
Original Paper

Association Between the Loss of Gait Harmony and Cognitive
Impairment: Cross-Sectional Study

Ju-Young Choi1, MPH; Sang-Won Ha2, MD; Da-Eun Jeong2, MD; Jaeho Lee1,3, MPH; Donghoon Kim1,3, MPH;

Jin-Young Min4*, PhD; Kyoung-Bok Min1,3,5*, PhD
1Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
2Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
3Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
4Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
5Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul, Republic of Korea
*these authors contributed equally

Corresponding Author:
Kyoung-Bok Min, PhD
Department of Preventive Medicine
College of Medicine
Seoul National University
103 Daehak-ro, Jongno-gu
Seoul, 03080
Republic of Korea
Phone: 82 1036954330
Email: minkb@snu.ac.kr

Abstract

Background: Functional limitations and disabilities have been associated with a decrease in cognitive function due to increasing
age. Gait performance and cognitive function have been associated with gait variability in executive function, the phase domain
in memory, and gait abnormalities in cognitive decline.

Objective: Our study aimed to investigate whether gait harmony was associated with cognitive function in the older adult
population. Moreover, we aimed to investigate whether gait harmony was associated with cognitive function and explore each
cognitive function in a specific harmonic state.

Methods: The study population included 510 adults aged ≥60 years who visited the Department of Neurology at the Veterans
Health Service Medical Center, Seoul, South Korea. Gait data were collected using a 3D motion capture device with a wireless
inertial measurement unit system. For cognitive function assessments, we used the Seoul Neuropsychological Screening Battery-Core
test, which evaluates the level of cognitive function or impairment in 5 cognitive domains.

Results: In general, the association between the Seoul Neuropsychological Screening Battery-Core tests and the stance-to-swing
ratio in the >1.63 ratio group yielded lower β coefficients than those in the 1.50-1.63 ratio group. After adjustment for confounders,
the odds ratio (OR) for the Digit Symbol Coding test (adjusted OR 0.42, 95% CI 0.20-0.88) and the Korean version of the Color
Word Stroop Test: 60 seconds (adjusted OR 0.51, 95% CI 0.29-0.89) for frontal and executive function were significantly lower
for the >1.63 ratio group than the reference group.

Conclusions: Our findings suggest that the gait phase ratio is a valuable indicator of walking deficits and may also be associated
with cognitive impairment in older adults.
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Introduction

The global population is rapidly aging, and the number of people
aged 65 years or older is expected to increase from 703 million
in 2019 to 1.5 billion in 2050 [1]. With the increasing older
adult population, age-related cognitive impairment has increased
and will become a public health problem unless prevention and
intervention are implemented [2]. The development of many
neurodegenerative disorders is usually a feature of the older
adult population in the context of aging [3], and age is known
as the primary risk factor for many diseases such as Alzheimer
disease (AD) and dementia [4,5]. Approximately 50 million
people have been diagnosed with dementia, which is one of the
leading causes of disability and mortality among aging adults
[6]. Moreover, dementia resulting from cognitive decline is an
irreversible process, and there are no effective treatments or
drugs for dementia [7]. Therefore, it is important to identify
factors that can delay the onset of cognitive impairment or
impact cognitive outcomes.

Human gait is complicated and divided into 5 primary modal
domains: rhythm, phase, variability, pace, and base of support
[8]. Safe and effective gaits are important markers throughout
life [9]. In older individuals, gait is used as a predictor of health
status [10], falls, activities of daily living [11,12], risk of
dementia [13], and even risk of early mortality [14]. Functional
limitations and disabilities have been associated with a decrease
in cognitive function due to increasing age [15]; motor
performance may be related to cognitive impairment and
dementia [16,17]. Furthermore, impairment of the motor system,
such as gait abnormalities, can lead to cognitive decline [16,17]
or early stages of dementia with aging [18]. Gait performance
and cognitive function have been associated with gait variability
in executive function [19], the phase domain in memory [20],
and gait abnormalities in cognitive decline [21]. An abnormal
gait, which increases the risk of dementia in older adults,
suggests low physical fitness in areas such as mobility [22] and
balance [23,24]. Therefore, gait cannot be simply explained as
an autonomic movement.

