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Abstract

Background: Novel coronaviruses have emerged and caused major epidemics and pandemics in the past 2 decades, including
SARS-CoV-1, MERS-CoV, and SARS-CoV-2, which led to the current COVID-19 pandemic. These coronaviruses are marked
by their potential to produce disproportionally large transmission clusters from superspreading events (SSEs). As prompt action
is crucial to contain and mitigate SSEs, real-time epidemic size estimation could characterize the transmission heterogeneity and
inform timely implementation of control measures.

Objective: This study aimed to estimate the epidemic size of SSEs to inform effective surveillance and rapid mitigation
responses.

Methods: We developed a statistical framework based on back-calculation to estimate the epidemic size of ongoing coronavirus
SSEs. We first validated the framework in simulated scenarios with the epidemiological characteristics of SARS, MERS, and
COVID-19 SSEs. As case studies, we retrospectively applied the framework to the Amoy Gardens SARS outbreak in Hong Kong
in 2003, a series of nosocomial MERS outbreaks in South Korea in 2015, and 2 COVID-19 outbreaks originating from restaurants
in Hong Kong in 2020.

Results: The accuracy and precision of the estimation of epidemic size of SSEs improved with longer observation time; larger
SSE size; and more accurate prior information about the epidemiological characteristics, such as the distribution of the incubation
period and the distribution of the onset-to-confirmation delay. By retrospectively applying the framework, we found that the 95%
credible interval of the estimates contained the true epidemic size after 37% of cases were reported in the Amoy Garden SARS
SSE in Hong Kong, 41% to 62% of cases were observed in the 3 nosocomial MERS SSEs in South Korea, and 76% to 86% of
cases were confirmed in the 2 COVID-19 SSEs in Hong Kong.

Conclusions: Our framework can be readily integrated into coronavirus surveillance systems to enhance situation awareness
of ongoing SSEs.
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Introduction

In the past 2 decades, 3 coronaviruses have emerged and caused
widespread public anxiety: SARS-CoV-1 in 2002; MERS-CoV
in 2012; and most recently, SARS-CoV-2 in 2019. As of
November 2023, the new COVID-19 caused by SARS-CoV-2
has led to more than 771 million confirmed cases and almost 7
million deaths [1]. Despite the differences in epidemiologic
characteristics, all 3 coronaviruses are marked by transmission
heterogeneity and the ability to produce disproportionally large
clusters via superspreading events (SSEs) [2-10]. For instance,
it is estimated that 19% of the cases caused 80% of the local
transmission in the first wave of COVID-19 epidemic in Hong
Kong by April 28, 2020 [11]. The overdispersed transmission
pattern was also previously reported for both SARS and MERS
[5,8,12].

SSEs are shaped by a combination of determinants originating
from the virus, host, and environment [13]. The emergence of
mutations and variants with increased transmissibility and
greater immune escape mechanisms contribute substantially to
the occurrence of SSEs [14]. Superspreaders, who are known
to be unusually infectious, were reported to shed a higher viral
load over an extended duration [15], which was exacerbated in
the context of COVID-19 because significant proportion of
these individuals who are infectious could transmit the virus
before symptom onset (presymptomatic) or without showing
any symptoms (asymptomatic) [16-20]. Certain environments
facilitate the transmission, as evidenced by most SSEs of SARS
and MERS being nosocomial outbreaks [2,21].

Although the exact mechanism of SSEs is not well established,
monitoring SSEs in real time is critical to contain and mitigate
epidemics of coronaviruses [22]. It is estimated that
implementing control measures a week earlier would lead to a
2.6 times decrease in average epidemic size and a reduction of
4 weeks in average epidemic duration [21,23]. Real-time
estimation of the epidemic size of SSEs allows us to proactively
take timely measures, including resource planning and
mobilization, testing, contact tracing, and implementing targeted
interventions in high-risk settings. However, given the inherent
heterogeneity of an epidemic, population-level measurements
of the average transmissibility of a typical individual who is
infectious, such as basic reproductive number (R0) or effective
reproductive number (Rt), are not appropriate for estimating the
transmission potential of SSEs [5]. Here, we developed a
framework based on back-calculation for SSE epidemic size

estimation, allowing for a more comprehensive understanding
of the transmission dynamics.

