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Abstract

Background: Carotid plaque can progress into stroke, myocardial infarction, etc, which are major global causes of death.
Evidence shows a significant increase in carotid plaque incidence among patients with fatty liver disease. However, unlike the
high detection rate of fatty liver disease, screening for carotid plaque in the asymptomatic population is not yet prevalent due to
cost-effectiveness reasons, resulting in a large number of patients with undetected carotid plaques, especially among those with
fatty liver disease.

Objective: This study aimed to combine the advantages of machine learning (ML) and logistic regression to develop a
straightforward prediction model among the population with fatty liver disease to identify individuals at risk of carotid plaque.

Methods: Our study included 5,420,640 participants with fatty liver from Meinian Health Care Center. We used random forest,
elastic net (EN), and extreme gradient boosting ML algorithms to select important features from potential predictors. Features
acknowledged by all 3 models were enrolled in logistic regression analysis to develop a carotid plaque prediction model. Model
performance was evaluated based on the area under the receiver operating characteristic curve, calibration curve, Brier score,
and decision curve analysis both in a randomly split internal validation data set, and an external validation data set comprising
32,682 participants from MJ Health Check-up Center. Risk cutoff points for carotid plaque were determined based on the Youden
index, predicted probability distribution, and prevalence rate of the internal validation data set to classify participants into high-,
intermediate-, and low-risk groups. This risk classification was further validated in the external validation data set.

Results: Among the participants, 26.23% (1,421,970/5,420,640) were diagnosed with carotid plaque in the development data
set, and 21.64% (7074/32,682) were diagnosed in the external validation data set. A total of 6 features, including age, systolic
blood pressure, low-density lipoprotein cholesterol (LDL-C), total cholesterol, fasting blood glucose, and hepatic steatosis index
(HSI) were collectively selected by all 3 ML models out of 27 predictors. After eliminating the issue of collinearity between
features, the logistic regression model established with the 5 independent predictors reached an area under the curve of 0.831 in
the internal validation data set and 0.801 in the external validation data set, and showed good calibration capability graphically.
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Its predictive performance was comprehensively competitive compared with the single use of either logistic regression or ML
algorithms. Optimal predicted probability cutoff points of 25% and 65% were determined for classifying individuals into low-,
intermediate-, and high-risk categories for carotid plaque.

Conclusions: The combination of ML and logistic regression yielded a practical carotid plaque prediction model, and was of
great public health implications in the early identification and risk assessment of carotid plaque among individuals with fatty
liver.

(JMIR Public Health Surveill 2023;9:e47095) doi: 10.2196/47095
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Introduction

Carotid plaque is an independent risk factor for cerebral stroke
[1], myocardial infarction [2], and atherosclerotic cardiovascular
disease [2], which are all leading causes of death and disability
worldwide [3,4], presenting severe economic burden in both
developed and developing countries [5]. Nearly 20% of stroke
cases were caused by carotid atherosclerotic plaque [6]. The
rupture or shedding of carotid plaque can lead to thrombosis
and has become the major cause of cerebrovascular accidents
[3,7]. It has been proposed that nearly one-third of Chinese
adults were experiencing from carotid plaque [8]. With the
growing aging population and the acceleration in urbanization,
the incidence rates of cardiovascular disease in China would
increase steadily in the next few decades [9]. Thus, early
detection of carotid plaque can bring great benefits in the timely
and active prevention of stroke and other cerebrovascular and
cardiovascular diseases. It is necessary to develop effective
tools to identify carotid plaque in the asymptomatic population
and curb its progression at an early stage.

Recently, several studies have demonstrated significant
associations exist between fatty liver disease and coronary artery
disease, including carotid plaque and carotid stenosis [10-12].
Individuals with fatty liver disease were proved to have an
elevated risk of developing carotid plaque. However, although
liver ultrasound has been incorporated into the routine check-up
program, carotid artery ultrasound examination is not prevalent
due to cost-effectiveness reasons for the asymptomatic
population [13]. As the most widely used method for evaluating
carotid plaque [14], the low prevalence of carotid ultrasound
may result in missed detection of such plaque populations,
especially in individuals with fatty liver. Thus, identifying
carotid plaque patients in the population with fatty liver is more
cost-effective and is of great public health implications for the
prevention of cardiovascular disease.

