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Abstract
Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that was first identified
in mainland China in 2009 and has been reported in Zhejiang Province, China, since 2011. However, few studies have focused
on the association between ticks, host animals, and SFTS.
Objective: In this study, we analyzed the influence of meteorological and environmental factors as well as the influence of
ticks and host animals on SFTS. This can serve as a foundational basis for the development of strategic policies aimed at the
prevention and control of SFTS.
Methods: Data on SFTS incidence, tick density, cattle density, and meteorological and environmental factors were collected
and analyzed using a maximum entropy–based model.
Results: As of December 2019, 463 laboratory-confirmed SFTS cases were reported in Zhejiang Province. We found that the
density of ticks, precipitation in the wettest month, average temperature, elevation, and the normalized difference vegetation
index were significantly associated with SFTS spatial distribution. The niche model fitted accurately with good performance
in predicting the potential risk areas of SFTS (the average test area under the receiver operating characteristic curve for the
replicate runs was 0.803 and the SD was 0.013). The risk of SFTS occurrence increased with an increase in tick density, and
the response curve indicated that the risk was greater than 0.5 when tick density exceeded 1.4. The risk of SFTS occurrence
decreased with increased precipitation in the wettest month, and the risk was less than 0.5 when precipitation exceeded 224.4
mm. The relationship between elevation and SFTS occurrence showed a reverse V shape, and the risk peaked at approximately
400 m.
Conclusions: Tick density, precipitation, and elevation were dominant influencing factors for SFTS, and comprehensive
intervention measures should be adjusted according to these factors to reduce SFTS incidence in Zhejiang Province.
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Introduction
Severe fever with thrombocytopenia syndrome (SFTS) is
an emerging infectious disease that was initially identified
in 2009 and subsequently reported in 2011 [1]. The most
common clinical symptoms of SFTS cases include fever,
thrombocytopenia, leukocytopenia, gastrointestinal symptom,
gingival hemorrhage, conjunctival congestion, and central
nervous system manifestations. Although most patients with
SFTS have self-limited clinical manifestations, some patients
also develop severe cases and die due to multiple organ
failure [1-3]. The case fatality rate of SFTS was initially
reported to be up to 30%, but it has shown a downward trend
in recent years [4]. Of note, the annual number of SFTS cases
had an increasing trend, and the affected areas expanded. It
was endemic in mainland China, South Korea, and Japan,
and the severe fever with thrombocytopenia syndrome virus
(SFTSV) was also detected in the United Arab Emirates,
Vietnam, and Myanmar [5-8].

Previous studies reported that SFTSV can be transmitted
through direct contact with secretions or blood of patients
with SFTS and that there is probable aerosol transmission,
while the majority of SFTS cases were infected through tick
bites [3,9,10]. SFTSV has been detected in Haemaphysalis
longicornis, Rhipicephalus microplus, Amblyomma testudina-
rium, and Ixodes nipponensis, and H. longicornis is consid-
ered to be most important for the epidemiologic maintenance
and transmission of SFTSV [11,12]. Luo et al [13] reported
that H. longicornis ticks that fed on SFTSV-infected mice
could acquire the virus and transstadially and transovarially
transmit it to other ticks in different developmental stages,
and SFTSV-infected ticks could transmit the virus to mice
during feeding. SFTSV was also found in domestic and wild
animals, such as goats, sheep, cattle, dogs, pigs, and chickens
[14].

Zhejiang Province is one of the southeastern coastal
provinces of mainland China, which has a Cfa cli-
mate, specifically indicating a “humid subtropical climate”
according to the Köppen climate classification system.
This climate is characterized by warm temperatures, high
humidity, and hot summers. More than 400 SFTS cases have
been reported in Zhejiang Province since 2011 [15,16].