A principal issue is that older adults who demonstrate an
imbalance in gait are likely to be at a higher risk of cognitive
impairment [25]. Gait harmony, which indicates the proportion
of stance to swing in kinematic gait, is defined as the capacity
to transform the symmetrical human body into alternated,
synchronized, symmetric, and rhythmic movements [26].
Previous studies have shown that the proportion of stance to
swing is reduced during fast walking and increases under
pathological conditions such as Parkinson disease (PD) [27],
stroke [28], and spastic cerebral palsy [29]. A ratio from stance
to swing of 70% to 30% was found in patients with stroke [28],
and a longer stance phase increased gait stability [30]. It has
been suggested that a stance between 59% and 70% is a good
compromise between fast and stable walking by the harmonic
properties of the stance-to-swing ratio [30]. The harmonic ratio
property is founded not only in various disparate physical and
biological systems, including leaf disposition [31], nucleotide
frequencies [32], and cell [33], but also in human sciences, such
as body proportions [34] and aesthetic preferences [35].

However, there is a lack of evidence supporting the association
between gait harmony and cognitive function.

Therefore, the objective of this study was to investigate whether
gait harmony was associated with cognitive function in the older
adult population. In addition, we aimed to explore each cognitive
function in a specific harmonic state.

Methods

Setting and Study Design
A cross-sectional study was conducted at the Veterans Health
Service Medical Center, Seoul, South Korea. Individuals aged
≥60 years who visited the Department of Neurology between
March and December 2021 were recruited in this study. The
inclusion criteria were as follows: (1) those concerned about
cognitive decline, (2) those who could independently undergo
all the clinical tests and respond to questionnaires, and (3) those
who agreed to participate in this study. Individuals were
excluded based on the following criteria: (1) a diagnosis of
dementia (International Classification of Diseases, 10th
Revision, codes F00-F09 and G30); (2) diagnoses of brain
infarction, cerebral hemorrhage, or PD; and (3) a diagnosis of
another serious disease (eg, cancer or mental illness).
Experienced neurological clinicians evaluated the inclusion and
exclusion criteria.

The participants were subjected to a health survey consisting
of gait measurements, cognitive examinations, and
questionnaires. The survey was conducted at the Veterans
Medical Research Institute of the Veterans Health Service
Medical Center. A total of 575 individuals volunteered to
participate in this study and provided informed consent at
enrollment. Of these, 65 participants subsequently dropped out
of the study because they were younger than 60 years (n=5) or
had missing data on variables (ie, sex, education level, BMI,
gait measurements, and cognitive parameters; n=60). After these
exclusions, 510 people were eligible for this study.

Ethics Approval
Study protocols were approved by the Institutional Ethics
Review Board of the Veterans Health Service Medical Center
(BOHUN 2021-02-024 and BOHUN 2021-01-066). All
participants provided signed informed consent prior to study
enrollment.

Gait Analysis
Kinematic data of gait parameters were collected using the
NORAXON myoMOTION sensor, which is a 3D motion capture
device used with a wireless inertial measurement unit (IMU)
system. The IMU sensor plays a role in transmitting human
movement data directly to the myoMOTION receiver to
compute the angular changes of the selected body segments. In
a particular space, the 3D rotation angles of each sensor on
selected body segments were measured from the 3D
accelerometer, gyroscope, and magnetometer using fusion
algorithms; these angles are also known as orientation or
navigation angles. The sensor for angular orientation uses a
robust fusion algorithm combining the elemental sensor
component axes’ readings as quaternion element values. This
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technology mathematically combines and filters incoming source
signals at the sensor level and transmits the 4 quaternions of
each sensor. Then, using NORAXON’s software, the quaternion
data are automatically converted into anatomical angles using
a rigid body model with joint segments. NORAXON’s software
also records each sensor’s orientation angles and linear
acceleration. The system is intended to quantify angular changes
of the involved joint and can mathematically derive the x, y,
and z displacements in space from linear acceleration data and
inverse kinematics modeling. Using this process, the algorithm
uses a gyroscope and acceleration data from body-mounted
sensors to identify the stance and swing phases in the gait cycle
through the signal recorded at a sampling rate of 100-200 Hz.
The recoded IMU data were added, filtered, and processed using
the myoMOTION software to quantify angular changes in the
joints, and the output was exported to Microsoft Excel files
[36-38].