Wu et al [13] developed a carotid plaque risk prediction tool
among asymptomatic population based on machine learning
(ML) algorithms, including extreme gradient boosting
(XGBoost), gradient boosting decision tree, random forest (RF),
and support vector machine, and achieved good performance,
but the substantial complexity of the model may limit its
practical use, while the commonly used risk prediction tools in
the cardiovascular field, including Framingham risk score [15]

and its modified model [16], were mostly based on traditional
statistical models, including logistic regression and cox
proportional-hazards regression. Although numerous studies
have demonstrated that ML algorithms outperformed traditional
statistical models in predictive performance throughout medical
fields [17-19] due to their capability to analyze and learn the
complex interactions and nonlinear associations among variables
[17,20,21], the latter still own irreplaceable strengths, including
their natural transparency, interpretability, and robustness, which
boost their practicality in clinical research [22]. Therefore, using
ML algorithms alone or traditional regression methods alone
to train prediction models usually results in either accurate but
complicated black boxes or practical but
unsatisfactory-performed scoring systems.

In this study, we combined ML, including RF, XGBoost, and
elastic net (EN) with logistic regression together to develop a
straightforward and practical risk prediction model to help better
identify individuals at risk of carotid plaque in the population
with fatty liver disease. We also provided robust cutoff points
for carotid plaque risk stratification and verified the results on
an external data set.

Methods

Data Source and Study Participants
Participants who attended health check-ups at Meinian Health
Check-up Center and MJ Health Check-up Center were involved
in this study for model development and external validation,
respectively.

Development Data Set
Meinian Health Check-up Program is the largest check-up chain
in China. It provides routine health check-up services for the
whole population, with its check-up centers covering all 31
provinces in mainland China. Initially, participants diagnosed
with fatty liver through hepatic ultrasonography and received
carotid artery ultrasound examination between January 1, 2017,
and June 30, 2022, were included. For those who attended 2 or
more check-ups, the most integrated record was included in the
analysis. Participants younger than 18 years, had missing values
on over 30% of potential predictors, or had a history of
cardiovascular or cerebrovascular diseases were excluded from
the analysis. Finally, a total of 5,420,640 participants were
included in the study for model development (Figure 1).
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Figure 1. Flowchart of the study participants.

External Validation Data Set
MJ Health Check-up Center is a clinic in Beijing, China, it
provides comprehensive health check-ups for the participants.
Participants who underwent check-ups between June 1, 2017,
and December 31, 2021, were diagnosed with fatty liver, and
underwent carotid ultrasound examination were included. After
excluding those younger than 18 years, or who had a history of
cardiovascular or cerebrovascular diseases, 32,682 participants
were included (Figure 1).

Ethical Considerations
The study was reviewed and approved by the institutional review
board of Peking University Health Science Center (approval
ID: IRB00001052-19077). The requirement for informed
consent of participants was waived due to the use of deidentified
data obtained as part of routine health check-ups.

Potential Predictors and Outcomes
All potential factors associated with carotid plaque reported by
recent studies were considered. Considering the accessibility
of the variables in the database, a total of 27 potential factors
were extracted: (1) demographic characteristics: sex and age;
(2) physical examination indicators: weight, height, BMI,
systolic blood pressure (SBP), diastolic blood pressure, and
heart rate; (3) laboratory examination indicators: total cholesterol
(TC), triglyceride, high-density lipoprotein cholesterol,
low-density lipoprotein cholesterol (LDL-C), fasting blood
glucose (FBG), alanine transaminase (ALT), aspartate
aminotransferase (AST), ALT/AST, direct bilirubin, total
bilirubin, alkaline phosphatase (ALP), uric acid, blood platelet
count (PLT), white blood cell count, creatinine, and hepatic
steatosis index (HSI, which was calculated as follows:
HSI=8×(ALT/AST)+BMI+2 (if diabetes mellitus)+2 (if female)

[12]); and (4) medical history: hypertension, diabetes, and
hyperlipidemia.

