
Original Paper

Discovering Subgroups of Children With High Mortality in Urban
Guinea-Bissau: Exploratory and Validation Cohort Study

Andreas Rieckmann1, PhD; Sebastian Nielsen2,3, PhD; Piotr Dworzynski4, PhD; Heresh Amini5,6, PhD; Søren Wengel

Mogensen7, PhD; Isaquel Bartolomeu Silva2,3, MSc; Angela Y Chang8,9, ScD; Onyebuchi A Arah10,11,12, MD, PhD;

Wojciech Samek13,14,15, Dr rer nat; Naja Hulvej Rod1, PhD, DMSc; Claus Thorn Ekstrøm16, PhD; Christine Stabell

Benn2,3,8, MD, PhD, DMSc; Peter Aaby2,3, DMSc; Ane Bærent Fisker2,3, MD, PhD
1Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
2Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
3Bandim Health Project, Research unit Odense Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital
and University of Southern Denmark, Odense, Denmark
4Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
5Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
6Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
7Department of Automatic Control, Lund University, Lund, Sweden
8Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
9The Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
10Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
11Department of Statistics and Data Science, College of Letters and Science, University of California, Los Angeles, Los Angeles, CA, United States
12Research Unit for Epidemiology, Department of Public Health, University of Aarhus, Aarhus, Denmark
13Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
14Department of Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany
15Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
16Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark

Corresponding Author:
Andreas Rieckmann, PhD
Section of Epidemiology
Department of Public Health
University of Copenhagen
Øster Farimagsgade 5
Copenhagen, 1353
Denmark
Phone: 45 35326765
Email: aric@sund.ku.dk

Abstract

Background: The decline in global child mortality is an important public health achievement, yet child mortality remains
disproportionally high in many low-income countries like Guinea-Bissau. The persisting high mortality rates necessitate targeted
research to identify vulnerable subgroups of children and formulate effective interventions.

Objective: This study aimed to discover subgroups of children at an elevated risk of mortality in the urban setting of Bissau,
Guinea-Bissau, West Africa. By identifying these groups, we intend to provide a foundation for developing targeted health
interventions and inform public health policy.

Methods: We used data from the health and demographic surveillance site, Bandim Health Project, covering 2003 to 2019. We
identified baseline variables recorded before children reached the age of 6 weeks. The focus was on determining factors consistently
linked with increased mortality up to the age of 3 years. Our multifaceted methodological approach incorporated spatial analysis
for visualizing geographical variations in mortality risk, causally adjusted regression analysis to single out specific risk factors,
and machine learning techniques for identifying clusters of multifactorial risk factors. To ensure robustness and validity, we
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divided the data set temporally, assessing the persistence of identified subgroups over different periods. The reassessment of
mortality risk used the targeted maximum likelihood estimation (TMLE) method to achieve more robust causal modeling.

Results: We analyzed data from 21,005 children. The mortality risk (6 weeks to 3 years of age) was 5.2% (95% CI 4.8%-5.6%)
for children born between 2003 and 2011, and 2.9% (95% CI 2.5%-3.3%) for children born between 2012 and 2016. Our findings
revealed 3 distinct high-risk subgroups with notably higher mortality rates, children residing in a specific urban area (adjusted
mortality risk difference of 3.4%, 95% CI 0.3%-6.5%), children born to mothers with no prenatal consultations (adjusted mortality
risk difference of 5.8%, 95% CI 2.6%-8.9%), and children from polygamous families born during the dry season (adjusted
mortality risk difference of 1.7%, 95% CI 0.4%-2.9%). These subgroups, though small, showed a consistent pattern of higher
mortality risk over time. Common social and economic factors were linked to a larger share of the total child deaths.

Conclusions: The study’s results underscore the need for targeted interventions to address the specific risks faced by these
identified high-risk subgroups. These interventions should be designed to work to complement broader public health strategies,
creating a comprehensive approach to reducing child mortality. We suggest future research that focuses on developing, testing,
and comparing targeted intervention strategies unraveling the proposed hypotheses found in this study. The ultimate aim is to
optimize health outcomes for all children in high-mortality settings, leveraging a strategic mix of targeted and general health
interventions to address the varied needs of different child subgroups.

(JMIR Public Health Surveill 2024;10:e48060) doi: 10.2196/48060
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Introduction

Child mortality in Guinea-Bissau has decreased significantly
over the past 40 years but is still unacceptably high (1 in 13
children dying before the age of 5 years in 2021 [1]). Thus,
there is a constant need to design relevant interventions to reduce
mortality [2,3]. In particular, identifying subgroups of children
at high risk of dying may inform targeted preventive or
risk-mitigating interventions to supplement population-wide
approaches [4,5].

To identify actionable points for interventions to prevent or
mitigate risk, we want to document the fuller causal structure.
This spans distal causes such as social and economic conditions,
legal rights, and welfare policies to immediate causes such as
congenital malformations or infectious agents [6]. However,
obtaining high-quality data on these factors can be challenging,
particularly in low-income countries. One potential data source
is Health and Demographic Surveillance Systems (HDSS),
which collect individual-level data on demographics and health
for a portion of the population [7].