Liu et al [17] analyzed the spatial distribution of SFTS
in Xinyang City, Henan Province, using Poisson regression
analysis based on the SFTS epidemic data from 2011 to
2012 and concluded that the spatial distribution of SFTS
was significantly correlated with the coverage ratio of shrubs,
forests, and farmlands. Du et al [18] constructed an ecological
niche model (ENM) based on the epidemic data from January
2010 to April 2013 in Shandong Province, combined with

biological factors and meteorological data, suggesting that the
key environmental factors affecting the occurrence of SFTS
are temperature, precipitation, land cover, the normalized
difference vegetation index (NDVI), and duration of sunlight.
Sun et al [19] constructed an ENM based on the epidemic
data from 2011 to 2018 in mainland China and found that
when the annual average temperature is between 12.5 and
17.5 °C, the annual cumulative precipitation is between 700
and 2250 mm, and the annual relative humidity is between
63% and 82%, the likelihood of SFTS occurrence is very
high. In Miyazaki Prefecture, Japan, geographically weighted
regression was conducted on a scale of 10×10 km using
a Geographic Information System, and it was found that
altitude and the proportion of farmland area in the geographi-
cal grid are factors affecting SFTS [20]. However, few studies
focused on the association between ticks, host animals, and
SFTS.

The objective of this study is to conduct an analysis on
the impact of meteorological and environmental factors, as
well as ticks and host animals, on the incidence of SFTS.
Furthermore, it aims to investigate how these factors
specifically contribute to the occurrence of the disease and
develop a comprehensive prediction model. The insights
garnered from this study are anticipated to underpin the
formulation of evidence-based, strategic policies that are
pivotal in the realm of SFTS prevention and control.

Methods
Study Area
Zhejiang Province is one of the southeastern coastal provinces
of China, located 27°02’N to 31°11’N and 118°01’E to
123°10’E. Zhejiang Province is in the southern wing of
the Yangtze River Delta, adjacent to Shanghai City and
Jiangsu Province in the north, Anhui Province and Jiangxi
Province in the west, and Fujian Province in the south (Figure
1). According to the climate Köppen-Geiger classification,
Zhejiang Province has a Cfa climate characterized by a
warm temperature, full humidity, and a hot summer. The
ecosystem types in Zhejiang Province mainly include forest,
wetland, ocean, farmland, city, and grassland, among others
[21]. Zhejiang Province, as indicated by its high NDVI, is
abundant in forest resources. These forests are predominantly
found in the subtropical evergreen broad-leaved forest region,
specifically within the humid evergreen broad-leaved forest
area of the subtropical zone. The province boasts a forest
coverage rate of 61.2%, with a total forest area of 6,609,500
hectares, more than 60% of which consists of natural forests.
[22].
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Figure 1. The location of Zhejiang Province and tick monitoring sites.

Data Collection
Suspected cases of SFTS are defined by individuals with any
of the following epidemiological backgrounds and consistent
clinical manifestations: (1) a history of working, living, or
traveling in hilly, forested, or mountainous areas during the
epidemic season; (2) a history of tick bite within 2 weeks
prior to the onset of illness; or (3) a history of contact
with infected animals or confirmed cases of SFTS. Clinically
diagnosed cases are suspected cases that meet any of the
following criteria: (1) a positive test for SFTSV-specific
immunoglobulin M antibodies and (2) evidence of multior-
gan dysfunction. Confirmed cases are either suspected or
clinically diagnosed cases that fulfill any of the following:
(1) a positive SFTSV nucleic acid test, (2) isolation of SFTSV
from clinical specimens, and (3) seroconversion for SFTSV-
specific immunoglobulin G antibodies or a 4-fold or greater
increase in antibody titer from the acute phase to the recovery
phase. The data of SFTS cases including the date of illness
onset and residential address were obtained from the China
Information System for Diseases Control and Prevention.