The outcome was defined as whether the participant was
diagnosed with carotid plaque by carotid artery ultrasound
examination. Specifically, the common carotid arteries, the
bifurcation, and the external and internal carotid arteries were
examined on each side by experienced sonographers operating
a Doppler ultrasound system (Sonoscape S50, China) with a
linear 7.5 MHz probe under standardized protocols. The distance
between the leading edge of the lumen-intima echo and the
leading edge of the media-adventitia echo was defined as carotid
intima-media thickness. Carotid plaque was accounted as a
discrete, focal wall thickening ≥1.5 mm or focal thickening
>50% greater than the surrounding carotid intima-media
thickness in any of the arterial segments above [23].

Data Preprocessing and Statistical Analysis
The development data set was randomly divided into a training
set (4,336,512/5,420,640, 80%) and an internal validation set
(1,084,128/5,420,640, 20%). The training set was used for
feature selection and model development, while the internal
validation data set, together with the external validation data
set, were used for model evaluation.

In the training set, missing data were imputed with the mean of
each variable. And the imputed values derived from the training
set were further used for missingness imputation in internal and
external validation data sets. Outliers in the training set were
defined as values distributed less than 1% or more than 99%
quantile of the whole participants, and all the outliers were
regarded as missing values.

Normally distributed continuous variables were presented as
means with SDs and used the Student t test for statistical
analysis. Non-normally distributed continuous variables were
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presented as a median and interquartile range and the Wilcoxon
rank-sum test was used for comparison. Categorical variables
were presented as counts and percentages and compared using
the chi-square test.

Considering the limitations of P values in detecting group
differences in large sample sizes, we used standardized mean
difference (SMD) as an alternative method to compare the
between-group differences. Unlike P values, SMD allows for
standardized comparisons across groups despite differences in
sample size, measurement scales, or variance [24]. An absolute
value of SMD<0.20 can be considered as a small difference,
and an absolute value of SMD<0.10 suggests a negligible
difference.

Feature Selection and Model Development
Three ML algorithms were used for feature selection, including
RF, EN, and XGBoost. To tune hyperparameters in the training
set, 5-fold cross-validation was conducted. The top important
features coselected by 3 algorithms were used for model
development.

RF and XGBoost are 2 popular ensemble learning algorithms.
Both of them use decision trees to construct their models. RF
generates multiple decision trees in parallel by conducting
random sampling and random feature selection, and the final
prediction is made by aggregating the votes from all decision
trees. Feature importance in RF can be measured by evaluating
the mean Gini index of each feature across multiple trees.

In contrast, XGBoost builds decision trees sequentially, where
each tree is trained to correct the errors of the previous ones,
and eventually, the prediction is obtained by summing the results
of all trees. Feature importance in XGBoost can be quantified
by calculating the average gain that a feature brings when it is
chosen as the splitting variable in any decision tree.

EN model extends logistic regression by adding L1 and L2
regularization terms to overcome multicollinearity and perform
feature selection. The importance of each feature in EN model
can be estimated by examining the magnitude of its coefficients.

Logistic regression was used to train the final prediction model
by using the features selected. Collinearity was checked through
clustering analysis and the most representative feature, that is

owning the smallest value of 1-R2 in each cluster was further
selected to train logistic regression.

Model performance was assessed using discrimination and
calibration. Discrimination was evaluated by area under the

receiving operating characteristic curve (AUROC), and
calibration was investigated through the calibration curve and
Brier score. The performance of the established model was
compared with a model using backward selection logistic
regression without ML based-feature selection, as well as the
above 3 ML models. In addition, decision curve analysis was
performed to see whether the net benefit would promote when
using the prediction model.