In this exploratory study, we used HDSS data from urban
Bissau, the capital of Guinea-Bissau, to identify subgroups of
children at high risk of dying before 3 years of age. We analyzed
data from 2003 to 2019, where the birth years from 2003 to
2011 were used to identify risk factors and high-risk groups,
which we then tested in the birth years from 2012 to 2016. This
allowed us to focus on factors consistently associated with high
mortality over time. To do this, we used 3 different types of
analyses, that are, spatial analysis to map child mortality in
specific areas, regression analysis to identify single risk factors
associated with high mortality, and a machine learning model
to identify multifactorial risk groups. By integrating these
approaches, we aimed to discover subgroups of children with

high mortality without being limited to prior hypotheses [8].
Such discoveries are necessary for developing new hypotheses
and identifying interventions to reduce child mortality.

Methods

Study Population and Follow-Up
The study population included children living in Bissau, the
capital city of Guinea-Bissau. All the children were part of the
HDSS Bandim Health Project [9] and were seen by data
collectors within the first 6 weeks of life. Children under 3 years
of age are routinely visited every 3-4 months to collect vital
and health information. Many recorded child deaths in this
population are due to infectious diseases such as respiratory
infections, malaria, and diarrhea [10,11].

Follow-up for this study began at 6 weeks of age to ensure that
a sufficient proportion of children had their baseline information
recorded. Children, who died before 6 weeks of age or did not
have complete baseline information, were excluded from the
study (30,441/51,446, see flowchart in Figure S1 in Multimedia
Appendix 1). To account for the potential selection bias caused
by migrating children, inverse probability of censoring weights
(IPCW) was used in all analyses and presented results
(Multimedia Appendix 2) [12].

Baseline Information
To identify relevant factors for child mortality, available baseline
information was divided into environmental, household, and
individual and birth domains. Figure 1 depicts the assumed
causal structure [12] or the data-generating process linking these
domains. Operational definitions of the variables and a
visualization of their pairwise associations can be found in Table
S1 and Figure S2 in Multimedia Appendix 1, respectively.
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Figure 1. Flowchart of the assumed causal structure.

Analyses
A temporal split of the data, rather than a random split, was
used in this study. This allowed us to determine whether
identified subgroups consistently had a higher mortality risk
across different time periods and thus, may be relevant
subgroups for future intervention. The sample size allowed us
to divide the data into 2 cohorts. The temporal validation cohort
also allowed us to test the robustness of our findings, as there
have been various changes over time that may have affected
child mortality, such as a significant decline in respiratory
infections [11,13].

To describe the temporal trends in child mortality, the
Kaplan-Meier estimator was used to calculate overall risks and
risks split by age, accounting for censoring during follow-up.
All subsequent analyses excluded censored children and used
IPCW to adjust for selection bias.

We conducted the following 3 analyses to investigate the
association between the baseline information collected before
6 weeks of age and mortality during the entire follow-up period
(from 6 weeks to 3 years). All association measures were
reported as mortality risk difference (MRD), with 0 indicating
no difference between the compared subgroups. The MRD was
expressed as a percentage (ie, the difference in deaths per 100
children). All estimates in the results section are adjusted
mortality risk differences (aMRD).

Spatial Analysis
We examined whether certain residential areas had a higher
mortality risk than others by mapping the children’s households
at baseline and moving a sliding window (250 m × 250 m) 10
m at a time to visualize the mortality risk across the study area.
Estimates were only presented when at least 100 children were
included within the sliding window to avoid small cell sizes.
The estimates were adjusted for the linear effect of birth year,
as child mortality has approximately decreased linearly by birth
year (Figure S3 in Multimedia Appendix 1).

Single Risk Factors
We used generalized linear regressions to investigate the
associations between single factors and a higher risk of child
mortality. Adjustments were made according to the assumed
causal structure (depicted in Figure 1) by blocking the common

causes in higher-order domains using the backdoor criterion
[12].

Multifactorial Risk Groups
We applied the Causes of Outcome Learning approach [14,15]
to identify vulnerable subgroups with a combination of baseline
information that was associated with a higher risk of child
mortality. This causal inference-inspired machine learning
approach has been optimized to prevent causal biases such as
confounding by calendar time and collider bias, which could
occur in other supervised clustering approaches. Details of the
implementation of the Causes of Outcome Learning approach
can be found in Multimedia Appendix 3. Since this approach
is optimized for interactions in subpopulations, it is expected
to find other patterns than the first-order linear regression which
averages across the entire population.

Summarization and Causal Modeling
To summarize the findings from the 3 analyses, key statistics
such as prevalence, crude risks, and identification of synergistic
associations [16] (where the risk from simultaneous exposure
to multiple factors is greater than the sum of the individual risks)
were calculated. Adjusted risk differences were determined
using causal modeling (targeted maximum likelihood estimation
[TMLE] [17]) for the defined subgroups compared to all other
children. The probability of the estimates from the
hypothesis-generating and temporal validation cohorts being
similar was also calculated. In addition, a combined estimate
for both cohorts was obtained to estimate the population
attributable fraction (PAF) [18], which represents the fraction
of all mortality that would be prevented if the causal exposure
of interest was removed. The analyses were conducted using R
(version 4.2; R Core Team), and some sentences were revised
using ChatGPT (OpenAI) to improve clarity.