Meteorological data including the hours of sunshine
(DEMO1), average relative humidity (DEMO2), average land
surface temperature (DEMO3), 20‐8 precipitation (DEMO4),
8‐20 precipitation (DEMO5), all-day precipitation (DEMO6),
average air pressure (DEMO7), average air temperature
(DEMO8), maximum air temperature (DEMO9), mean wind
speed (DEMO10), maximum wind speed (DEMO11), small
pan evaporation, big pan evaporation, minimum relative
humidity, maximum land surface temperature, minimum land
surface temperature, maximum air pressure, minimum air
pressure, wind speed direction, and minimum air tempera-
ture were collected from the China Meteorological Data
Sharing Service System. Data on gross domestic product
(GDP), density of the population, and digital elevation model
(DEM) were obtained from the website of the National Earth

System Science Data Center, National Science & Technol-
ogy Infrastructure of China. The data on the NDVI and the
enhanced vegetation index (EVI) were obtained from the
Geospatial Data Cloud. Approximately 19 bioclimatic factors
including temperature seasonality (bio_4), precipitation of
the wettest month (bio_13), and precipitation of the wettest
quarter (bio_16) were collected from the World Climate
Database. The data on density of cattle and density of sheep
were collected from the Food and Agriculture Organization.

Since 2012, a total of 14 counties in Zhejiang Prov-
ince, including Daishan, Dinghai, Linhai, Jiaojiang, Tiantai,
Sanmeng, Ninghai, Anji, Chun’an, Jingning Autonomous,
Pujiang, Yiwu, Shangyu, and Pingyang, conducted surveil-
lance of tick species and density (Figure 1). The flag method
was adopted to collect ticks and calculate the questing tick
density. All ticks were identified to the species level, and
the targeted species was H. longicornis. The tick surveil-
lance program is implemented from March to October at a
frequency of once a month. In terms of tick monitoring sites,
2 types of habitats including rural environments and scenic
landscapes should be selected. For the selected village, at
least 1 farmland (including a tea garden and other industrial
crop fields), barren slope grassland, or woodland habitat
around the village was selected to conduct the monitoring
program. For the selected scenic area, including urban parks,
country parks, forest parks, deserts, grasslands, and other
man-made landscapes, at least one of the monitoring sites
should be selected to carry out questing tick monitoring. Tick
density was calculated based on the number of ticks captured
per hour of each flag. Generally, each flag (90 cm long and
60 cm wide) must be dragged (waved) no less than 500 m
for no less than 30 minutes including the time needed for the
removal of the collected ticks from the flag.
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Data Processing
The meteorological data with several missing values were
first filled with the missForest package in R software (version
4.0.2; The R Foundation). Then, the layers of meteorologi-
cal factors from 2011 to 2019 were generated by a type
of interpolation method called partial thin plate smoothing
splines in the ANUSPLIN system and the kriging interpo-
lation method in QGIS (version 3.14; QGIS Development
Team). The layer for density of ticks (DOT) was generated
by kernel density estimation with QGIS. In Figure 2, factors
exhibiting a correlation coefficient with an absolute value
exceeding 0.8 (Pearson |r|>0.8) are deemed to possess a
strong correlation [23,24]. When faced with such strongly

correlated factors, we proceed by retaining those factors
that are likely to hold practical significance for SFTS, as
determined through a thorough literature review and expert
consultation. For factors whose relevance is less clear, we opt
to initially include them within our model and subsequently
use the jackknife method for further selection. This method,
introduced by the esteemed statistician John Tukey, is widely
recognized as a robust hypothesis-testing approach and shares
conceptual parallels with the leave-one-out cross-validation
technique. It facilitates an assessment of the individual impact
that the removal of each factor has on the model’s estima-
ted values and overall performance, as illustrated through a
jackknife plot.

Figure 2. The result of cross-correlation analysis. A total of 24 factors including environmental factors, meteorological factors, and tick density
were analyzed. The color transitioned from yellow to green representing the corresponding increase in |r| from 0 to 1. The factors that were highly
correlated with others (Pearson |r|>0.8) were removed.

Construction of the Maximum Entropy–
Based Model
Three sets of factors were selected to build the models.
The factors of set 1 model included bio_4, bio_13, bio_16,
cattle 1km_ad, sheep 1km_ad, DEMO1, DEMO 2, DEMO 5,
DEMO8, DOT, GDP, Sand, NDVI, and DEM; set 2 model
included bio_4, bio_13, cattle 1km_ad, DEMO2, DEMO5,
DEMO8, DOT, GDP, EVI, NDVI, and DEM; and set 3 model
included bio_13, cattle1km_ad, DEMO1, DEMO2, DEMO8,
DOT, GDP, EVI, NDVI, and DEM. All the layers of factors
were rescaled with the same cell size and were extracted to
the same dimensional geographic boundaries.

