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Abstract

Background: Fatal drug overdose surveillance informs prevention but is often delayed because of autopsy report processing
and death certificate coding. Autopsy reports contain narrative text describing scene evidence and medical history (similar to
preliminary death scene investigation reports) and may serve as early data sources for identifying fatal drug overdoses. To facilitate
timely fatal overdose reporting, natural language processing was applied to narrative texts from autopsies.

Objective: This study aimed to develop a natural language processing–based model that predicts the likelihood that an autopsy
report narrative describes an accidental or undetermined fatal drug overdose.

Methods: Autopsy reports of all manners of death (2019-2021) were obtained from the Tennessee Office of the State Chief
Medical Examiner. The text was extracted from autopsy reports (PDFs) using optical character recognition. Three common
narrative text sections were identified, concatenated, and preprocessed (bag-of-words) using term frequency–inverse document
frequency scoring. Logistic regression, support vector machine (SVM), random forest, and gradient boosted tree classifiers were
developed and validated. Models were trained and calibrated using autopsies from 2019 to 2020 and tested using those from
2021. Model discrimination was evaluated using the area under the receiver operating characteristic, precision, recall, F1-score,
and F2-score (prioritizes recall over precision). Calibration was performed using logistic regression (Platt scaling) and evaluated
using the Spiegelhalter z test. Shapley additive explanations values were generated for models compatible with this method. In
a post hoc subgroup analysis of the random forest classifier, model discrimination was evaluated by forensic center, race, age,
sex, and education level.

Results: A total of 17,342 autopsies (n=5934, 34.22% cases) were used for model development and validation. The training set
included 10,215 autopsies (n=3342, 32.72% cases), the calibration set included 538 autopsies (n=183, 34.01% cases), and the
test set included 6589 autopsies (n=2409, 36.56% cases). The vocabulary set contained 4002 terms. All models showed excellent
performance (area under the receiver operating characteristic ≥0.95, precision ≥0.94, recall ≥0.92, F1-score ≥0.94, and F2-score
≥0.92). The SVM and random forest classifiers achieved the highest F2-scores (0.948 and 0.947, respectively). The logistic
regression and random forest were calibrated (P=.95 and P=.85, respectively), whereas the SVM and gradient boosted tree
classifiers were miscalibrated (P=.03 and P<.001, respectively). “Fentanyl” and “accident” had the highest Shapley additive
explanations values. Post hoc subgroup analyses revealed lower F2-scores for autopsies from forensic centers D and E. Lower
F2-score were observed for the American Indian, Asian, ≤14 years, and ≥65 years subgroups, but larger sample sizes are needed
to validate these findings.
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Conclusions: The random forest classifier may be suitable for identifying potential accidental and undetermined fatal overdose
autopsies. Further validation studies should be conducted to ensure early detection of accidental and undetermined fatal drug
overdoses across all subgroups.

(JMIR Public Health Surveill 2023;9:e45246) doi: 10.2196/45246
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Introduction

Background
In recent years, incidences of fatal drug overdose have surged
in the United States. During the COVID-19 pandemic, the per
capita monthly overdose death rate increased by 60% in May
2020 compared with May 2019 [1]. At the state level, Tennessee
recorded an increase of 98% from May 2019 to May 2020 and
was surpassed by only West Virginia and Kentucky. Since the
pandemic, the rate of increase in fatal overdoses has slowed;
however, fatal drug overdoses remain a public health concern
with a substantial economic burden [2,3]. Provisional national
data estimated that 107,622 drug overdose deaths occurred in
2021, an increase of 15% from 2020 [2]. Meanwhile, Tennessee
has continued to surpass national trends, recording 3814
overdose deaths in 2021, a 26% increase from 2020 [4]. This
stark increase in overdose deaths calls for improved surveillance,
intervention, and prevention work to confront the overdose
crisis at the state level.

Fatal drug overdose surveillance provides critical information
for prevention and intervention. Specifically, surveillance helps
identify where fatal overdoses occur, what substances were
involved, and whether those trends have changed over time, all
of which help make response efforts more targeted and relevant
[5]. Data timeliness enables more effective and immediate
intervention. The Tennessee Department of Health (TDH)
currently conducts fatal drug overdose surveillance through the
State Unintentional Drug Overdose Reporting System
(SUDORS). SUDORS captures the details associated with
accidental and undetermined fatal overdoses using death
certificates, death scene investigations, autopsies, toxicology
reports, and prescription drug monitoring program data.
SUDORS is nested within the National Violent Death Reporting
System and is funded by the Overdose Data to Action grant
from the Centers for Disease Control and Prevention [6].