Risk Stratification
Risk cutoff values were determined based on the Youden index,
predicted risk probability distribution, and the prevalence rate
of carotid plaque in the internal validation data set to divide
participants into high-risk, intermediate-risk, and low-risk.
Specifically, Youden index was used to identify the high-risk
group, and then a cutoff value was selected for the remaining
individuals based on the distribution of predicted probabilities
determined by our prediction model and adjusted according to
the prevalence rate of carotid plaque of the 2 groups below this
cutoff point to achieve intermediate and low-risk stratification,
and the effectiveness of these cutoff points was verified on an
external validation data set.

All procedures were performed in SAS (version 9.4; SAS
Institute) and Python (version 3.7; Python Software Foundation).

Results

Characteristics of Study Participants
Among the 5,420,640 participants in the development data set,
26.23% (1,421,970/5,420,640) were diagnosed with carotid
plaque. The differences in all the potential predictors between
participants with and without carotid plaque were statistically
significant. Participants who developed carotid plaque were
older, more likely to be female, and had higher SBP, diastolic
blood pressure, TC, high-density lipoprotein cholesterol, LDL-C,
FBG, direct bilirubin, total bilirubin, ALP, and lower height,
weight, BMI, heart rate, triglyceride, ALT, AST, ALT/AST,
uric acid, white blood cell count, creatinine, HSI when compared
to their carotid plaque-free counterparts. The prevalence of
hypertension, hyperlipidemia, and diabetes mellitus was also
higher in the carotid plaque group compared to the carotid
plaque-free group (Table 1). Among the 32,682 records in
external validation, 21.64% (7074/32,682) were recorded for
developing carotid plaque. The characteristics are presented in
Table S1 of Multimedia Appendix 1. The differences between
the development data set and external validation data set are
presented in Table S2 of Multimedia Appendix 1.
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Table 1. Characteristics of study participants in the development data set.

SMDaCarotid plaqueTotal (N=5,420,640)Characteristic

P valueNo (N=3,998,670)Yes (N=1,421,970)

–0.01<.001Sex, n (%)

2,711,720 (67.82)955,704 (67.21)3,667,424 (67.66)Male

1,286,950 (32.18)466,266 (32.79)1,753,216 (32.34)Female

1.13<.00145.00 (36.00, 54.00)57.00 (51.00, 64.00)49.00 (39.00, 57.00)Age (years), mean (SD)

–0.22<.001168.00 (161.00-173.50)166.00 (159.10-171.50)167.00 (160.50-173.00)HTb (cm), median (IQR)

–0.19<.00175.72 (12.60)73.39 (11.40)75.11 (12.34)WTc (kg), mean (SD)

–0.06<.00126.96 (3.25)26.75 (3.02)26.90 (3.19)BMI (kg/m2), mean (SD)

0.53<.001129.46 (17.38)139.37 (19.67)132.06 (18.53)SBPd (mm Hg), mean (SD)

0.22<.00180.13 (12.05)82.79 (12.22)80.83 (12.15)DBPe (mm Hg), mean (SD)

–0.06<.00171.80 (8.31)71.31 (8.46)71.67 (8.35)HRf, (times/minute), mean
(SD)

0.17<.0015.16 (1.00)5.34 (1.09)5.21 (1.03)TCg (mmol/L), mean (SD)

0.07.071.76 (1.24-2.57)1.76 (1.26-2.51)1.76 (1.24-2.55)TGh (mmol/L), median (IQR)

0.10<.0011.27 (1.09-1.43)1.29 (1.12-1.47)1.28 (1.10-1.44)HDL-Ci (mmol/L), median
(IQR)

0.14<.0013.07 (0.81)3.19 (0.87)3.10 (0.83)LDL-Cj (mmol/L), mean (SD)

0.33<.0015.37 (4.94-5.87)5.71 (5.19-6.52)5.45 (4.99-6.02)FBGk (mmol/L), median
(IQR)

–0.22<.00127.00 (19.00-40.32)23.40 (17.30-33.09)26.00 (18.30-38.50)ALTl (U/L), median (IQR)

–0.05<.00122.00 (18.00-27.40)21.90 (18.00-26.30)22.00 (18.00-27.00)ASTm (U/L), median (IQR)

–0.02<.0011.24 (0.97-1.58)1.10 (0.88-1.36)1.20 (0.94-1.52)ALT/AST, median (IQR)