The maximum entropy (MaxEnt) model is an artificial
intelligence model based on machine learning techniques,
and the predictive performance is believed to almost be at
the highest level for modeling ENM [25,26]. In this study,
SFTS distribution from 2011 to 2019 in Zhejiang Province
was regarded as a dependent factor; the remaining factors
(described earlier) were independent factors.

Threshold independent receiver-operating characteristic
(ROC) analysis was used to calibrate and verify the robust-
ness of evaluation for MaxEnt. To evaluate the predictive

precision of MaxEnt, an area under the receiver operating
characteristic curve (AUC) was examined. The AUC value
of 0.5 indicates whether the model predictions are better
than random, a value of 0.5‐0.7 shows poor performance,
0.7‐0.9 forecasts reasonable performance, and >0.9 indicates
high performance [27]. However, a previous study indicated
that ROC and AUC did not provide information about the
good performance of the model [28]. In this study, the partial
ROC was calculated instead of the full area under the ROC
curve. The model parameters were selected by the package
kuenm in R; partial ROC and omission rates (ORs) are
evaluated based on models created with training occurrences,
whereas Akaike’s Information Corrected Criterion (AICc)
values are calculated for models created with the full set
of occurrences [27]. We had set regularization multipliers as
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 8,
and 10, and the feature classes as linear features, quadratic
features, product features, threshold features, hinge features,
and their permutation and combination. All candidate models
with parameters reflecting all combinations of 17 regulariza-
tion multiplier settings, 31 feature class combinations, and 3
distinct sets of environmental factors were evaluated. Model
performance was evaluated based on statistical significance,
OR, and the AICc. The function evaluates candidate models

JMIR PUBLIC HEALTH AND SURVEILLANCE Tao et al

https://publichealth.jmir.org/2024/1/e46070 JMIR Public Health Surveill 2024 | vol. 10 | e46070 | p. 4
(page number not for citation purposes)

https://publichealth.jmir.org/2024/1/e46070


based on 3 distinct criteria: statistical significance (based on
partial ROC analyses), prediction ability (ORs), and model
fit and complexity (using AICc). Statistical significance was
determined by bootstrap resampling 50% of the test data, and
probability was assessed by a direct count of the percent-
age of bootstrap repeats with AUC ratios ≤1.0. We meas-
ured the model's predictive performance on the test data
by using the OR, and we selected a threshold of E equal
to 10%. We selected “OR_AICc” as the criterion for the
final model selection. Models with an omission rate below
a certain threshold were considered, and among these, those
with the lowest AICc values and the smallest delta AICc
values were chosen, as they met the omission rate crite-
rion. The results indicated that the regularization multipliers
were set to 0.4, and product features and quadratic features
were selected. The maximum number of background points
was set to 10,000, the maximum number of iterations was
established at 500, and the convergence threshold was defined
as 0.00001. We opted for the subsample (subsample method
is more suitable for factors with nonnormal distributions)
method for our analysis. Papers concerning ecologically
suitable conservation areas have demonstrated that when the
threshold rule is set to maximize test sensitivity and specific-
ity, although there is a risk of overestimating the distribution,
it minimizes the possibility of missing actual distribution
areas [29,30]. For SFTS, it is crucial to ensure that we do
not overlook the distribution in high-risk areas. Therefore,
in this study, we have set the threshold rule to maximize
test sensitivity and specificity. We split the remaining SFTS
occurrences from 2011 to 2018 randomly into 50%‐50%
subsets for model calibration and internal testing, respec-
tively. The final models with no transfers were chosen for
the prediction of the 2019 risk map, which will be compared
with actual 2019 SFTS occurrence data.