Although SUDORS provides a wealth of knowledge pertaining
to fatal drug overdoses, a delay of 6 months occurs from the
time of death to data collection. The delay is needed for death
certificate coding to be completed and autopsy reports to become
available for abstraction [7,8]. Notably, recent efforts to facilitate
rapid fatal drug overdose surveillance have leveraged natural
language processing (NLP). Several studies have explored the
application of NLP to social media data for more timely fatal
drug overdose surveillance [9-11]. Although potentially
available closer to real time, social media data are subject to
other challenges such as selection bias (social media users vs
nonusers), user privacy settings limiting access to posts, and
observer effects altering user behaviors [12]. Other studies have

applied NLP to more traditional data sources for surveillance.
Using death certificates, some surveillance teams have identified
drug overdose deaths from cause of death fields available before
the final cause of death coding [13-15]. Other teams have used
text from verbal autopsies, which describe interviews with
witnesses or relatives, as opposed to forensic autopsies, which
detail findings from extensive physical examinations and
toxicology tests [16,17]. Text from forensic autopsy reports has
been used for the automatic classification of causes of death
unrelated to drug overdoses [18]. However, to the best of our
knowledge, no studies have leveraged free text in forensic
autopsy reports to specifically predict fatal overdoses. Autopsy
narrative text is similar to scene evidence descriptions in
medicolegal documents, which are available sooner than
autopsies.

Objectives
Faster identification of fatal overdoses can facilitate timely
prevention and response efforts. In partnership with a research
team in Biomedical Informatics at Vanderbilt University
Medical Center (VUMC), the TDH sought to use NLP to
identify fatal drug overdose deaths using narrative text from
forensic autopsy reports.

Methods

Tennessee Fatal Drug Overdose Data Abstraction
Process
TDH operates within a decentralized medicolegal death
investigation system. Each of the 95 counties reports to 1 of the
5 forensic centers, which send reports to the Tennessee Office
of the State Chief Medical Examiner (OSCME). The OSCME
manages a repository of autopsy reports from all the forensic
centers. Using the International Classification of Diseases, Tenth
Revision (ICD-10) codes and keywords in death certificates,
the SUDORS team identifies potential fatal overdoses. The
SUDORS team obtains access to relevant autopsy reports and
manually reviews each report to abstract variables into a
REDCap (Research Electronic Data Capture) database (hereafter
referred to as the SUDORS database) [19,20]. The SUDORS
database contains information such as basic demographics,
location of death, cause of death, and death scene information.
As part of routine work at the TDH, at least 2 SUDORS
abstractors review each case to ensure accurate coding.

Data Sources
NLP models were developed using text from forensic autopsy
reports describing all manners of death from 2019 to 2021.
Autopsies included all fatal overdose deaths identified by the
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SUDORS team (cases) and the remaining other-cause deaths
(controls) in the OSCME repository from 2019 to 2021, as of
August 31, 2022. Autopsies were in semistructured forms
containing common headings (detailed below) and
computer-entered text. Autopsies were received as faxes or
scans (PDFs) and processed using Adobe Acrobat Pro optical
character recognition (OCR; Adobe). The outcome of interest
was whether a given autopsy described an accidental or
undetermined (ie, could not be definitively declared as
accidental) fatal drug overdose, as indicated by the SUDORS
team in the SUDORS database.

Narrative sections were defined as free-text portions of the
autopsy that included the death scene information and medical
history. These sections were commonly preceded by headings
such as “summary of case,” “summary and interpretation,”
“summary and opinion,” and “narrative summary.” The
SUDORS team deemed these narrative sections to be the most
informative parts of the autopsy report for determining the cause
of death. Other data elements in the autopsy report varied
substantially in quality (scanned toxicology results from
different laboratories) or contained information that was
interpreted and summarized in narrative sections (internal
examination findings, external examination findings, and
toxicology results). As such, this approach was limited to
narrative sections to improve generalizability to other data
sources in the future, such as medical examiner scene
investigation notes, which are similar in content to the autopsy
narrative text. This study was conducted before medical
examiner notes were made available to the SUDORS team.

Preprocessing of Narrative Text
Autopsy PDFs were converted to a binary format and parsed
page by page into text. Symbols that were likely artifacts of the
OCR process (as determined by a manual review) were removed
using regular expressions. The autopsy report templates were

semistructured and unique to each forensic center. Template
text patterns were identified by manual review and used to
extract the forensic center issuing the autopsy, as well as relevant
narrative sections. Autopsies for which a forensic center could
not be identified using this templated language were removed
from the data set.

To facilitate the comparison of information across report
formats, narrative text was divided into three sections based on
location within the autopsy report: (1) an initial narrative
(beginning of report), (2) a case summary (middle of report and
after internal and external examination findings), and (3) a
summary of circumstances (end of report). Narrative sections
within the same autopsy report were concatenated such that
each report had only one combined narrative section.