For this study, 7 IMU sensors were attached to the participants’
feet, frontal tibia bones, quadriceps, and the sacrum on the left
and right sides symmetrically (ie, 2 on the feet, 2 on the frontal
tibia bones, 2 on the quadriceps, and 1 on the sacrum,
respectively). Calibration was performed using an upright
posture to determine the value of the 0° angle in the joints. The
participants were instructed to walk at their usual pace for the
measured distance (10 m), and walking start or stop points for
the measured distance were marked on the floor. The
participants started walking at the start signal and stopped
walking by themselves at the stop point. However, owing to an
acceleration and deceleration phase during the 10-m gait test,
the first and last steps were removed.

The data transmitted to the myoMOTION software comprised
the kinematic parameters of gait variables including the
automatically processed average signals for each stance and
swing phase. The stance-to-swing ratio was calculated using
the average signal values of the stance and swing phases (stance
phase [%] / swing phase [%]) [30]. The total gait cycle
comprises the stance and swing phases. The literature suggests
that during stable human walking, with the total gait cycle set
to 100%, the stance phase comprises 60% to 62% and the swing
phase comprises 40% to 38%, equating to a ratio of 1.50-1.63
[39-41]. These values were then used to determine the harmonic
gait group in this study. Therefore, gait ratios were stratified
into 3 groups (<1.50, 1.50-1.63, or >1.63). The harmonic group
included individuals in the 1.50-1.63 ratio range, whereas the
nonharmonic group included those with the other ratios (<1.50
and >1.63).

Cognition Evaluation
Participants performed a brief version of the Seoul
Neuropsychological Screening Battery, named the Seoul
Neuropsychological Screening Battery-Core (SNSB-C), which

evaluates the level of cognitive function or impairment in the
following 5 cognitive domains: attention, language and related
functions, visuospatial functions, memory, and frontal and
executive functions [42]. SNSB-C is made up of 14 subtests,
including the Digit Span Test, a short version of the
Korean-Boston Naming Test (S-K-BNT), Rey Complex Figure
Test (RCFT), Seoul Verbal Learning Test: Delayed Recall
(SVLT: DR), the Korean version of Color Word Stroop Test:
60 seconds (K-CWST: 60sec), Controlled Oral Word
Association Test (COWAT), Trail Making Test-Elderly: Part
B (TMT-E: B), and Digit Symbol Coding [43]. Each SNSB-C
score is expressed as standardized percentile, stratified for age,
sex, and education.

Other Variables
The questionnaire information included age (≥60 years) and
sex (male or female). Health behavior variables included
smoking status (current, former, or never), alcohol consumption
(drinker or nondrinker), vigorous exercises (yes or no), and
BMI. BMI was calculated by dividing the individual’s weight

(kg) by height squared (m2).

Statistical Analyses
Statistical differences between the characteristics of the study
population were analyzed according to the stance-to-swing ratio
(<1.50, 1.50-1.63, or >1.63 ratio group) using the proportion of
physiologically comfortable human gait [30,40,41,44,45]. In
the analysis, cognitive function and gait ratio were used as the
dependent and independent variables, respectively. For each
variable, the chi-square test and 2-tailed t test were performed
for each group of participants. Linear regression analysis was
used to evaluate the association between cognitive function tests
and the stance-to-swing ratio in each group of gait phase ratio
and to provide β coefficients and SEs. The logistic regression
model provided odds ratios (ORs) and 95% CIs for each
cognitive function test percentiles as the stance-to-swing ratio
increased or decreased. The 1.50-1.63 ratio group was used as
the reference. Regression models were adjusted for age, sex,
education level, smoking status, alcohol consumption, vigorous
exercises, and BMI. All statistical analyses were performed
with SAS (version 9.4; SAS Institute), and the statistical
significance was established at α=.05.

Results

Participant Characteristics
Table 1 summarizes the characteristics of the study population
according to the 3 stance-to-swing ratio groups. A total of 510
participants with a mean age of 74.1 (SD 5.6) years were
included in the study. Of the participants, 34 (6.7%) were in the
<1.50 ratio group, 122 (23.9%) were in the 1.50-1.63 ratio
group, and 354 (69.4%) were in the >1.63 ratio group.
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Table 1. Characteristics of the study population according to the 3 stance-to-swing ratio groups.