0.02<.0013.70 (1.70)3.74 (1.83)3.71 (1.73)DBILn (μmol/L), mean (SD)

0.04<.00113.65 (10.80-14.60)13.65 (11.06-14.90)13.65 (10.86-14.66)TBILo (μmol/L), median
(IQR)

0.13<.00177.19 (18.71)79.74 (19.82)77.86 (19.04)ALPp (U/L), mean (SD)

–0.15<.001372.85 (96.87)358.66 (91.36)369.13 (95.66)UAq (μmol/L), mean (SD)

–0.17<.001227.01 (57.21)217.54 (56.48)224.53 (57.17)PLTr (109/L), mean (SD)

–0.01.016.36 (4.60)6.35 (5.11)6.36 (4.74)WBCs (109/L), mean (SD)

–0.03<.00169.49 (16.82)69.02 (17.84)69.36 (17.10)Crt (μmol/L), mean (SD)

–0.01<.00138.14 (114.72)36.96 (4.63)37.83 (98.56)HSIu, mean (SD)

0.49<.001Hypertension, n (%)

1,367,503 (34.20)823,098 (57.88)2,190,601 (40.41)Yes

2,631,167 (65.80)598,872 (42.12)3,230,039 (59.59)No

0.06<.001Hyperlipidemia, n (%)

1,782,387 (44.57)676,089 (47.55)2,458,476 (45.35)Yes

2,216,283 (55.43)745,881 (52.45)2,962,164 (54.65)No

0.34<.001Diabetes mellitus, n (%)

399,595 (9.99)318,281 (22.38)717,876 (13.24)Yes
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SMDaCarotid plaqueTotal (N=5,420,640)Characteristic

P valueNo (N=3,998,670)Yes (N=1,421,970)

3,599,075 (90.01)1,103,689 (77.62)4,702,764 (86.76)No

aSMD: standardized mean difference.
bHT: height.
cWT: weight.
dSBP: systolic blood pressure.
eDBP: diastolic blood pressure.
fHR: heart rate.
gTC: total cholesterol.
hTG: triglyceride.
iHDL-C: high-density lipoprotein cholesterol.
jLDL-C: low-density lipoprotein cholesterol.
kFBG: fasting blood glucose.
lALT: alanine transaminase.
mAST: aspartate aminotransferase.
nDBIL: direct bilirubin.
oTBIL: total bilirubin.
pALP: alkaline phosphatase.
qUA: uric acid.
rPLT: blood platelet count.
sWBC: white blood cell count.
tCr: creatinine.
uHSI: Hepatic Steatosis Index.

Feature Importance and Model Performance
Age, SBP, LDL-C, TC, FBG, and HSI were found to be the top
important features through all 3 ML algorithms. These features
ranked in the top 10 features of all 3 algorithms and were
selected out of the 27 features to train the logistic regression
model (Figure 2). Cluster analysis showed high collinearity

existed between LDL-C and TC, thus the more informative one,
LDL-C, was selected to develop the final model (Table 2). The
formula for predicting the risk of carotid plaque, as determined
by the final prediction model is given in the following equation:
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Figure 2. Feature importance of the potential predictors on carotid plaque in population with fatty liver disease generated by (A) RF, (B) EN, and (C)
XGBoost. The features highlighted in dark color represent those coselected by all 3 algorithms. ALP: alkaline phosphatase; ALT: alanine transaminase;
AST: aspartate aminotransferase; Cr: creatinine; DB: diabetes; DBIL: direct bilirubin; DBP: diastolic blood pressure; EN: elastic net; FBG: fasting
blood glucose; HDL-C: high-density lipoprotein cholesterol; HLP: Hyperlipidemia; HR: heart rate; HSI: hepatic steatosis index; HT: height; HTN:
hypertension; LDL-C: low-density lipoprotein cholesterol; PLT: blood platelet count; RF: random forest; SBP: systolic blood pressure; TBIL: total
bilirubin; TC: total cholesterol; TG: triglyceride; UA: uric acid; WBC: white blood cell count; WT: weight; XGBoost: extreme gradient boosting.
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Table 2. Carotid plaque prediction model in population with fatty liver disease based on logistic regression.