In the evaluation process, a total of 3 sets of factors
were designed to determine whether the factors chosen were
appropriate. The factors of set 1 model included all the above

factors; the set 2 model contained bio_4, bio_13, DEMO1,
DEMO2, DEMO5, DEMO8, DOT, NDVI, SAND, density
of sheep, density of cattle, and DEM; and the set 3 model
included bio_13, DEMO8, DOT, NDVI, density of cattle, and
DEM.

The number of all candidate models was 1581, and
1526 statistically significant models were simultaneously
compared.
Ethical Considerations
All methods were carried out in accordance with relevant
guidelines and regulations. This study was reviewed and
approved by the Ethics Committee of the Zhejiang Provin-
cial Center for Disease Control and Prevention (2020‐021).
The data used in this study were deidentified, ensuring that
individual patients cannot be recognized. Prior to publication,
the findings were thoroughly reviewed and approved by the
ethics committee. No participants in the databases received
any form of compensation.

Results
Descriptive Results
A total of 463 laboratory-confirmed SFTS cases were
reported in Zhejiang Province between 2011 and 2019.
Meanwhile, the epidemic center transferred from the
northeast coast to the southeast coast. The ranges of bio_4,
bio_13, bio_16, DEMO1, DEMO2, DEMO5, DEMO8, DOT,
density of cattle, density of sheep, ZJDEM, NDVI, EVI,
Sand, and GDP were 644.5‐921.3, 131.9‐351.9 mm, 339.7‐
882.9 mm, 3.9‐5.5 hours, 72.3%‐83.4%, 573.5‐1115.8 mm,
16.9‐19.6 ℃, 0.2‐12.0/(hour*flag), 0‐90.3/km2, 0‐6775.7/
km2, 0‐1918 m, 0.06‐1.0, 0.2‐1.0, 15.0‐84.0, and US
$0‐$6825.7, respectively (Table 1).

Table 1. Ranges of different factors.
Factors Description Range
bio_4 Temperature seasonality 644.5‐921.3
bio_13 Precipitation of wettest month 131.9‐351.9 mm
bio_16 Precipitation of wettest quarter 339.7‐882.9 mm
DOT Density of ticks 0.2‐12.0/(hour*flag)
DEMO1 Hours of sunshine 3.9‐5.5 hours
DEMO2 Average relative humidity 72.3%‐83.4%
DEMO3 Average land surface temperature 18.6‐22.5 ℃
DEMO4 20‐8 precipitation 587.1‐974.7 mm
DEMO5 8‐20 precipitation 573.5‐1115.8 mm
DEMO6 All-day precipitation 1134.0‐1943.7 mm
DEMO7 Average pressure 945.5‐1016.2 hPa
DEMO8 Average temperature 16.9‐19.6 ℃
DEMO9 Daily maximum temperature 19.8‐25.2 ℃
DEMO10 Mean wind speed 1.0‐6.4 m/s
DEMO11 Maximum wind speed 3.2‐10.4 m/s
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Factors Description Range
GDP Gross domestic product US $0‐$6825.7
ZJDEM Digital elevation model of Zhejiang 0‐1918 m
NDVI Normalized difference vegetation index 0‐1
EVI Enhanced vegetation index 0‐1
Cattle 1km_ad Density of cattle 0‐90.3/km2

Sheep 1km_ad Density of sheep 0‐6775.7/km2

Silt Agrotype 8‐71
Sand Agrotype 15‐84
Clay Agrotype 7‐48

Contributions of Different Factors
The results of the 3 sets of models are summarized in
Table 2. In the best set 1 model, the permutation impor-
tance of DOT, bio_13, DEMO8, density of cattle, DEM,
NDVI, bio_4, DEMO1, DEMO2, DEMO5, density of sheep,
SAND, bio_16, and GDP was 10.6%, 26.6%, 19.1%, 3.4%,
3.4%, 5.4%, 11%, 1.9%, 1.8%, 1%, 1.9%, 0.5%, 6.9%,
and 5.7%, respectively. In the best set 2 model, the per-
mutation importance of DOT, bio_13, DEMO8, density of
cattle, DEM, NDVI, bio_4, DEMO1, and DEMO2 was
19.9%, 27.5%, 23.9%, 8%, 4.9%, 6.6%, 4.5%, 1.1%, and
3.6%, respectively. In the best set 3 model, the permutation
importance of DOT, bio_13, DEMO8, density of cattle,