Ethical Considerations
The study does not include biologically, physically invasive,
or potentially dangerous procedures. The HDSS collection of
data is at the request of the Ministry of Health, Guinea-Bissau.
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Results

Overview
A total of 51,446 children were registered between 2003 and
2019, with 30,441 being excluded from our analysis due to
registration after 6 weeks of age, lack of follow-up information,
death by 6 weeks of age, missing baseline information, or
emigration during follow-up (see flowchart in Figure S1 in
Multimedia Appendix 1). The study sample included 21,005
children, which was weighted to an analytical sample of 27,998
children using IPCW to account for nonrandom emigration.
The hypothesis-generating and temporal validation cohorts were
based on weighted samples of 19,311 and 8687 children,
respectively. The weights were not extreme (Multimedia
Appendix 2). The mortality risk during the follow-up period
(from 6 weeks to 3 years of age) was 5.2% (95% CI 4.8%-5.6%)
in the hypothesis-generating cohort and 2.9% (95% CI
2.5%-3.3%) in the temporal validation cohort.

Spatial Analysis
We explored the results from the spatial analysis of the
hypothesis-generating cohort, which gave rise to defining 4
areas; A, B, C, and D where the child mortality rate was
considerably high. We marked these areas with circles on top
of the spatial results in Figure 2. By comparing children living
in the residential areas marked by circles A, B, C, and D
(constituting between 1% [n=253] and 3% [n=533] of children)
to those living outside these areas (Figure 2), the aMRD was
4.5% (95% CI –0.6% to 9.6%), 1.9% (95% CI –1.2% to 5.0%),
3.3% (95% CI –0.3% to 6.9%), and 4.0% (95% CI 0.1%-8.0%),
respectively. When the 4 suggested high-risk residential areas
were assessed in the temporal validation cohort, only area D
still tended to exhibit higher mortality though the estimate was
associated with more uncertainty (aMRD of 2.0%, 95% CI
–2.8% to 6.7%) (Table 1 and Figure S4 in Multimedia Appendix
1). The combined estimate for both cohorts for area D was an
aMRD of 3.4% (95% CI 0.3%-6.5%). If causal, the excess risk
translates to a PAF of 1.1% of all deaths.

Figure 2. Spatial analysis mortality risk among the hypothesis-generating cohort adjusting for a linear effect of calendar time. Mortality risk (deaths
per 100 children) in 250 m × 250 m squares by a resolution of 10 m for the birth years 2003-2011. Results are only shown if at least 100 children were
under observation. A, B, C, and D indicate areas with a high child mortality risk. E is an uninhabited area, which is flooded during the rainy season.
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Table 1. Summary and validations of findings relevant for hypotheses-generations for targeted interventions.

Test for simi-
lar aMRD, P

value; TMLEb

estimate of
both cohorts,
95% CI; popu-
lation at-
tributable frac-
tion based on
the estimate of
both cohorts,
%

aMRDa vi-
sualization:
full=hy-
pothesis-
generating
cohort,
dashed=tem-
poral vali-
dation co-
hort

Temporal validation cohortHypothesis-generating cohort

TMLE aM-
RD (deaths
per 100 chil-
dren) in sub-
group versus
the rest, 95%

CId

Synergis-
tic associ-
ations,

95% CIc

Crude
mortality
risks
(95% CI)
within
subgroup
versus the
rest

Preva-
lence
(n=8687),
n (%)

TMLE aM-
RD (deaths
per 100 chil-
dren) in sub-
group versus
the rest, 95%

CId

Synergis-
tic associ-
ations,

95% CIc

Crude
mortality
risks
(95% CI)
within
subgroup
versus the
rest

Preva-
lence
(n=19,311),
n (%)

Spatial analysis

.10; 3.0 (–0.7

to 6.6)f; 0.8

–0.6 (–3.9 to

2.8)f
N/A2.4 (–1.3

to 6.1) vs
9 (2.5 to
3.3)

1.2 (106)4.5 (–0.6 to

9.6)f
N/Ae9.7 (6.4

to 12.9)
vs 5.1
(4.8 to
5.5)

1.3 (253)A

.02; 0.9 (–1.4

to 3.2)f; 0.4

–2.2 (–4.0 to

–0.4)f
N/A1.0 (–2.4

to 4.4) vs
3.0 (2.6
to 3.4)

1.5 (127)1.9 (–1.2 to

5.0)f
N/A6.9 (4.3

to 9.6) vs
5.2 (4.8
to 5.5)

2.0 (381)B

.07; 2.1 (–0.6

to 4.7)f; 1.2

–0.7 (–2.9 to

1.6)f
N/A2.3 (–0.2

to 4.8) vs
2.9 (2.5
to 3.4)