ORa (95% CI)SEβVariable

0.015400–7.97380Intercept

1.097 (1.096-1.097)0.0001330.09230Age

1.011 (1.011-1.011)0.0000700.01080SBPb

1.103 (1.102-1.105)0.0006840.09840FBGc

1.177 (1.174-1.181)0.0014800.16330LDL-Cd

0.991 (0.990-0.991)0.000289–0.00949HSIe

aOR: odds ratio.
bSBP: systolic blood pressure.
cFBG: fasting blood glucose.
dLDL-C: low-density lipoprotein cholesterol.
eHSI: Hepatic Steatosis Index.

Model performance was evaluated in internal and external
validation data sets, respectively, and the area under the curves
achieved 0.831 and 0.801, respectively, both showing good
discrimination capability (Figure 3A). The calibration curve in
the internal validation data set lies tightly against the diagonal,
while the external deviates a little, but still indicates good

calibration capability (Figure 3B). When compared with the
backward selection logistic regression model, which consisted
of 15 features, or the 3 ML models involving 27 features, the
prediction model we established with only 5 features was still
competitive. The number of features and model performance
in each model are shown in Table 3.

Figure 3. Model performance in discrimination and calibration for predicting the risk of carotid plaque in population with fatty liver disease evaluated
by (A) ROC curves and (B) calibration curves. AUC: area under the curve; ROC: receiver operating characteristic.
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Table 3. The comparison of model performance for predicting the risk of carotid plaques in population with fatty liver disease in the internal validation
data set.

Brier scoreAUCaFeatures, nModel

0.1250.8315LR-MLb

0.1390.82213LR-BSc

0.1510.83227RFd

0.1780.83427ENe

0.1500.83127XGBoostf

aAUC: area under the curve.
bLR-ML: ML-based feature selection logistic regression.
cLR-BC: backward selection logistic regression.
dRF: random forest.
eEN: elastic net.
fXGBoost: extreme gradient boosting.

The decision curve analysis showed that the application of the
prediction model achieved promoted net benefits throughout
all threshold probabilities both in internal and external validation

data sets, indicating prospective utility in the real-world scenario
(Figure 4).

Figure 4. Decision curve analysis for predicting the risk of carotid plaque in population with fatty liver disease in (A) internal validation data set and
(B) external validation data set.

Risk Stratification
The predicted risk probabilities of participants developing
carotid plaque in 2 validation data sets were calculated and their
histograms were presented in Figure 5. Using the Youden index,
a threshold of 65% was used to categorize individuals as being
at high risk, while a cutoff value of 25% was used to distinguish
those at intermediate risk and low risk based on the distribution
of predicted probabilities and the prevalence of carotid plaque
in the remaining population. Our result revealed the prevalence
of carotid plaque of 73.73%, 41.28%, and 10.99% for the
high-risk, intermediate-risk, and low-risk groups, respectively.

Upon application of these defined cutoff points to the external
validation data set, we observed comparable prevalence rates
of carotid plaque within each risk group when compared to the
internal validation data set. Notably, the high-risk,
intermediate-risk, and low-risk groups exhibited prevalence
rates of carotid plaque amounting to 77.61%, 40.62%, and
8.02%, respectively. These findings indicate that the selected
risk cutoff points can successfully stratify individuals with fatty
liver disease into varying degrees of severity in terms of the
risk of developing carotid plaque. The probability distribution,
sample size, and prevalence rate in each level are also shown
in Figure 5.

JMIR Public Health Surveill 2023 | vol. 9 | e47095 | p. 9https://publichealth.jmir.org/2023/1/e47095
(page number not for citation purposes)

Deng et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Probability distribution and risk classification plot generated by the carotid plaque prediction model in population with fatty liver disease in
(A) internal validation data set and (B) external validation data set. The blue and pink colored columns represent the number of participants on different
predicted probabilities, and the predicted probabilities are split into low risk, intermediate risk, and high risk by 0.25 and 0.65. Different levels of risks
are presented by gray pillars of different opacities, the height of each pillar corresponds to risk proportion, which is calculated by the prevalence rate
in each risk level. HR: high risk; IR: intermediate risk; LR: low risk.