DEM, and NDVI was 27.2%, 26.4%, 19.4%, 18.2%, 5%, and
3.8%, respectively. The estimates of relative contributions of
DOT, bio_13, DEMO8, density of cattle, DEM, and NDVI
were 23.2%, 22.1%, 15.6%, 15.4%, 11.9%, and 11.8% to
the set 3 model. The ROC curve for the best model of set
3, which again averaged over the replicate runs is shown
in Figure 3. The average test AUC for the replicate runs
was 0.803, and the SD was 0.013. The jackknife sampling
results for the regularized training gain across the models
indicate that the omission of the DOT factor leads to the most
significant decrease in gain. This suggests that DOT has the
most substantial individual contribution that is not accounted
for by the other factors (Multimedia Appendix 1).

Table 2. The permutation importance of factors in 3 sets of models.
Factors Permutation importance (%)

Set 1 Set 2 Set 3
DOT 10.6 19.9 27.2
bio_13 26.6 27.5 26.4
DEMO8 19.1 23.9 19.4
Cattle 1km_ad 3.4 8 18.2
ZJDEM 3.4 4.9 5
NDVI 5.4 6.6 3.8
bio_4 11 4.5 —a

DEMO1 1.9 1.1 —
DEMO2 1.8 3.6 —
DEMO5 1 — —
Sheep 1km_ad 2.8 — —
Sand 0.5 — —
bio_16 6.9 — —
GDP 5.7 — —

aNot applicable.
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Figure 3. The receiver operating characteristic curve for the best model of set 3, which again averaged over the replicate runs, includes: (A) average
omission and predicted area, and (B) average sensitivity vs 1- specificity for SFTS cases. The average test AUC for the replicate runs was 0.803 (SD
0.013). AUC: area under the receiver operating characteristic curve; SFTS: severe fever with thrombocytopenia syndrome.

Risk Assessments of SFTS Occurrence
Figure 4 shows the potential risk areas of SFTS occurrence.
The results indicated that the northeast coast and central area
of Zhejiang Province had the highest risk, and the affected

areas expanded gradually. From 2011 to 2014, northeast
Zhejiang Province had the highest risk, while the risk of east
areas was similar to that of northeast areas from 2015 to 2016,
and east areas had the highest risk since 2017.

Figure 4. The maximum entropy prediction of SFTS risk areas. From 2011 to 2014, northeast Zhejiang Province had the highest risk, while risk
in the east regions was similar to that of the northeast regions from 2015 to 2016. The east regions had the highest risk. SFTS: severe fever with
thrombocytopenia syndrome.

Figure 5 shows the response curves between independent
and dependent factors. SFTS risk decreased with the increase
of precipitation in the wettest month. When bio_13 ranged

from 131.9 to 224.4 mm, the risk of SFTS occurrence was
greater than 0.5, and when precipitation of the wettest month
exceeded 224.4 mm, the risk probability was less than 0.5.
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When DOT exceeded 1.35/(hour*flag), the response curve
indicated that the risk was greater than 0.5, and the risk
of SFTS increased with the increase of tick density when
cattle density ranged from 0.2 to 81.5/km2; the risk of
SFTS increased with the increase of cattle density. When the
average temperature ranged from 17.8 to 19.3 ℃, the risk
of occurrence of SFTS cases was less than 0.5. For factor

ZJDEM, risk probability presented an upward trend first,
reached the peak at approximately 400 m, and then showed
a downward trend. In addition, the risk probability of SFTS
was greater than 0.5 when the altitude was between 112 and
408 m. The response curve between NDVI and SFTS risk is a
left-skewed bell-shaped curve.