2.7 (232)3.3 (–0.3 to

6.9)f
N/A8.4 (6.1

to 10.6)
vs 5.1
(4.7 to
5.5)

2.8 (533)C

.51; 3.4 (0.3 to

6.5)f; 1.1

2.0 (–2.8 to

6.7)f,g
N/A4.7 (1.0

to 8.5) vs
2.9 (2.5
to 3.3)

1.2 (104)4.0 (0.1 to

8.0)f,g
N/A9.0 (6.1

to 12.0)
vs 5.1
(4.8 to
5.5)

1.6 (314)D

Single risk factors

.60; 1.5 (0.9 to

2.1)h; 19.4

1.3 (0.5 to

2.1)h
N/A3.6 (3.0

to 4.2) vs
2.3 (1.7
to 2.8)

48.6
(4218)

1.6 (0.8 to

2.4)h
N/A5.9 (5.5

to 6.4) vs
4.1 (3.5
to 4.6)

60.8
(11,739)

Below 7
years of
maternal
education

.78; 1.6 (0.9 to

2.4)h; 30.0

1.8 (0.9 to

2.6)h
N/A3.3 (2.8

to 3.7) vs
1.6 (0.7
to 2.5)

79.1
(6874)

1.6 (0.6 to

2.6)h
N/A5.5 (5.1

to 5.9) vs
3.8 (2.9
to 4.6)

83.1
(16,054)

More chil-
dren in the
household
younger
than 3
years)

N/AN/AVery few
children

Very few
children

Very few
children

0.1 (11)16.7 (9.8 to

23.6)h
N/A19.1

(17.1 to
21.0) vs

3.6 (690)Mothers
not under

HDSSi

4.7 (4.3
to 5.0)

surveil-
lance

.20; 5.8 (2.6 to

8.9)j; 5.1

2.8 (–0.9 to

6.6)g,j
N/A6.0 (3.8

to 8.2) vs
2.8 (2.4
to 3.2)

3.4 (297)6.4 (2.5 to

10.2)g,j
N/A9.5 (7.7

to 11.3)
vs 5.0
(4.6 to
5.4)

4.3 (834)No prena-
tal consulta-
tions
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Test for simi-
lar aMRD, P

value; TMLEb

estimate of
both cohorts,
95% CI; popu-
lation at-
tributable frac-
tion based on
the estimate of
both cohorts,
%

aMRDa vi-
sualization:
full=hy-
pothesis-
generating
cohort,
dashed=tem-
poral vali-
dation co-
hort

Temporal validation cohortHypothesis-generating cohort

TMLE aM-
RD (deaths
per 100 chil-
dren) in sub-
group versus
the rest, 95%

CId

Synergis-
tic associ-
ations,

95% CIc

Crude
mortality
risks
(95% CI)
within
subgroup
versus the
rest

Preva-
lence
(n=8687),
n (%)

TMLE aM-
RD (deaths
per 100 chil-
dren) in sub-
group versus
the rest, 95%

CId

Synergis-
tic associ-
ations,

95% CIc

Crude
mortality
risks
(95% CI)
within
subgroup
versus the
rest

Preva-
lence
(n=19,311),
n (%)

Multifactorial risk groups

.09; 6.0 (2.3 to

9.8)j; 2.3

1.3 (–3.0 to

5.6)j
–5.3
(–9.7 to
–0.9)

5.8 (2.8
to 8.8) vs
2.9 (2.5
to 3.3)

1.9 (162)7.0 (2.0 to

11.9)j
6.8 (2.7
to 10.9)

12.4 (9.5
to 15.3)
vs 5.1
(4.7 to
5.4)

1.6 (315)Being a
twin and
born in the
rainy sea-
son

.97; 1.7 (0.4 to

2.9)j; 3.3

1.7 (–0.4 to

3.9)g,j
2.0 (–0.2
to 4.1)

5.7 (4.3
to 7.2) vs
2.7 (2.3
to 3.1)

8.3 (720)1.8 (0.2 to

3.3)g,j
1.9 (0.0
to 3.8)

7.2 (6.0
to 8.4) vs
5.0 (4.6
to 5.4)

9.2
(1770)

Children of
polyga-
mous fami-
lies born in
the dry sea-
son

N/AN/AVery few
children

Very few
children

Very few
children

0.2 (20)Very few
children

Very few
children

Very few
children

0.3 (61)No prena-
tal consulta-
tions, boys,
and other
ethnicity

N/AN/AVery few
children

Very few
children

Very few
children

0.0 (0)1.0 (–16.1 to

18.1)j
5.5 (0.5
to 10.5)

23.2
(18.6 to
27.9) vs
5.1 (4.7
to 5.4)