P valuebStance-to-swing ratio groupaTotal population
(n=510)

Characteristic

>1.631.50-1.63<1.50

354 (69.4)122 (23.9)34 (6.7)510 (100)Participant, n (%)

.56c74.3 (5.8)73.7 (5.0)74.1 (5.2)74.1 (5.6)Age (year), mean (SD)

.57dSex, n (%)

185 (68)70 (25.7)17 (6.3)272 (53.3)Male

169 (71)52 (21.9)17 (7.1)238 (46.7)Female

.06dEducation, n (%)

195 (75.3)51 (19.7)13 (5)259 (50.8)Less than high school

75 (63.6)34 (28.8)9 (7.6)118 (23.1)High school

84 (63.2)37 (27.8)12 (9)133 (26.1)College or more

.66dSmoking status, n (%)

133 (67.9)51 (26)12 (6.1)196 (38.4)Current or former smoker

221 (70.4)71 (22.6)22 (7)314 (61.6)Never smoker

.12dAlcohol drinking, n (%)

207 (67.2)83 (27)18 (5.8)308 (60.4)Drinker

147 (72.8)39 (19.3)16 (7.9)202 (39.6)Nondrinker

.045dVigorous intensity exercises for a week, n (%)

63 (62.4)26 (25.7)12 (11.9)101 (19.8)Yes

291 (71.2)96 (23.5)22 (5.4)409 (80.2)No

<.00125.4 (3.2)23.9 (2.9)24.1 (2.5)24.9 (3.2)BMI (kg/m2), mean (SD)

Gait phase (%), mean (SD)

<.001c64.0 (1.6)61.2 (0.5)59.0 (1.2)63.0 (2.1)Stance

<.001c36.0 (1.6)38.8 (0.5)41.0 (1.2)37.0 (2.1)Swing

<.001c1.8 (0.1)1.6 (0.03)1.4 (1.2)1.7 (0.2)Stance-to-swing

aThe denominators of the percentages in these columns correspond to the n values in the “Total population” column of the same row.
bThe P values are based on chi-square test for categorical variables and one-way ANOVA for numerical variables in the stance-to-swing ratio groups.
cANOVA.
dChi-square test.

Cognitive Performance and Gait Balance
Table 2 shows the mean (SE) of each SNSB-C test (percentile)
data according to the stance-to-swing ratios. The Digit Symbol
Coding (56.31 vs 61.65 vs 52.88; P=.02), TMT-E: B (61.77 vs

57.76 vs 51.49; P=.02), and K-CWST: 60sec (45.67 vs 48.72
vs 40.87; P=.03) tests for frontal and executive functions showed
statistically significant differences among the stance-to-swing
ratio groups. However, there were no differences in the other
cognitive functions.
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Table 2. Mean (SE) of each Seoul Neuropsychological Screening Battery-Core (SNSB-C) test (percentile) according to the stance-to-swing ratio
groups.

P valueaStance-to-swing ratio group, mean (SE)Function and test

>1.631.50-1.63<1.50

Attention

.1143.71 (1.54)50.22 (2.83)44.25 (4.88)Digit Span Test

Visuospatial

.1955.98 (1.53)55.97 (2.44)65.16 (4.37)RCFTb: copy

Language

.2053.35 (1.47)58.57 (2.59)53.41 (5.11)S-K-BNTc

Memory

.4436.77 (1.63)32.95 (2.78)38.64 (5.58)SVLT: DRd

Frontal and executive

.0252.88 (1.61)61.65 (2.46)56.31 (4.97)Digit Symbol Coding

.1641.96 (1.50)46.45 (2.61)49.21 (4.88)COWATe: animal + ㄱ

.0251.49 (1.49)57.76 (2.52)61.77 (3.27)TMT-E: Bf

.0340.87 (1.56)48.72 (2.64)45.67 (4.92)K-CWST: 60secg

aThe P values are based on one-way ANOVA for numerical variables in the stance-to-swing ratio groups.
bRCFT: Rey Complex Figure Test.
cS-K-BNT: short version of the Korean-Boston Naming Test.
dSVLT: DR: Seoul Verbal Learning Test: Delayed Recall.
eCOWAT: Controlled Oral Word Association Test.
fTMT-E: B: Trail Making Test-Elderly: Part B.
gK-CWST: 60sec: the Korean version of Color Word Stroop Test: 60 seconds.