Discussion

In this study, we established a practical and straightforward
carotid plaque prediction model in population with fatty liver
disease. By using only 5 features (Age, SBP, FBG, LDL-C, and
HSI) coselected by 3 ML algorithms, the model achieved an
AUROC of 0.831 and exhibited good calibration properties.
Our study derived robust cutoff points of 25% and 65% for
carotid plaque risk probability, enabling effective risk
stratification and facilitating clinical decision-making regarding
the need for carotid ultrasonography examination. These
findings have practical implications for early detection and
prevention of this condition, which can improve patient
outcomes and reduce health care costs.

We identified specific features as strong predictors of the
outcome. Age was selected as the top important feature by all
3 models, indicating its strong relationship with carotid plaque,
prior studies have also drawn the same conclusion [8,25].
Previous research has demonstrated that increased SBP is a
strong predictor of the development of carotid plaque, which
was consistent with our findings [26-30]. Additionally, our
study found evidence linking increased blood lipid levels, such
as TC and LDL-C, and elevated glucose levels to a higher
prevalence of carotid plaque. These findings are in line with
prior research and support the notion that managing modifiable
cardiovascular risk factors, such as dyslipidemia and
hyperglycemia, is critical for reducing the likelihood of carotid
plaque development [31-33]. HSI is a surrogate score for the
noninvasive assessment of steatosis in patients with fatty liver
[34] and is also a screening tool for nonalcoholic fatty liver
disease [35]. In our study, we regarded this index as a continuous
feature reflecting the severity of liver steatosis to predict carotid

plaque. Although a cross-sectional study involving 768 patients
with type 2 diabetes mellitus (T2DM) showed those with carotid
plaque have significantly higher HSI (P<.001) compared with
their healthy counterparts [36], our study came to the opposite
conclusion. The following reason may explain the paradox. For
all of the participants who have already been diagnosed with
fatty liver disease, the severity may lead to behavior or lifestyle
change and ulteriorly affect the development of carotid plaque.
However, the lifestyle-related variables and diagnostic time of
fatty liver were not included in our study, which may generate
the opposite result with other studies.

Our findings revealed that the logistic regression model,
comprising only 5 variables coselected by 3 ML algorithms,
attained nearly equivalent area under the curve values as the
ML models which included all 27 variables, but exhibited
superior calibration capability. These results clearly indicated
the superiority of adopting a combined approach. In regard to
similar research, our predictive model remains competitive. For
instance, in Wu’s [13] investigations, the XGBoost model based
on 34 variables acquired an AUROC of 0.8635, whereas our
model, employing solely 5 variables, yielded a comparable
AUROC value of 0.831 while preserving a more comprehensible
and lucid modeling framework. In practical applications, our
model accurately predicts outcomes using routine, easily
measurable, and obtainable variables, indicating the potential
for effective clinical implementation.

We aimed to identify high-risk individuals who may benefit
from carotid ultrasonography screening for carotid plaque.
Therefore, it is vital not only to estimate an individual’s risk
probability but also to determine optimal risk cutoff points for
precise risk stratification and corresponding clinical guidance.
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Although the Youden index is commonly used to determine the
optimal cutoff predicted probability for risk stratification, it
typically results in a binary classification of high-risk and
low-risk groups [37-39]. However, our results have shown that
the low-risk group often comprises a larger population with a
wide range of risk probabilities from 0% to 65% when
performing high-low risk stratification using the Youden index
alone. Although this approach can effectively identify the
high-risk group, providing identical guidance to individuals
within the low-risk group with significantly different risk
probabilities is not appropriate and unscientific. To achieve a
more comprehensive risk stratification based on our large sample
data, we further stratified the low-risk group generated by the
Youden index into low and intermediate risk categories using
risk probability distribution and prevalence rate of carotid plaque
in each group. With our substantial sample size, selecting and
adjusting cutoff points based on the distribution of risk
probability and prevalence rate across different strata is
achievable. This novel approach enables a more nuanced risk
stratification beyond the binary classification of high and
low-risk groups, potentially leading to the development of
personalized health care plans.