0.6 (124)Mothers
not under
HDSS
surveil-
lance, Fula,
or Mandin-
ga ethnici-
ty, born in
the dry sea-
son

aaMRD: adjusted mortality risk difference.
bTMLE: targeted maximum likelihood estimation.
cThe additional risk above the linear effect of the single factors is presented (ie, the parameter for the subgroup parameter while adjusting for each of
the variables used to create the subgroup definition). Also adjusted for calendar time but no potential confounders.
dThe additional risk-adjusted using targeted maximum likelihood estimation with using linear models.
eN/A: not applicable.
fAdjustment for calendar time.
gThese findings were considered consistent across the cohorts by the authors.
hAdjustment for calendar time and environmental factors.
iHDSS: Health and Demographic Surveillance Systems.
jAdjustment for calendar time and environmental and household factors.
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Single Risk Factors
In the hypothesis-generating cohort, children of mothers with
less education than 7 years compared to those with 7 years or
more of education were common (n=11,739, 60.8%) and had
an aMRD of 1.6% (95% CI 0.9%-2.4%; Table 2). Crowding
(ie, having multiple children in the household under 3 years of
age) was common (n=16,054, 83%) and associated with an
aMRD of 1.6% (95% CI 0.6%-2.6%) compared to being the
sole child (Table 2). Having functioning electricity, a television,
and a toilet inside the house indicates higher wealth, which was
associated with lower child mortality. Across both cohorts with
very similar estimates, both less maternal schooling and more
crowding were associated with an aMRD of approximately
1.5% (Table 1, the column “aMRD visualizations” shows
virtually the same estimates). If causal 19.4% of all deaths could
be attributed to low-maternal education and 30.0% to crowding.

The most pronounced environmental factor was living within
50 m of a major road, associated with an aMRD of 2.1% (95%
CI 0.6%-3.6%) compared with children living further away.

Children of mothers lost to follow-up were at a marked increased
mortality risk. Still, they constituted a very small number of
children in the temporal validation cohort (additional explanation
in Table S1 in Multimedia Appendix 1).

Being a twin was consistently associated with higher mortality,
with an aMRD of 4.3% (95% CI 1.0%-7.7%) and 3.0% (95%
CI –0.5% to 6.5%) in the hypothesis-generating and temporal
validation cohorts, respectively (Table 1).

No prenatal consultation was recorded for 4% (n=834) of the
children in the hypothesis-generating cohort and was associated
with an aMRD of 6.4% (95% CI 2.5%-10.2%; Table 1). In the
temporal validation data set, this was associated with an aMRD
of 2.8% (95% CI –0.9% to 6.6%).

JMIR Public Health Surveill 2024 | vol. 10 | e48060 | p. 7https://publichealth.jmir.org/2024/1/e48060
(page number not for citation purposes)

Rieckmann et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. The association between single risk factors and child mortality below 3 years of age. Hypothesis-generating cohort (Bandim Health Project
Health and Demographic Surveillance Systems data from the birth years from 2003 to 2011).

Adjusted mortality risk dif-

ferencea (95% CI; additional
deaths per 100 children)

Unadjusted mortality risk
difference (95% CI; addition-
al deaths per 100 children)

Deaths per 100
children, n

Prevalence of children
(n=19,311), n (%)

Baseline information and category

Environmental

Vegetation near the household at birth

0 (ref)0 (refc)5.217,890 (93b)The 90% least vegetation

–0.1 (–1.5 to 1.3)–0.1 (–1.5 to 1.2)5.11421 (7b)The top 10% vegetation

Distance to a major road

0 (ref)0 (ref)3.21178 (6)Within 50 m

2.1 (0.6 to 3.6)2.1 (0.6 to 3.6)5.318,133 (94)More than 50 m

Population density 500 m × 500 m

0 (ref)0 (ref)5.217,659 (91b)90% lowest density

0.4 (–0.9 to 1.7)0.5 (–0.8 to 1.8)5.61652 (9b)10% highest density

Vaccination against tuberculosis in the local area

0 (ref)0 (ref)4.6551 (3)Below 80%

0.4 (–1.8 to 2.6)0.6 (–1.6 to 2.8)5.218,760 (97)80% or above

Distance to a health center

0 (ref)0 (ref)5.117,849 (92)≤1 km

1.0 (–0.4 to 2.3)0.9 (–0.5 to 2.3)6.01462 (8)>1 km

Household

Mother lost to follow-up

0 (ref)0 (ref)4.718,621 (96)Yes

14.4 (12.5 to 16.4)14.4 (12.5 to 16.3)19.1690 (4)No

Whether the mother lives with the father

0 (ref)0 (ref)4.812,255 (63)Yes

1.0 (0.3 to 1.8)1.0 (0.2 to 1.7)5.87056 (37)No

Roof

0 (ref)0 (ref)5.118,581 (96)Zinc

0.9 (–1.0 to 2.8)1.1 (–0.8 to 3.0)6.3730 (4)Other

Electricity

0 (ref)0 (ref)4.55995 (31)Yes

0.9 (0.1 to 1.7)1.0 (0.2 to 1.7)5.513,317 (69)No

Television

0 (ref)0 (ref)4.46338 (33)Yes

1.0 (0.3 to 1.8)1.2 (0.5 to 2.0)5.612,973 (67)No

Toilet

0 (ref)0 (ref)4.32916 (15)Inside the house

0.8 (–0.2 to 1.9)1.0 (0.0 to 2.0)5.316,395 (85)Other

Maternal schooling (years)