Association Between Cognitive Performance and Gait
Balance
Table 3 shows the estimated β coefficients (SE) of each SNSB-C
test based on the stance-to-swing ratio groups. In the Digit Span
Test for attention functions, a significant association was
observed in the >1.63 ratio group (β=–6.514, SE 3.098; P=.04)
before adjustment. The unadjusted β coefficients were
significant in the >1.63 ratio group for the Digit Symbol Coding
(β=–8.773, SE 3.098; P=.005), TMT-E: B (β=–6.269, SE 2.890;
P=.03), and K-CWST: 60sec (β=–7.855, SE 3.075; P=.01) tests
for frontal and executive functions. In the fully adjusted model,

a significant β coefficient was observed in the >1.63 ratio group
for the S-K-BNT for language function (β=–6.573, SE 2.813;
P=.02). Compared with the reference, there were significant β
coefficients in the >1.63 ratio group for the Digit Symbol Coding
(β=–7.991, SE 3.028; P=.009) and K-CWST: 60sec (β=–8.083,
SE 3.076; P=.009) tests for frontal and executive functions. In
general, the association between the SNSB-C test data and the
stance-to-swing ratio in the >1.63 ratio group yielded lower β
coefficients than those in the 1.50-1.63 ratio group. Most β
coefficients showed a decreasing relationship for the SNSB-C
test data and the stance-to-swing ratio, whereas there were no
significant associations in the <1.50 ratio group (all P>.05).
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Table 3. The estimated β coefficient (SE) of each Seoul Neuropsychological Screening Battery-Core (SNSB-C) test based on the stance-to-swing ratio
groups.

Adjusteda model (stance-to-swing ratio group)Unadjusted model (stance-to-swing ratio group)Function and test

>1.631.50-
1.63

<1.50>1.631.50-
1.63

<1.50

P valueValue, β (SE)P valueValue, β (SE)P valueValue, β (SE)P valueValue, β (SE)

Attention

.19–4.141 (3.184)Ref.34–5.474 (5.739).04–6.514 (3.098)Refb.30–5.967 (5.723)Digit Span Test

Visuospatial

.750.981 (3.029)Ref.108.913 (5.460)>.990.014 (2.956)Ref.099.193 (5.461)RCFTc: copy

Language

.02–6.573 (2.813)Ref.49–3.471 (5.071).08–5.215 (2.947)Ref.34–5.160 (5.444)S-K-BNTd

Memory

.273.479 (3.175)Ref.325.696 (5.724).243.817 (3.237)Ref.345.691 (5.979)SVLT: DRe

Frontal and executive

.009–7.991 (3.028)Ref.45–4.092 (5.458).005–8.773 (3.089)Ref.35–5.344 (5.706)Digit Symbol
Coding

.09–5.175 (3.072)Ref.602.904 (5.538).13–4.486 (2.985)Ref.622.766 (5.514)COWATf: animal
+ ㄱ

.08–5.206 (2.934)Ref.295.552 (5.290).03–6.269 (2.890)Ref.454.016 (5.338)TMT-E: Bg

0=.009–8.083 (3.076)Ref.68–2.318 (5.545).01–7.855 (3.075)Ref.59–3.049 (5.680)K-CWST: 60sech

aThis result was adjusted for age, sex, education, smoking status, alcohol consumption, vigorous exercises, and BMI.
bRef: reference.
cRCFT: Rey Complex Figure Test.
dS-K-BNT: short version of the Korean-Boston Naming Test.
eSVLT: DR: Seoul Verbal Learning Test: Delayed Recall.
fCOWAT: Controlled Oral Word Association Test.
gTMT-E: B: Trail Making Test-Elderly: Part B.
hK-CWST: 60sec: the Korean version of Color Word Stroop Test: 60seconds.