Figure 5. The predictive response curves for SFTS risk are based on associated factors: (A) precipitation of wettest month, (B) density of ticks,
(C)density of cattle, (D)average temperature, (E) elevation, and (F) NDVI. The risk of SFTS occurrence increased with an increase in tick density and
a decrease in precipitation in the wettest month, and it had a reverse V relationship with elevation. NDVI: normalized difference vegetation index;
SFTS: severe fever with thrombocytopenia syndrome.

Discussion
Principal Findings
The results of the final model and the process of jackknife
verified our conjecture on the critical factor of SFTS in
Zhejiang Province; the factor DOT had the largest contri-
bution to the model. Meanwhile, this study confirmed that
SFTS incidence increased with the increase of tick density in
Zhejiang Province.

More granular data can supplement public health sources
to offer improved surveillance, and more research on
influencing factors provides bases for developing meas-
ures for risk among humans [31,32]. Targeted intervention
measures could be implemented according to the prediction
results to prevent the occurrence of the epidemic. To predict
the occurrence of SFTS, it is necessary to explore the factors
associated with SFTS occurrence and the contribution rate of
each factor and to establish an accurate prediction model.

MaxEnt is a robust species distribution model capable
of predicting the potential distribution of a species based
on its known occurrence records and environmental factors
[33]. It is also adept at handling incomplete data sets and is
particularly useful in scenarios where only presence data are
available. Incorporating climate models, MaxEnt can forecast

the potential effects of future climate change on species
distributions, aiding managers in predicting and preparing
for the challenges that climate change may present [33-35].
In this study, by integrating the MaxEnt model with Geo-
graphic Information System technology, we have been able
to generate detailed distribution maps for SFTS. Further-
more, the MaxEnt model evaluates the impact of various
environmental factors on SFTS, thereby identifying the key
ecological factors that influence the risk distribution of SFTS.
These maps illustrate the probability of SFTS occurrence,
aiding managers and policy makers in understanding the
geographical risk distribution of the disease, which is crucial
for comprehending the disease’s risk control requirements
and formulating protective measures. Accurate and anticipa-
tory monitoring and early warning information for SFTS
can assist managers in the efficient allocation of limited
resources, such as focusing protective efforts on areas with
a high-risk distribution of SFTS.

In this study, we first selected the 14 remaining factors
as set 1 factors after processing the point sample and the
cross-correlation analysis. Three sets of candidate models
for evaluation and selection were generated. At the level
of total SFTS cases from 2011 to 2018, the result of Max-
Ent indicated that DOT, precipitation in the wettest month,
average temperature, density of cattle, elevation, and NDVI
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were most important for the occurrence of SFTS cases. To
further verify the suitability of these factors, we used these
factors in 2019 as the future scenario and predicted the SFTS
distribution in Zhejiang Province in 2019; we also verified
the suitability of parameter setting of the set 3 model by the
above factors. Set 3 model showed that density of cattle was
also identified as a factor affecting the occurrence of SFTS.
The density of cattle may indirectly reflect the prevalence
of SFTSV in animal hosts, which in turn affects the risk
of SFTS infection in humans. It was mentioned that the
risk of SFTS increased with cattle density in the range of
0.2 to 81.5/km². This may be because higher cattle density
may mean more tick hosts and thus may have increased
tick and SFTSV transmission in the environment. Increased
tick density directly increases human exposure to ticks and
SFTSV, while bovine density may indirectly affect human
SFTS risk by affecting SFTSV transmission in animal hosts.
These findings have important implications for the develop-
ment of targeted preventive measures and control strategies.
Precipitation of the wettest month also significantly con-
tributed to the occurrence of SFTS. In Zhejiang Province,
we found a general trend, that is, the higher the value of
precipitation of the wettest month, the lower the risk of
SFTS. When the precipitation in the wettest month excee-
ded 224.4 mm, the risk probability of SFTS was less than
0.5. A previous study on a national level also showed that
SFTS occurrence probability started to decrease after annual
precipitation exceeding 1600 mm [19]. However, the months
with the most precipitation are mostly from June to August,
which is consistent with the peak of the temporal distribution
of SFTS cases reported in Zhejiang Province [15]. On the
contrary, a previous study reported that more precipitation
increased the probability of tick infestation in central and
western China [36]. The possible reasons might be that the
annual rainfall of Zhejiang Province could exceed 1700 mm
and the precipitation of the wettest month ranged from 300 to
400 mm in coastal areas, indicating that the precipitation in
Zhejiang Province was significantly higher than that in areas
of central and western China [37]. Further research should be
conducted to explore the real relation between precipitation
and SFTS occurrence.