Methods

Ethical Considerations
This study involves secondary analysis of existing aggregate
research data, including SARS-CoV-1 data from Leung et al
[24], MERS data from Cowling et al [7], and COVID-19 data
that are publicly available [25]. All data were deidentified and
only aggregate data were used. The University of Hong
Kong/Hospital Authority Hong Kong West Institutional Review
Board approved the secondary analysis without requiring further
consent. As participants were not directly involved in the current
research activities, no compensation was provided to the
individuals.

Model Assumptions
Back-calculation was first designed for short-term prediction
of diseases with a long incubation period [26] and has also been
applied to point-source outbreaks with limited onward
transmission, such as Legionnaires disease [27]. We extended
the method and focused on estimating the final size of
symptomatic or laboratory-confirmed cases at the early stage
of a coronavirus SSE, and asymptomatic cases were not
considered in the estimation if they were not confirmed and
reported.

We assumed that (1) all cases in a given SSE were infected at
around the same time (eg, infected by the same superspreader
or environmental exposure within a short period of time); (2)
all cases followed the same probability distribution function
(PDF) of the incubation period, the same PDF of the
onset-to-confirmation delay, and the same PDF of the generation
time; and (3) there was limited onward secondary transmission
when the SSEs were controlled by sufficient contact tracing
and timely responses. For SARS and MERS, we assumed that
the Rt of secondary transmission was 0, given their relatively
lower potential of person-to-person transmission [2]. For
COVID-19, which has much higher transmissibility and
significant presymptomatic transmission, we assumed that the
Rt of secondary transmission could be greater than 1, but the
transmission was restricted within 1 disease generation. We
assumed that testing and contact tracing policies were the same
within 14 days, given that the generation time for SARS-CoV-1,
MERS, and ancestral SAR-CoV-2 are around 7 days (Table 1).
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Table 1. Parameters used in the simulations.

ReferencesGeneration time (lognormal
distribution): mean range
(SD range)

Secondary
transmis-

siona: Rt
b

Onset-to-confirmation delay
(lognormal distribution):
mean range (SD range)

Incubation period (lognor-
mal distribution): mean
range (SD range)

Simulated scenarios

[28-32]—0—c3-15 (1-10)SARS and MERS

[33,34]—00-7 (1-7)3-15 (1-10)SARS and MERS

[19,35-38]5-7 (5-7)1.5—5-8 (2-5)COVID-19

[19]5-7 (5-7)1.53-7 (2-5)5-8 (2-5)COVID-19

[19,35-38]5-7 (5-7)1.5—5-8 (2-5)COVID-19 adjusted for
presymptomatic transmis-

siond

[19]5-7 (5-7)1.53-7 (2-5)5-8 (2-5)COVID-19 adjusted for
presymptomatic transmis-
sion

aSecondary transmission can be measured by Rt within 1 disease generation.
bRt: effective reproductive number.
cNot applicable.
dThe 60% presymptomatic transmission was included in the prior information.

Figure 1A-B summarizes the characteristics of coronavirus
SSEs in disease surveillance. Here, the incubation period is the
time interval between infection and symptom onset; in practice,

there is a delay from symptom onset to case confirmation, and
the time of symptom onset can be unavailable for asymptomatic
infections or due to underreporting.
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Figure 1. Characteristics of coronavirus SSEs. (A) Time of exposure, symptom onset, and case confirmation. The incubation period is the time interval
between infection and symptom onset. The onset-to-confirmation delay is the time interval between symptom onset and confirmation. (B) Transmission
between an infector-infectee pair: (a) transmission occurs after symptom onset of the infector (symptomatic transmission); (b) transmission occurs
before symptom onset of the infector (presymptomatic transmission). The generation time is the interval between the exposure time of the infector and
the infectee. (C) Approximate distribution of presymptomatic, asymptomatic, and symptomatic transmission for SARS, MERS, and COVID-19. (D)
Simulated COVID-19 SSE. The undetected presymptomatic transmission pairs within 1 disease generation and Rt=1.5 in a simulated COVID-19 SSE
with 10 cases. Rt: effective reproductive number; SSE: superspreading event.

Estimating the Size of SSEs
We formulated the model to estimate the epidemic size of SSEs
as follows. Let X denote the incubation period with PDF g(x)
and Y denote the onset-to-confirmation with PDF h(y). For an
SSE j, let nj be the total number of people infected at time 0 and
kj be the number of symptomatic cases that have been confirmed
up to (and including) time tj since the exposure time for this
SSE.