Figure 1 presents the distributions between SNSB-C tests and
stance-to-swing ratio groups using box and scatter plots. Overall,
the study participants in the >1.63 gait ratio group were
distributed across all the percentiles for each SNSB-C test.

The adjusted OR (95% CI) for each SNSB-C test according to
the stance-to-swing ratio group is shown in Figure 2. After
adjustment for age, sex, education, smoking status, alcohol

consumption, vigorous exercises, and BMI, the adjusted OR
for the Digit Symbol Coding (adjusted OR 0.42, 95% CI
0.20-0.88) and K-CWST: 60sec (adjusted OR 0.51, 95% CI
0.29-0.89) tests for frontal and executive function was
significantly lower for the >1.63 ratio group than for the
reference group (the 1.50-1.63 stance-to-swing ratio group).
However, most cognitive function tests showed no differences
according to the stance-to-swing ratio group.
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Figure 1. The box and scatter plots of the gait ratio groups for each SNSB-C test. The red box and scatter plots represent the <1.50 ratio group, the
green box and scatter plots represent the 1.50-1.63 ratio group, and the blue box and scatter plots represent the >1.63 ratio group. The red dots are the
mean of each SNSB-C test percentile according to each gait ratio group: (A) Digit Span Test, (B) RCFT: copy, (C) S-K-BNT, (D) SVLT: DR, (E) Digit
Symbol Xoding, (F) COWAT: animal + ㄱ, (G) TMT-E: B, and (H) K-CWST: 60 sec. COWAT: Controlled Oral Word Association Test; K-CWST:
60sec: the Korean version of Color Word Stroop Test: 60 seconds; RCFT: Rey Complex Figure Test; S-K-BNT: short version of the Korean-Boston
Naming Test; SNSB-C: Seoul Neuropsychological Screening Battery-Core; SVLT: DR: Seoul Verbal Learning Test: Delayed Recall; and TMT-E: B:
Trail Making Test-Elderly: Part B.
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Figure 2. Adjusted odds ratio (OR; 95% CI) of each Seoul Neuropsychological Screening Battery-Core (SNSB-C) test according to the stance-to-swing
ratio group. Adjusted for age, sex, education, smoking status, alcohol consumption, vigorous exercises, and BMI. *P<.001. COWAT: Controlled Oral
Word Association Test; K-CWST: 60sec: the Korean version of Color Word Stroop Test: 60seconds; RCFT: Rey Complex Figure Test; S-K-BNT:
short version of the Korean-Boston Naming Test; SVLT: DR: Seoul Verbal Learning Test: Delayed Recall; TMT-E: B: Trail Making Test-Elderly: Part
B.

Discussion

Principal Findings
This study investigated the association between cognitive
function and gait harmony in older Korean adults. We found a
significantly higher cognitive performance percentile in frontal
and executive functions among participants in the harmonic
stance-to-swing ratio group. Compared with participants that
exhibited a harmonic gait ratio, the cognitive assessment
percentile decreased in those who showed the nonharmonic gait
ratio, especially for visuospatial, frontal, and executive
functions. Specifically, the relationship between the Digit
Symbol Coding and K-CWST: 60sec test data on frontal and
executive functions and the gait phase ratio remained significant
after controlling for covariates. This information supports our
understanding that cognitive function is interrelated with gait
harmony in the older adult population.

Comparison With Prior Work and Clinical
Implications
Our findings on gait balance and cognitive function were
partially consistent with the results of previous studies.
According to a recent cross-sectional study by Noh et al [21]
of 735 community-based individuals (aged 65-89 years),
cognitive function was associated with the stance phase at a
slower walking speed (β=0.088; P=.02). Based on a previous
study in Italy on people with and without PD, alterations in gait
ratio were expected; Peppe et al [27] suggested that compared
with healthy participants, patients with PD have prolonged
stance phases (patients with PD: 68.1% vs patients without PD:
63.6%; P<.001) [27]. Another study in 31 patients older than
55 years in China [46] investigated the relationship between
gait characteristics and dementia, such as poststroke dementia
(PSD) and AD. Ni et al [46] showed that in all gait tests, the
percentage of time spent in the stance phase was longer (patients

with PSD: 63.95% vs patients with AD: 63.09% vs healthy
adults: 62.15%; P=.002) and in the swing phase was shorter
(patients with PSD: 36.04% vs patients with AD: 36.91% vs
healthy adults: 37.86%; P=.002) among patients with dementia
than among healthy controls. Taken together, these studies
highlight that older individuals with gait imbalance are relatively
susceptible to a decrease in cognitive function.