We have developed customized health care recommendations
for each risk group, providing precise guidance for carotid artery
ultrasound examinations. Our results indicate that individuals
in the high-risk group with a prevalence of carotid plaque of
over 70% should strongly consider undergoing carotid artery
ultrasound for definitive diagnosis. For those in the
intermediate-risk group with a prevalence of over 40%, the
examination is still advised, considering their individual
financial circumstances. Furthermore, low-risk individuals with
a prevalence of approximately 10% do not require a carotid
artery ultrasound examination. By personalizing our approach
based on an individual’s risk level and financial situation, we
can effectively identify those who require further testing and
optimize the cost-effectiveness of screening programs.

Currently, there are no established criteria for determining which
populations require carotid ultrasound screening. Several
guidelines and recommendations have been proposed to identify
populations that may benefit from carotid ultrasound screening.
For example, the guidelines for carotid artery ultrasound
examination in Chinese health check-up populations specify
that the evaluation standards for individuals undergoing carotid
artery ultrasound include those at risk of hypertension, coronary
atherosclerotic heart disease, stroke, and diabetes; high-risk
populations such as smokers, overweight and obese individuals;
individuals with moderate or higher cardiovascular risk
assessment; and other suitable populations aged middle-aged
or older. The American Heart Association recommends carotid
ultrasound screening for asymptomatic patients who are over
65 years of age, men aged 55 to 75 years with a history of
smoking or other risk factors, and women aged 55 to 75 years
with a history of cardiovascular disease or other risk factors.

However, the existing guidelines are primarily focused on risk
stratification at the population level. Our objective, therefore,
is to develop a prediction model for personalized risk
stratification to enable better decision-making support in
determining the need for carotid artery ultrasound monitoring
on an individual basis. This approach would lead to more precise
and personalized health care recommendations for the
individuals under consideration.

Our prediction model and the cutoff points were verified on an
independent external data set. The model was also able to
accurately predict the risk of carotid plaque for each individual
and the cutoff points remain robust in identifying different risk
levels of groups, confirming the generalizability and
applicability of our approach.

Several limitations need to be noted. First, due to the limitation
of the database, some lifestyle variables, like smoking or
drinking status [40,41], were not included in our model, which
may affect the predictive performance to some extent. Second,
because of the high calculation time cost caused by the huge
sample size, bootstrap sampling was not used to generate a 95%
CI of the performance metrics, a single measurement may not
be forceful enough. Third, we opted to exclude individuals with
cardiovascular and cerebrovascular diseases from our study
sample, in recognition of their potential differences in baseline
characteristics, health care–seeking behavior, and management
strategies relative to the general population. These factors could
introduce significant confounding effects and hinder the
predictive performance of our model. Therefore, we excluded
individuals with cardiovascular and cerebrovascular diseases
at the beginning. However, this may have reduced the
representativeness of our sample and introduced some selection
bias. Fourth, although the check-up centers included in this
study covered all provinces and all 3 economic zones (the
eastern zone, central zone, and western zone) in mainland China,
the check-up population may not be entirely representative of
the general population, which may have biased our study
towards a healthier group and thus limit the applicability and
generalizability of our model to the broader population. Fifth,
the cross-sectional design of our study means that the temporal
relationship between the predictors and the outcome cannot be
established, and there may be reverse causation or confounding
effects that we have not accounted for.

In conclusion, we developed a prediction model that uses a set
of routine and quantitative variables obtained from health
checkup programs to estimate the risk of carotid plaque in
individuals with fatty liver disease. The resulting model is
cost-effective, easy to use, and demonstrated strong predictive
performance. This approach provides a means for personalized
risk assessment of carotid plaque and derives robust cutoff
points for carotid plaque risk stratification, with potential
implications for improving the cost-effectiveness of carotid
ultrasound detection.
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