Let xi,j and yi,j be the values of X and Y for the ith case in the jth
SSE. Let f(X,Y|θ) be the joint probability distribution of X and
Y with θ representing the parameters. We assume that X and Y
are independent such that f(X,Y|θ) = g(x)h(y), and F(X,Y|θ) is
the cumulative probability distribution of f(X,Y|θ). The number
of symptomatic cases kj has a binomial distribution with SSE
size nj and success probability F(X+Y>t; θ). Therefore, the
likelihood function for jth SSE is:
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If the time of symptom onset is known, let Mj,1 be the set of
confirmed cases with known time from exposure to symptom
onset and known time from symptom onset to confirmation
with a size of mj,1. If the time of symptom onset is unknown,
let Mj,2 be the set of confirmed cases with unknown time from
exposure to symptom onset but known time from exposure to
confirmation with a size of mj,2. Let Z denote X+Y with the
probability distribution q(z|θ). The likelihood function for the
jth SSE becomes:

The overall likelihood function for w SSEs is:

We estimated the SSE size {nj} and other parameters θ using
Markov chain Monte Carlo with Gibbs sampling and
noninformative flat priors. We considered an estimate to be
accurate if the 95% credible interval (Crl) covered the true value.
An estimate was precise if the Crl had a relative error within 1.

Model Validation
We simulated SSE scenarios based on the epidemiological
characteristics of SARS, MERS, and COVID-19 (Figure 1C).
For SARS and MERS to be considered under control, we
assumed that there was a single exposure and no secondary
transmission. For COVID-19, we assumed that 60% of the
transmission occurred during the presymptomatic phase
[19,20,35,39,40]. For example, if we simulated a single-exposure
COVID-19 SSE with 10 cases, 6 (60%) second-generation cases
were infected by the other 4 first-generation cases in the SSE
during the presymptomatic phase. However, the 6
second-generation cases would be taken as first-generation
infections directly linked to the primary exposure when the
presymptomatic transmission was undetected. With limited
onward secondary transmission within 1 disease generation, Rt

= 6/4 = 1.5 (Figure 1D). Details about the estimation of
COVID-19 SSE sizes and the adjustment for presymptomatic
transmission are described in Multimedia Appendix 1.

We used the Latin-hypercube sampling to generate 6 simulated
coronavirus scenarios. The parameters for the incubation period,
onset-to-confirmation delay, and generation time were sampled
from the ranges observed from major SSEs of SARS, MERS
and COVID-19 (Table 1). Since most of these 3 coronavirus
SSEs were reported to consist of 10 to 300 cases [8,11], we first
simulated 1000 stochastic SSEs of 30, 50, 100, and 200
infections with and without onset-to-confirmation delay (ie,
8000 SSE scenarios). We assumed that prior distributions of
the incubation period and onset-to-confirmation delay could be
estimated by bootstrapping from 50 or 100 cases before the
occurrence of the simulated SSEs.

The SSE size estimation was performed starting from the time
when 5% of all cases were observed until the time when 95%
of all cases were observed. To compare scenarios with different
epidemic sizes, we used relative size (ie, percentage of the cases
observed in an SSE) and SSE duration (ie, percentage of the
duration between the time of confirmation of the first and last
case) in the assessment of the accuracy of the estimation.

Case Studies
We applied our framework to the Amoy Gardens SSE for SARS
in Hong Kong, nosocomial SSEs for MERS in South Korea,
and 2 SSEs from the COVID-19 pandemic in Hong Kong. An
alert would be issued when 10 or more cases were confirmed
to link with the same index case, by which we assumed that we
had minimal data to start the SSE size estimation.

Hong Kong Amoy Gardens SARS SSE
The Amoy Gardens SSE was the largest cluster in the 2003
Hong Kong SARS outbreak [4,24]. The index case developed
symptoms on March 13-14, was admitted to the Prince Wales
Hospital on March 15, and was discharged on March 19. He
visited and stayed 1 night at the Amoy Gardens apartment
complex, where he had diarrhea. Thus, we assumed that all
cases in the Amoy Gardens SSE were exposed to SARS-CoV-1
on March 19. We used noninformative prior distribution for all
parameters in the inference since no information about the
incubation period and the onset-to-confirmation delay could be
estimated before the Amoy Gardens SSE (Table 2). A total of
311 laboratory-confirmed cases were retrospectively confirmed
and reported in the Amoy Gardens SSE.

Table 2. Prior distributions for parameters.