0 (ref)0 (ref)4.17572 (39)≥7

1.6 (0.9 to 2.4)1.9 (1.1 to 2.6)5.911,739 (61)<7

Polygamous families
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Adjusted mortality risk dif-

ferencea (95% CI; additional
deaths per 100 children)

Unadjusted mortality risk
difference (95% CI; addition-
al deaths per 100 children)

Deaths per 100
children, n

Prevalence of children
(n=19,311), n (%)

Baseline information and category

0 (ref)0 (ref)5.015,803 (82)No

1.1 (0.2 to 2.1)1.2 (0.3 to 2.1)6.23508 (18)Yes

Mother works outside of the home

0 (ref)0 (ref)4.3555 (3)Yes

0.9 (–1.2 to 3.1)0.9 (–1.3 to 3.1)5.218,756 (97)No

Ethnicity

0 (ref)0 (ref)4.51637 (8)Balanta

0.4 (–1.0 to 1.8)0.3 (–1.1 to 1.8)4.95359 (28)Fula or Madinga

0.8 (–0.7 to 2.3)0.7 (–0.8 to 2.2)5.33758 (19)Manjaco or Mancanha

0.9 (–0.6 to 2.4)0.8 (–0.8 to 2.3)5.33154 (16)Pepel

1.1 (–0.4 to 2.5)1.0 (–0.4 to 2.4)5.65404 (28)Other

Other children below 3 years in the household

0 (ref)0 (ref)3.83257 (17)No

1.6 (0.7 to 2.6)1.7 (0.8 to 2.7)5.516,054 (83)Yes

Information related to delivery

Sex

N/Ad0 (ref)5.39880 (51)Boy

N/A–0.3 (–1.0 to 0.5)5.19431 (49)Girl

Twin

0 (ref)0 (ref)5.118,696 (97)No

4.3 (2.2 to 6.3)4.3 (2.2 to 6.4)9.4615 (3)Yes

Birth season

N/A0 (ref)5.49836 (51)Dry

N/A–0.5 (–1.2 to 0.2)4.99475 (49)Rainy

Place of birth

0 (ref)0 (ref)5.013,786 (71)Hospital or health center

0.1 (–0.8 to 0.9)0.6 (–0.2 to 1.4)5.65525 (29)At home

Maternal age (years)

0 (ref)0 (ref)4.99780 (51)>25

0.4 (–0.4 to 1.2)0.6 (–0.1 to 1.4)5.59531 (49)≤25

Firstborn

0 (ref)0 (ref)5.013,389 (69)Not firstborn

0.6 (–0.3 to 1.4)0.5 (–0.2 to 1.3)5.65922 (31)Firstborn

Born by cesarean section

0 (ref)0 (ref)4.0950 (5)Yes

1.2 (–0.5 to 2.9)1.2 (–0.5 to 2.9)5.318,361 (95)No

Prenatal consultations

0 (ref)0 (ref)5.018,478 (96)Yes
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Adjusted mortality risk dif-

ferencea (95% CI; additional
deaths per 100 children)

Unadjusted mortality risk
difference (95% CI; addition-
al deaths per 100 children)

Deaths per 100
children, n

Prevalence of children
(n=19,311), n (%)

Baseline information and category

3.9 (2.1 to 5.7)4.5 (2.7 to 6.3)9.5834 (4)No

aFor the environmental category, adjusted risk differences are adjusted for a calendar effect, risk differences in the household category are additionally
adjusted for the environmental variables, and risk differences in the information related to the delivery category are further adjusted for the household
variables.
bThe prevalence differs from 10% to 90% because the cutoff is based on data from both cohorts (2003-2016).
cReference group.
dN/A: not applicable, since the effect of sex and birth season is not expected to be confounded and thus does not need adjustment.

Multifactorial Risk Groups
In the hypothesis-generating cohort, twins born in the rainy
season had higher mortality risk compared with those born in
the dry season (aMRD of 7.0%, 95% CI 2.0%-11.9%; Figure
3, group 4, and Table 1), but this association was not found in
the temporal validation data (aMRD 1.3%, 95% CI –3.0% to
5.6%; Table 1). Children of polygamous families born in the
dry season had an aMRD of 1.8% (95% CI 0.2%-3.3%)
compared to all other children (Figure 3, group 5, and Table 1).
This subgroup constituted 9% (n=1770) of the children in the
hypothesis-generating cohort, and the finding was consistent in
the temporal validation cohort (an aMRD of 1.7%, 95% CI
–0.4% to 3.9%, covering 8% [n=720] of all children; Table 1,
see the column with aMRD visualization for consistency). If