The mechanism underlying the relationship between proper gait
proportion and cognition remains unclear. One possible
explanation is that a well-balanced gait is related not only to
the motor system, such as muscle strength, but also to cognition,
such as memory, attention, executive function, and visuospatial
capacity [47,48]. Attention and executive functions are
significantly associated with gait speed in older adults with and
without cognitive decline [49]. Poor attention and executive
processing in the brain are correlated with white matter
hyperintensity, which negatively affects gait pace, spatiality,
and variability [50]. The variability of gait is related to the stance
and swing phases, and the double support phase is more variable
in the presence of poor balance. In memory and spatial
functions, beyond the primary role of the hippocampus and
parahippocampal gyrus, the induction of memory by
hippocampal atrophy also influences rhythm, variability, and
human balance control [51-53]. Gait reflects the health of
individuals in compensating for changes in postural balance
and is controlled by well-balanced neural circuits and specific
brain structures, including the frontal lobes, basal ganglia,
cerebellum, and sensory and motor systems [48,54,55].
Generally, during walking, the complexity of controlling
redundant degrees of freedom of bilateral multijoint limbs is
reduced by the nervous system [56]. Human gait is structured
for specific phases of the gait leg movements [57] that can lead
to the maintenance of the basic walking rhythm, which generates
alternating activity of the flexor and extensor motoneurons [58].
Simple alternation of flexor and extensor activity is converted
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into more complex and adaptable walking patterns by
hippocampal neurons that receive serotonergic projections from
the median raphe nuclei. The projections of serotonergic neurons
of the brain stem that innervate the spinal cord stepping
generator play a role in activating and influencing the walking
rhythm [59]. A decrease in serotonin levels in cerebrospinal
fluid and severe gait and posture disorders have been observed
in patients with PD [60]. Hence, the stance-to-swing ratios under
pathological conditions may be far from the value of the
harmonic proportion value.

Strengths and Limitations
To our knowledge, this study demonstrated an association
between gait harmony and cognitive function, which has not
been reported previously. Additionally, a strength of this study
is the use of noninvasive measurement as an index for predicting
decreased cognitive function. Moreover, we showed association
between gait and cognitive performance using the SNSB-C
tests, which includes 5 cognitive functions (ie, attention,
visuospatial, language, memory, and frontal and executive).
However, the study had some limitations. First, as this was a
cross-sectional study, it is difficult to confirm the causal
relationship between gait harmony and cognitive function.
Therefore, we cannot indicate trends or changes from normal
cognitive function to cognitive dysfunction. Second, the study
was not free from bias due to self-reported data. As this study
was based on an observational investigation, the questions asked

to collect data may concern private or sensitive topics, such as
education level, smoking status, and alcohol consumption. Thus,
self-reporting data can be affected by social desirability.
Moreover, we cannot rule out that some variables affecting
cognition, such as dietary intake, medication, and occupation,
were not analyzed in the statistical model. These unmeasured
variables may be residual confounders.

Conclusions
Dementia is one of the most important health issues associated
with aging. However, the diagnosis of dementia is expensive
and involves complex measurements. Gait, on the other hand,
can be measured noninvasively, comparatively conveniently,
and rapidly. Therefore, this study can be important for public
health management, in that gait performance assessment can
be used to screen for potential cognitive impairment.

Our study found that low cognitive function was related to a
nonharmonic gait ratio in participants aged 60 years or older in
South Korea. In contrast, harmonic gait ratio was associated
with good cognitive performance. These findings suggest that
the gait ratio may be a valuable indicator of cognitive
impairment. The presence of a nonharmonic gait ratio that is
different from the general gait ratio may be an indirect marker
of cognitive decline, independent of confounding factors in the
older adult population. However, more research is required to
replicate our results and establish possible mechanisms of a
relationship between proper gait ratio and cognitive function.
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