ReferencesPrior distribution for the onset-to-confirma-
tion delay (lognormal distribution): mean
(SD) or mean range (SD range)

Prior distribution for the incubation period
(lognormal distribution): mean (SD) or
mean range (SD range)

Case studies

[28-34]0-7 (1-7)3-15 (1-10)SARS Amoy Gardens SSEa in Hong
Kong

[41-44]5.6 (5.4)6.3 (4.3)MERS nosocomial SSEs in South
Korea

[45]5.3 (4.0)5.2 (3.9)COVID-19 restaurant SSEs in Hong
Kong

aSSE: superspreading event.
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South Korea Nosocomial MERS SSEs
The MERS SSEs in South Korea in 2015 were the largest MERS
outbreak outside of the Middle East, with 82.3% of all confirmed
infections caused by only 5 (2.7%) cases [41,46]. The index
case visited multiple clinics after traveling to the Middle East.
He first developed fever and myalgia illness on May 11 and
visited the same clinic on May 12, 14, and 15. The symptoms
were not resolved and a cough developed on May 15. The index
case was admitted to a secondary hospital (Cluster 1) on May
15 and transferred to a tertiary hospital in Seoul (Cluster 2) on
May 17, where he was later diagnosed with MERS-CoV on
May 20. Meanwhile, another large SSE took place in other
hospitals and was traced back to this same index case (Cluster
3). We took May 15, the day that the index case visited Cluster
1, as the time of exposure of all cases in Cluster 1. In the series
of nosocomial SSEs, the time of exposure would be different
for each confirmed case depending on when they visited the
contaminated hospitals. Therefore, 3 major nosocomial clusters
(Cluster 1-3) with sizes of 29, 125, and 27 were studied
retrospectively [7,41]. We used MERS data from the previous
Middle East outbreaks as the prior information for parameter
estimation (Table 2).

Hong Kong COVID-19 SSEs
For the COVID-19 case study, 2 linked Hong Kong restaurant
SSEs in 2020 with relatively exclusive contact tracing were
selected [25]. The first SSE took place at a restaurant of Tao
Heung Holdings on July 9 where people gathered in a

celebration event, resulting in an SSE of 42 cases. Soon, another
SSE took place at another restaurant of Fulum Holdings on July
11, where hundreds of people attended a birthday party, resulting
in an SSE of 44 cases. We assumed the time of exposure to be
July 9 and July 11 for the 2 SSEs, respectively. Prior information
on the incubation period and onset-to-confirmation delay from
previous COVID-19 confirmed cases were used in the parameter
estimation (Table 2).

Results

Model Validation
Inferred from the model simulation, we found that the accuracy
and precision of our estimation increased with the size of the
SSE (Figures 2 and 3). For SARS and MERS, with and without
onset-to-confirmation delay, all Crls covered the true SSE size
and the relative error was less than 1 for all simulated scenarios,
when the estimation was performed at the time exceeding 50%
of the duration of the SSE or when more than 60% of the cases
were observed (Figure 2A-B). With the presence of
onset-to-confirmation delay, the range of relative error doubled
when the estimation was performed before 50% of the duration
of the SSE or when less than 60% of the cases were observed
(Figure 2C-D). Our method tended to overestimate the size in
the early stage of an SSE when less than 20% of cases were
reported, especially in the scenarios with onset-to-confirmation
delay.
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Figure 2. The accuracy and precision of SSE size estimation for simulated SARS and MERS scenarios. Scenario 1: (A) simulated SARS and MERS
SSEs with no onset-to-confirmation delay, with size estimation performed at the time as the percentage of the duration of the SSE; and (B) simulated
SARS and MERS SSEs with no onset-to-confirmation delay, with size estimation performed at the time by the percentage of cases observed and reported.
Scenario 2: (C) simulated SARS and MERS SSEs with onset-to-confirmation delay, with size estimation performed at the time as the percentage of the
duration of the SSE; and (D) simulated SARS and MERS SSEs with onset-to-confirmation delay, with size estimation performed at the time by the
percentage of cases observed and reported. SSE: superspreading event.