these associations are causal, 3.3% of all deaths could be
attributed to this combination. A supplementary analysis of both
cohorts (birth years 2003-2016) was conducted to understand
the phenomenon better. The results suggested that (1) the finding
was not artificially introduced by the IPCW approach; (2) the
increased risk was highest in the first half-year of follow-up (6
weeks to 7 months of age) but continued throughout the entire
follow-up period (up to 3 years of age); (3) the association varied
across birth years without any trend; (4) the association was
strongest among the Manjaco and Mancanha ethnic groups; (5)
the association was most pronounced in the eastern part of the
HDSS area; and (6) the association was not confounded by
crowding, but was driven by the strata of children living in a
household with other children under 3 years of age (Multimedia
Appendix 4).
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Figure 3. Multifactorial risk groups results from the Causes of Outcome Learning approach. (A) The prevalence and mean risk by the identified
subgroups based on the Causes of Outcome Learning approach. Group 8 had a higher mortality risk than could be shown in the plot. (B) The mean risk
contributions by each subgroup are visualized, where the color white indicates no risk contribution and dark red indicates the highest risk contribution.
We identify 4 subgroups with a prevalence above 0.5% (n=97): (1) twins born in the rainy season (group 4); (2) children of polygamous families born
in the dry (group 5); (3) no consultations, boys, and other ethnicity (group 6); (4) mothers not under Health and Demographic Surveillance Systems
surveillance, Fula, or Mandinga ethnicity, born in the dry season (group 7). For more details, see Multimedia Appendix 3. BCG: Bacillus Calmette-Guérin
vaccination.
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Discussion

Principal Findings
In this study, we aimed to discover subgroups of children with
high mortality in urban Guinea-Bissau. We used complementary
analyses and split the data into a hypothesis-generating cohort
and a temporal validation cohort. Of children with high mortality
who may be targeted for interventions, we identified (1) a
residential area (area D), (2) children of mothers who did not
attend prenatal consultations, and (3) children born in
polygamous families during the dry season had excess mortality
risk throughout the study period. Of population-wide findings,
maternal education and household crowding were important
factors.

Limitations
Excluding children without complete information (Figure S1
in Multimedia Appendix 1), and conditioning on children being
alive at 6 weeks of age [19] may have limited the
generalizability of our findings. The HDSS is a valuable source
of information but is focused on specific key health indicators
as data collection in Guinea-Bissau is resource-demanding.
Thus, we lacked information about other relevant baseline
characteristics such as vector-borne diseases, health care and
systems, weather, pollution, water and sanitation, community
relations (social capital), and household and macroeconomic
conditions. We did not include factors that varied during
follow-up, such as season, vaccinations, vitamins, and other
health campaigns. This may be important as child mortality is
considerably higher in the rainy season [19,20]. Live and nonlive
vaccines have been shown to affect child mortality more
generally than their effects on the targeted diseases explained
[21].

We acknowledge that data gathered from the real world may
have some natural limitations in terms of completeness and
accuracy, which could potentially affect the reliability of the
identified risk factors. Efforts to account for missing or
incomplete data were made where feasible. Furthermore, as this
study concentrates on urban Guinea-Bissau, its findings may
not readily apply to different socioeconomic and cultural
contexts. Further research in varied settings is necessary to
validate and understand the transferability of these factors.

To acknowledge the challenges in establishing causality, we
integrated multiple methods and used an inductive-deductive
research methodology (ie, take the learnings from the
hypothesis-generating cohort to be tested in the temporal
validation cohort) [22]. This approach guided us to propose
future research directions to validate and understand the
mechanisms driving the observed phenomena. While total
effects can be diluted in the Causes of Outcome Learning
approach, particularly when including individual and
birth-related factors in the model (Figure 3), our methodology
is strengthened by using a causal structure (Table 1) for
adjustments and the TMLE approach. This enhances the validity
of our findings and contributes toward a more robust inference
of causality by better adjustment and more robust model
specification [17]. It could be explored if other novel machine
learning methods could supplement the findings [23].

Interpretation
The temporal split allowed us to investigate consistency across
2 time periods. While a lack of consistency can be due to chance,
it may also reflect changes in the causal structure over time. We
found that children of mothers not under HDSS surveillance
were strongly associated with child mortality in the
hypothesis-generating cohort. However, in the temporal
validation cohort, close to no children had mothers who were
not under HDSS surveillance. Changes in data collection
methods might explain this discrepancy; after 2013, mothers of
children in new families were registered by the same data
collector as the child, whereas before 2013, the mother’s
registration was handled by a separate team. The increased risk
among twins born in the rainy season in the
hypothesis-generating cohort may have occurred by chance.
Still, it could also indicate better health care for high-risk
children in the validation cohort.

Local Environmental Factors
Previous spatial studies have shown large differences in
disparities within and between countries [24,25], and temporal
persistence at local levels [26]. The population movement in
Bissau may have made it more difficult to identify high-risk
residential areas. Area D contains a busy market called Caracol
which is known for traditional medicine and care. High
population density and possibly high infectious load, may offer
1 explanation for the high risk in residential area D. The
proportion of mothers with less than 7 years of schooling was
similar in area D as outside of it (Figure S5 in Multimedia
Appendix 1).

To further understand and address the high mortality rate in this
residential area, several future studies could be conducted, such
as (1) qualitative study following families in this area may add
insight and create new hypotheses; (2) network analysis to reveal
contact patterns and exposed jobs most relevant in this area;
and (3) spatial analysis of distance to specific proximate places
(eg, places for traditional medicine and care), infrastructures
(eg, wells), or potentially hazardous areas (eg, waste collection
areas).