In Zhejiang Province, the land area is predominantly
composed of mountainous regions, which constitute 74.6%
of the total area. Water bodies make up 5.1%, while the
remaining 20.3% is comprised of flatlands. In this study,
the response curve between NDVI and SFTS risk is a
left-skewed bell-shaped curve. Haemaphysalis longicornis is
a species often collected in pastures and meadows because
of its tolerance to an arid environment; it tends to pre-
fer an environment with a forest edge to grassland. SFTS
was considered to occur in areas with farmers, farmland,
tea gardens, and mountains [4]. However, according to the
residential addresses obtained from the China Information
System for Diseases Control and Prevention system, cases
were located in village clusters or mountains with less
vegetation.

In this study, the risk probability of elevation presented
an upward trend first, reached the peak at about 400 m,

and then became a downward trend. The results suggest that
people living in hilly areas are the high-risk population for
SFTS in Zhejiang Province. On one hand, ticks were widely
distributed in Zhejiang Province, and farmers accounted for
the majority of SFTS cases [38,39]. On the other hand,
the development of an ecotourism industry and an increase
in outdoor recreational chasers can increase human visits
to tick-infested areas, thereby increasing tick-human contact
rates.

Several previous studies indicated that the results of the
model analysis vary across different provinces in China
[19]. In Jiangsu Province, China, the distribution of SFTS
natural foci was under the influence of multidimensional
environmental factors, and the slope and maximum tempera-
ture of the warmest month were the key environmental risk
factors [40]. This suggests that local adaptation is a very
valuable tool for the prevention and control of emerging
infectious diseases. The incidence of every infectious disease
is influenced by natural and social factors. There are social,
policy, and cost implications for effective tick control. Social,
technical, and environmental factors must be considered to
adapt appropriate strategies and measures. Daishan County,
which had been mostly affected by SFTS, had considera-
ble success in controlling ticks, and its experience may be
instructive. The measures that significantly reduced the SFTS
incidence mainly included clearance of breeding sites, killing
of tick adults, and health education [41]. For other factors, we
can only predict the distribution of high-risk areas accord-
ing to the ENM; but for SFTS, the DOT can be controlled
artificially by several economically feasible and effective
methods.

The distribution of risk areas transferred from northeast
areas to east areas. Several factors might have contributed to
the results. First, comprehensive measures were conducted in
northeast areas, and the SFTS incidence decreased in these
areas. For example, Daishan County was a typical representa-
tive in northeast areas. Second, more attention was paid to
SFTS in east areas. For example, in some counties of east
areas, all patients with thrombocytopenia and leukocytopenia
were asked to screen for SFTSV. Third, the changes in natural
environmental and meteorological factors in northeast areas
and east areas from 2011 to 2019 might also influence the
SFTS incidence.
Limitations
There are several limitations of our study. First, data on SFTS
cases were collected from passive surveillance; underreport-
ing may occur in some areas with poor detection capacity and
availability of health facilities. Second, some wild animals
might be hosts of SFTSV, and SFTS occurrence might be
influenced by the species and density of some wild animals.
However, no relevant province-wide surveillance study has
been conducted in Zhejiang Province. More research should
be conducted to clarify whether data on animals are correlated
with SFTS occurrence in Zhejiang Province.
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Conclusions
Tick density, precipitation, and elevation were dominant
influencing factors for SFTS, and comprehensive intervention

measures should be adjusted according to these factors to
reduce the SFTS incidence in Zhejiang Province.
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