If the presymptomatic transmission was not adjusted in the
COVID-19 simulated SSEs, there would always be an
underestimation even after 50% of the duration of the SSE or
when more than 60% of the cases were observed (Figure 3A-D).
For a typical COVID-19 SSE with 50 cases, the model would
predict the final size to be around 30 when half of the cases
were observed if second-generation infections cannot be

distinguished from first-generation infections. If we could detect
the transmission pattern of COVID-19 in time and adjust for
presymptomatic transmission as per our prior information, the
estimation would perform similarly well to the simulated
scenarios of SARS and MERS when presymptomatic
transmission was not included (Figure 3E-H).
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Figure 3. The accuracy and precision of SSE size estimation for simulated COVID-19 scenarios. Scenario 3: (A) simulated COVID-19 SSEs with no
onset-to-confirmation delay but 60% presymptomatic transmission, with size estimation performed at the time as the percentage of the duration of the
SSE; and (B) simulated COVID-19 SSEs with no onset-to-confirmation delay but 60% presymptomatic transmission, with size estimation performed
at the time by the percentage of cases observed and reported. Scenario 4: (C) simulated COVID-19 SSEs with both onset-to-confirmation delay and
60% presymptomatic transmission, with size estimation performed at the time as the percentage of the duration of the SSE; and (D) simulated COVID-19
SSEs with both onset-to-confirmation delay and 60% presymptomatic transmission, with size estimation performed at the time by the percentage of
cases observed and reported. Scenario 5: (E) simulated COVID-19 SSEs with no onset-to-confirmation delay but 60% presymptomatic transmission
adjusted in prior information, with size estimation performed at the time as the percentage of the duration of the SSE; and (F) simulated COVID-19
SSEs with no onset-to-confirmation delay but 60% presymptomatic transmission adjusted in prior information, with size estimation performed at the
time by the percentage of cases observed and reported. Scenario 6: (G) simulated COVID-19 SSEs with onset-to-confirmation delay and 60%
presymptomatic transmission adjusted in prior information, with size estimation performed at the time as the percentage of the duration of the SSE; and
(H) simulated COVID-19 SSEs with onset-to-confirmation delay and 60% presymptomatic transmission adjusted in prior information, with size estimation
performed at the time by the percentage of cases observed and reported. SSE: superspreading event.
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Case Studies
In the case study of Amoy Gardens SARS SSE, the Crl covered
the final SSE size and had a relative error within 1 in 4 days
after the alert was issued, which was 25 days before the last

case of the SSE was observed (Figure 4). At the time when the
alert was issued, only 36.7% (114/311) of all cases were
observed. The SSE size estimation became more accurate and
precise thereafter.

Figure 4. Real-time size estimation of Amoy Gardens SARS SSE in Hong Kong in 2003. (A) Epidemic curve by time of symptom onset. (B) Epidemic
curve by time of confirmation. (C) Real-time estimation of SSE size by the time since the exposure (May 19, 2003). The dash line indicates the actual
epidemic size of the SSE. Crl: credible interval; SSE: superspreading event.

For the series of South Korea MERS SSEs, the Crls of Cluster
1, Cluster 2, and Cluster 3 covered the final SSE sizes with a
relative error within 1 in 2 days, 3 days, and 0 days after the
alert was issued, respectively, which were 4 days, 15 days, and
9 days before the last case of the respective SSE was observed

(Figure 5). At the time when alerts were issued, 62% (18/29),
52% (65/125), and 41% (11/27) of all cases in the respective
SSEs were observed, and the estimation converged sooner for
later SSEs.
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Figure 5. Real-time size estimation of nosocomial MERS SSEs in South Korea in 2015. (A) Epidemic curve by time of confirmation for Cluster 1,
Cluster 2, and Cluster 3 denoted by blue, red, and yellow, respectively. (B) Real-time estimation of the SSE size of Cluster 1. (C) Real-time estimation
of the SSE size of Cluster 2. (D) Real-time estimation of the SSE size of Cluster 3 by the time since the index case visited Cluster 1 (May 15, 2015).
The dash line indicates the actual epidemic size of the SSEs. Crl: credible interval; SSE: superspreading event.

For the Tao Heung COVID-19 SSE in Hong Kong, the Crl
covered the final SSE size and had a relative error within 1 in
5 days after the alert was issued, which was 20 days before the
last case of the SSE was observed. At this time, 76% (32/42)
of all cases were observed (Figure 6). Similarly, for the Fulum

COVID-19 SSE, the Crl covered the final SSE size and had a
relative error within 1 in 7 days after the alert was issued and
5 days before the last case was observed. At the time of issuing
the alert, 86% (38/44) of all cases had been observed (Figure
6).
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Figure 6. Real-time size estimation of COVID-19 SSEs in 2 restaurants in Hong Kong in 2020. (A) Epidemic curve by time of symptom onset of the
Tao Heung SSE. (B) Epidemic curve by time of confirmation of the Tao Heung SSE. (C) Real-time estimation of the size of the Tao Heung SSE by the
time since the social gathering on July 9, 2020. (D) Epidemic curve by time of symptom onset of the Fulum SSE. (E) Epidemic curve by time of
confirmation of the Fulum SSE. (F) Real-time estimation of the size of the Fulum SSE by the time since the social gathering on July 11, 2020. The
dashed line indicates the actual epidemic size of the SSEs. Crl: credible interval; SSE: superspreading event.