Lack of Prenatal Consultations
Prenatal consultations are designed to prevent early child
mortality and may directly affect maternal behavior. The
association between lack of a prenatal consultation and mortality
is reflected in other studies [27], but we cannot exclude that
some of the association was confounded by social and economic
factors, as well as health care-seeking behavior. This may be
especially important as we are considering postneonatal
mortality. Various mechanisms may contribute to postneonatal
mortality, such as out-of-pocket fees associated with increased
child mortality in sub-Saharan Africa [28]. In Guinea-Bissau,
the expansion of free antenatal care was, however, not associated
with reduced perinatal mortality [29], and thus some of the
observed associations of prenatal consultations may reflect
confounding.

To further understand and address the lack of prenatal
consultations and its impact on child mortality, a number of
future studies could be conducted, such as (1) studies examining
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various characteristics of mothers not participating in prenatal
consultation and their outcomes to understand further how this
subgroup is associated with mortality and morbidity, (2) assess
the effectiveness of interventions such as active home visits
with prenatal consultations in reducing child mortality, and (3)
explore if health care decisions during prenatal consultations
can be assisted by artificial intelligence–based assessment
systems [30].

Family Type and Birth Season
Connecting children of polygamous families born in the dry
season, an HDSS-based study from the Gambia identified that
children born in the harvest season (January-June, approximately
equivalent to the dry season in Guinea-Bissau which is
December-May) were at increased postneonatal mortality risk
[31] and a study from Ghana found that children from
polygamous families had higher child mortality than those of
monogamous families [32]. We could not identify other studies
assessing the combination of family type and birth season.
Within our study, we further observed that the finding was not
indicated to be confounded by crowding, though residual
confounding may persist. However, we found that the pattern
was only present for children living in households with other
children under 3 years of age. Some mothers travel to rural
villages to harvest cashew nuts in the late dry season and return
in the rainy season. One explanation may lie in the divided
attention between labor in the cashew plantations and care for
other children (potentially in a different environment). With
reduced or limited breastfeeding during the cashew harvest,
children may lose maternal antibodies and thus become more
susceptible to infections. How these mechanisms interact with
family structure is still to be understood.

To further understand and address the association between birth
season and family type on child mortality, several future studies
could be conducted, such as (1) investigation into accidents as
causes of death may reveal if the combination of shared child
attendance and busy months in relation to the harvest increases
the risk of domestic accidents, (2) interviews with these families
may give insight into the observed phenomenon, and (3)
triangulating the findings with other health-related behaviors
such as vaccination uptake may help uncover mechanisms.

Resource Prioritization
As repeatedly described in the literature, social and economic
factors affecting a wide part of the population strongly predict
mortality [33]. In our data, social and economic factors may

account for 20%-30% of all deaths in children aged 6 weeks to
3 years. In contrast, the 3 subgroups of children with high
mortality identified in our study may represent a smaller fraction
of the overall mortality burden (less than 5%), but they are
characterized by significantly higher absolute mortality risks.
This distinction raises important questions about the feasibility
and potential impact of targeted interventions for these
subgroups as compared to more widespread, universal public
health strategies. While recognizing the challenges in reaching
these smaller subgroups, targeted interventions could be crucial
in addressing their disproportionately high mortality risks.
Therefore, it is imperative to consider both cost-effectivity and
equity in designing these interventions, ensuring they
complement broader public health measures to provide
comprehensive and effective child health care.

Demonstration of a Novel Approach for Targeted
Public Health Research
This study not only provides insights into child mortality in
urban Guinea-Bissau but also demonstrates the practical
application of the Causes of Outcome Learning approach [14]
on real-world data. Our findings illustrate how this approach
effectively deciphers complex patterns and suggests potential
synergistic causes in public health data, revealing phenomena
that would be overlooked by traditional analytical methods.
Future research should focus on identifying when the Causes
of Outcome Learning approach is most effective and on refining
the methodology to improve its accuracy and adaptability for
a variety of public health research questions and study designs.

Conclusions
Reaching the Sustainable Development Goal of reducing under-5
child mortality to below 1 in 25 children by 2030 will require
a range of interventions. By using several different and
complementary approaches, we were able to identify subgroups
of children at a high mortality risk that would not be evident
otherwise. These high-risk children live in a specific area near
a marked area known for traditional medicine and care, have
mothers who did not attend prenatal consultations, and were
born in the dry season and in polygamous families. We have
suggested several future studies that may help explore these
hypotheses. Potential targeted interventions should be evaluated
in comparison with the impact of population-wide structural
interventions both from cost-effectivity aspects and equity
aspects and tested under proper evaluation schemes [34] to
reduce child mortality.
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Abbreviations
aMRD: adjusted mortality risk differences
HDSS: Health and Demographic Surveillance Systems
IPCW: inverse probability of censoring weights
MRD: mortality risk difference
PAF: population attributable fraction
TMLE: targeted maximum likelihood estimation
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