9)e-Cigarette

Pair 2

1019422TLC

6.7 (4.8-8.6)1.2 (0.1-2.2)Cigarette

17.4 (14.6-20.3)7.0 (4.5-9.5)e-Cigarette

28761112CTO

22.3 (20.2-24.5)6.1 (4.4-7.9)Cigarette

27.5 (25.1-29.9)14.0 (11.4-16.6)e-Cigarette

Pair 3

1229555TLC

6.9 (5.2-8.7)3.0 (1.4-4.7)Cigarette

18.1 (15.5-20.7)5.7 (3.6-7.8)e-Cigarette

2113857CTO

25.0 (22.3-27.7)5.7 (3.9-7.6)Cigarette

28.8 (25.9-31.7)12.4 (9.5-15.4)e-Cigarette

aTLC: Truth Longitudinal Cohort.
bCTO: Continuous Tracker Online.
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Table 3. Point estimates and confidence limits by outcome measures and survey pair (15 to 24 years of age).

(%), estimate (95% CI)Sample size, nSurvey pair and outcome

Pair 1

3361TLCa

5.3 (4.4-6.2)Cigarette

12.9 (11.5-14.2)e-Cigarette

3788CTOb

16.9 (15.3-18.5)Cigarette

20.8 (18.9-22.6)e-Cigarette

Pair 2

1441TLC

5.0 (3.6-6.3)Cigarette

14.2 (12.0-16.3)e-Cigarette

3988CTO

17.2 (15.6-18.8)Cigarette

23.2 (21.4-25.1)e-Cigarette

Pair 3

1784TLC

5.7 (4.4-7.0)Cigarette

14.2 (12.3-16.2)e-Cigarette

2970CTO

18.9 (16.9-20.9)Cigarette

23.6 (21.4-25.8)e-Cigarette

aTLC: Truth Longitudinal Cohort.
bCTO: Continuous Tracker Online.
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Table 4. Composite estimates by survey pair, cohort, and outcome measures.

CompositeSurvey pair, cohort, and outcome

Estimate, %Factor (α)

Pair 1

15-17 (n=2039)

2.9.80Cigarette

9.1.61e-Cigarette

18-24 (n=5110)

10.5.75Cigarette

18.7.64e-Cigarette

15-24 (n=7149)

8.1.76Cigarette

15.7.64e-Cigarette

Pair 2

15-17 (n=1534)

2.5.74Cigarette

10.4.52e-Cigarette

18-24 (n=3895)

13.6.56Cigarette

23.3.41e-Cigarette

15-24 (n=5429)

10.1.58Cigarette

19.4.43e-Cigarette

Pair 3

15-17 (1412)

4.2.56Cigarette

8.0.66e-Cigarette

18-24 (3342)

22.9.55Cigarette

0.0.00e-Cigarette

15-24 (4754)

9.7.70Cigarette

18.3.57e-Cigarette
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Table 5. Survey estimates using composite weights by survey pair, cohort, and outcome measure.

(%), estimate (95% CI)Survey pair, cohort, and smoker

Pair 1

15-17 (n=2039)

3.6 (2.7-4.6)Cigarette

9.1 (7.6-10.6)e-Cigarette

18-24 (n=5110)

13.6 (12.5-14.7)Cigarette

19.5 (18.1-20.9)e-Cigarette

15-24 (n=7149)

10.5 (9.6-11.3)Cigarette

16.3 (15.2-17.3)e-Cigarette

Pair 2

15-17 (n=1534)

4.4 (3.2-5.6)Cigarette

11.5 (9.6-13.4)e-Cigarette

18-24 (n=3895)

17.0 (15.5-18.5)Cigarette

23.9 (22.1-25.7)e-Cigarette

15-24 (n=5429)

13.0 (11.9-14.1)Cigarette

20.0 (18.6-21.4)e-Cigarette

Pair 3

15-17 (n=1412)

4.4 (3.2-5.6)Cigarette

9.2 (7.4-10.9)e-Cigarette

18-24 (n=3342)

15.9 (14.4-17.5)Cigarette

23.4 (21.5-25.2)e-Cigarette

15-24 (n=4754)

12.3 (11.2-13.5)Cigarette

18.9 (17.5-20.3)e-Cigarette

Table 6. Prevalence of cigarette and e-cigarette use among middle and high school students.

Past 30-day useSchool cohort

e-Cigarette, %Cigarette, %

3.6-6.01.2-2.2Middle school (n=7042)

17.2-22.23.6-6.0High school (n=7453)

11.3-15.02.6-4.2Middle and high school (n=14,531)

Discussion

Principal Findings
Conducting credible survey research in the 21st century is an
endeavor subject to evolving challenges that require thinking

outside of the traditional survey sampling toolbox. The
proliferation of such challenges has had 2 distinct impacts on
survey sampling. On the one hand, there are emerging
improvisational methods of sampling and weighting that, while
expedient, are void of scientific underpinnings. On the other,
there is a growing disenchantment with traditional methods that
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despite their complex and computationally intensive nature,
struggle with the new realities of the digital age. Our proposed
method of composite weighting addresses both deficiencies, by
offering an accessible approach that is soundly grounded in
inferential sciences.