Discussion

In this study, we developed a framework based on
back-calculation to estimate the epidemic size of coronavirus
SSEs in real time. Our method bypassed the complexity of
developing a transmission model and gave accurate estimates
when there were limited secondary transmission within the
SSEs. As expected, we found that the precision and accuracy
of the size estimation increased with more observed cases, where
large SSEs could be spotted earlier, such that immediate
responses could be taken. The estimation performed better with
the absence of onset-to-confirmation delay, and prior
information on parameters improved the performance of the
model. In the case study of MERS nosocomial SSEs, we used
data from previous MERS cases from the Middle East to inform
the estimation in South Korea. Accurate estimation was obtained
sooner for Cluster 2 and Cluster 3 with more information about
the distribution of the incubation period and the distribution of

the onset-to-confirmation delay obtained after the occurrence
of Cluster 1.

We showed that the epidemic size of coronavirus SSEs could
be accurately estimated before 50% of the cases were reported
when there was no undetected secondary transmission, such as
in the SARS and MERS simulated scenarios, or when the
secondary transmission was adjusted, such as in the COVID-19
simulated scenarios. In the retrospective study on the Amoy
Gardens SARS SSE, we got a robust estimation as early as
having only 37% of all the cases identified, and in practice,
hospitals could prepare resources beforehand for such a large
SSE. The estimation of SARS and MERS SSE sizes were more
accurate compared with that of COVID-19 because most
symptomatic infections would be confirmed and reported. For
example, in the case study of Amoy Gardens, it was suspected
that SAR-CoV-1 was excreted in the stool and transmitted
through sewerage, and the SSE was identified early when many
Amoy Gardens cases were traced back to the block where the
index case had stayed [4,24].

JMIR Public Health Surveill 2024 | vol. 10 | e46687 | p. 11https://publichealth.jmir.org/2024/1/e46687
(page number not for citation purposes)

Lau et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


However, our method tended to overestimate the size early in
simulated SARS and MERS SSEs when the observed case
number was low. For simulated COVID-19 SSEs, our method
always underestimated the size when secondary transmission
within the SSE was not detected or observed until later in the
SSE. The real-time daily estimation could also be unstable,
especially when little was known about the distribution of the
incubation period and reporting delays. For example, in the
Amoy Gardens SARS SSE, the time of exposure of some cases
could be later than the common exposure time that we assumed
(May 19, 2003), depending on the time they came into contact
with the contaminated areas. The SARS-CoV-1 virus could also
be transmitted via person-to-person contact or contamination
of communal facilities such as elevators and doors other than
sewage [47]. In the MERS case study, we bracketed the window
of the exposure time and grouped the cases into 3 hospital SSEs
based on the time of visiting specific hospitals.

The recall bias can be another source of errors, especially for
COVID-19 infections where symptoms were relatively mild for
many cases. Although we explored the source of uncertainty in

our estimation, the required accuracy and precision depends on
the potential impact of the SSEs, the available resources for
control measures, and the requirement for decision-making. For
example, to plan resource allocation and better prepare the health
care system, the 95% upper bound of the size estimate should
be used. For surveillance purposes, the 95% lower bound of the
estimate can be used as a threshold to issue alerts and initiate
actions. It could also be used as a conservative estimate of the
minimal number of infections.

In summary, our framework can be applied to coronavirus SSEs
when there is limited undetected secondary transmission or
when secondary infection is accounted for. The emergence of
more transmissible variants further complicates the situation
[48], and intensive contact tracing and testing might be required
to alert SSEs in time. Currently, with the COVID-19 pandemic
transiting to the endemic phase and society returning to
normalcy, our method can be integrated into coronavirus
surveillance systems to monitor potential SSEs in large social
gatherings.
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CrI: credible interval
PDF: probability distribution function
R0: basic reproductive number
Rt: effective reproductive number
SSE: superspreading event
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