The statistical machinery, survey researchers have relied upon
for decades, made it possible to make measurable inferences
about target populations when samples of modest size are
selected from complete sampling frames; all sampling units
carry known and nonzero selection probabilities; and surveys
achieve near-perfect rates of response [26]. For various reasons,
but most notably the growing rates of nonresponse and survey
costs, many of the surveys conducted these days struggle to
fulfill the fundamental tenets of this sampling paradigm [27-29].
While such violations have been commonplace and routinely
discounted by market researchers for whom theoretical
considerations are often trumped by cost and time constraints,
arguably, even large-scale government surveys are no longer
exempt from such challenges [30].

A strategy that is gaining popularity for dealing with the rising
costs and coverage challenges of surveys is to combine 2 or
more independent samples selected from separate sampling
frames with varying representations of the target population. In
particular, such hybrid alternatives can pay considerable
dividends when survey data secured from certain sample
components are significantly less costly. There are also instances
when multiple samples are required for the design of a study,
while in other situations existing data from different surveys
are pooled to address the size and analytical needs of a given
research.

In comparison to the traditional method of composite estimation
whereby separate estimates are combined from different surveys
1 at a time, our proposed composite weighting methodology
for integrating survey data offers at least 5 distinct advantages.

First, the method of composite weighting is less cumbersome
than that of composite estimation because it enables researchers
to work with a single data file and not multiple sets of data and
weights from unintegrated surveys.

Second, an integrated database that is larger than any of the
individual sample components accommodates more nuanced
weighting adjustments than what might be possible with
individual surveys. This becomes especially appealing when
one of the surveys is based on a small sample size, whereby
coarse weighting can fail to improve the representation of its
respondents.

Third, integrated survey data allows more in-depth analyses,
particularly when comparisons of smaller analytical subgroups
are of interest. Such deep-dive multivariate analyses are not
feasible when producing separate estimates from individual
surveys, some of which could be of modest size.

Fourth, related to the above, survey estimates from the resulting
integrated data will be subject to smaller and consistently
calculated SEs courtesy of the larger sample size and a single
data set to make inferences from. Composite weighting
eliminates extraneous variabilities that are inevitable under
composite estimation due to the application of inconsistent

weighting procedures for individual surveys, such as the use of
different benchmarks, raking algorithms, and weight-trimming
rules.

Finally, and perhaps most importantly, composite weighting
offers a unique advantage that is of particular importance as
interest in combining data from probability and nonprobability
samples continues to grow. Specifically, this methodology offers
the possibility of additional calibration adjustments of
respondents from nonprobability samples to benchmarks that
are not externally available but can be generated from the “more
representative” subset of respondents.

The above advantages are particularly relevant to public health
research initiatives, as they often require faster data collection
turnarounds from large pools of respondents. Unlike opinion
polling and commercial survey applications that typically aim
for “good-enough” estimates of trends, health studies often
require reliable assessments that can guide public policies. It is
in this context that unreliable inferences, or those that are
reliable but slow to produce, can have dire consequences or be
obsolete.

Yet just like any new methodology, what we have proposed is
not a panacea or free from limitations. For instance, neither this
approach nor any other can produce measurable inferences from
data secured from sample surveys that fail to represent their
target cohort due to systematic exclusions. Another potential
limitation worth mentioning is the technical sophistication the
application of this methodology may require. While substantially
less complicated and resource-intensive as compared to the
method of composite estimation, our proposed method still
requires some level of inferential acumen and know-how. Then
again, working with complex surveys that entail mixing data
from multiple sources is an undertaking that requires a decent
level of survey sampling and inferential familiarity to begin
with. If tasked with the challenge of mixing data from multiple
surveys, our hope is that researchers will find the option of
composite weighting more accessible and efficient.

Concluding Remarks
Despite the growing challenges facing the survey research
community, practitioners should not succumb to suboptimal
practices for cost-saving purposes alone. Such unilateral
guidelines have contributed to the stigma that commercial
surveys have inadequate concern for rigor. On the other hand,
undue allegiance to traditional methods of survey sampling can
also confine researchers to inefficient practices that are losing
their pragmatism. This position becomes particularly untenable
when such adherences are simply for the sake of preserving the
optics.

Traditional methods of survey research are becoming inefficient,
both with respect to data quality and cost, begging for novel
and pragmatic alternatives that do not forego rigor. It is from
this perspective that we hope the methodology we have
furnished in this paper could address some of such inefficiencies,
enabling survey researchers to take fuller advantage of the data
resources they have at their disposal. Results from the detailed
comparisons we have exhibited in this paper show that
composite weighting methodology is vastly less cumbersome
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and produces estimates that are at least as reliable as what can
be produced using composite estimation.

As a final parting note we would like to reiterate that with
declining response rates, surveys require progressively more
comprehensive weighting adjustments to restore the
representation of their respondents. As such, it is not advisable

to shy away from more aggressive weighting and calibration
adjustments only to keep the resulting UWE at bay [31]. Of
course, this is fully cognizant of the proverbial seesaw occupied
on one side by bias and variance on the other. Above all, it is
imperative to retain full transparency about adopted
methodologies and their potential shortfalls as we explore new
possibilities for survey sampling in the digital age.
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