The autopsy narrative text was extracted and preprocessed
according to the steps outlined in Figure 1. A set of rules were
developed using patterns found by manual review and enacted
to remove additional artifacts resulting from the OCR process
while ensuring the detection of drug names containing hyphens
(eg, “4-ANPP” or 4-anilino-N-phenethylpiperidine) as one word
rather than separate words (“4” and “ANPP”). Generalized
regular expressions were used to identify potential references
to drugs to account for novel drug combinations and varying
OCR qualities. Words containing a number, hyphen, and letter
were identified as potential drugs and combined (“4ANPP”).
An exception to this rule was if the string contained “old” or
“year,” in which case the string likely referred to age rather than
a drug (“35-year-old”). The numbers were removed if they were
detected in words that were not identified as potential drug
names. Punctuation and stop words (with the exception of
“none” and “nowhere”) were removed, and terms were
lemmatized. Reports with fewer than 100 characters were likely
not sufficiently processed via OCR and were thus removed from
the data set.

Figure 1. Autopsy narrative text extraction (orange) and preprocessing (blue) steps. *Regular expression patterns determined by manual review with
input from SUDORS team. **Words with a number, hyphen, and letter were combined (eg, “4-ANPP” or 4-anilino-N-phenethylpiperidine converted
to “4ANPP”). An exception was if the string contained “old” or “year” (eg, “35-year-old”). OCR: optical character recognition; SUDORS: State
Unintentional Drug Overdose Reporting System.
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Modeling Plan
Autopsies from 2019 to 2020 were used for training (95%) and
calibration (5%), and autopsies from 2021 were used for testing.
This allowed model development to occur while the SUDORS
team abstracted information from 2021 autopsies. Bag-of-words
models were developed using term frequency–inverse document
frequency scoring, which normalizes the word count in a given
document based on the prevalence of the word among all
documents, such that rarer words are given higher scores. Terms
appearing in fewer than 20 documents in the training set or with
fewer than 4 characters were excluded.

Logistic regression, support vector machine (SVM), random
forest, and gradient boosted tree classifiers were generated.
Hyperparameters for SVM, random forest, and gradient boosted
trees were tuned with 5-fold cross-validation.

Model Metrics
The area under the receiver operating characteristic (AUROC),
precision, recall, F1-score (equal weighting of precision and
recall), and F2-score (recall weighted heavier than precision)
were calculated for the corresponding hold-out data sets. Model
error was evaluated using 100 bootstrapped samples, and 95%
CIs were generated for each metric. Recall was identified as the
most important metric that ensured that all potential cases of
fatal overdoses would be reviewed by the surveillance team.
Therefore, the F2-score rather than F1-score was primarily used
to compare model performance.

The SVM, random forest, and gradient boosted tree classifiers
achieving the highest F2-scores were calibrated using Platt
scaling, which applies logistic regression to normalize the
predicted probabilities from the test set to the expected
distribution of probabilities, as determined by the calibration
set. The divergence between the predicted and expected
probabilities of fatal overdoses was evaluated using the
Spiegelhalter z test statistic. SHAP (Shapley additive
explanations) values were generated for the random forest and
gradient boosted tree classifiers [21].

Post Hoc Subgroup Analysis
The random forest classifier, which achieved the highest
F2-score and was calibrated, was used for post hoc subgroup
analyses that assessed model performance within the test data
set by forensic center, race, age at death, sex, and education
level. Individuals in these subgroups were suspected to have
varying levels of narrative text available for model prediction
[22]. This analysis was also completed using the logistic
regression model to ensure that the subgroup performances of
the parametric (logistic regression) and nonparametric (random
forest classifier) models were evaluated.

Subgroup information was extracted from the SUDORS database
and death certificates (for non-SUDORS deaths or controls). In
death certificates, race categories were mutually exclusive (ie,
a decedent could only be coded as 1 race), whereas in the

SUDORS database, more than 1 race could be indicated. To
harmonize these data, race was coded as American Indian,
Asian, Black, Other, Pacific Islander, or White. Individuals of
multiple races were recoded as the most prevalent race within
the population. For example, an individual coded as White
(prevalence=0.73) and American Indian (prevalence=0.001)
was recoded to White to reflect the more prevalent race in the
data set. Age at death was recoded into ranges used by the
National Center for Health Statistics: ≤14, 15-24, 25-34, 35-44,
45-54, 55-64, and ≥65 years [23]. The sex categories were
female, male, and unknown. Education level was coded as 8th
grade or less, 9th to 12th grade but no diploma, high school
graduate or General Educational Development test, college but
no degree, associate’s degree, bachelor’s degree, master’s
degree, doctorate or professional degree, or unknown. Within
each subgroup, AUROC, precision, recall, F2-score, cases,
controls, and median narrative text length were calculated.

Experimental Setup
This study was conducted in Python (version 3.9.7; Python
Software Foundation) and R (version 4.2.0; R Foundation for
Statistical Computing). Autopsy PDFs were converted to text
using the extract_text function in the Python pdfminer package
(version 20191125). Data preprocessing was performed using
the spaCy package (version 3.2.4) and the scispaCy (version
0.5.0) en_core_sci_sm NLP pipeline, which was pretrained on
biomedical data and had a vocabulary size of approximately
100K [24]. The models were constructed in Python using
scikit-learn (version 1.1.1) and xgboost (version 1.6.1). The
Spiegelhalter z test statistic was calculated using rms (version
6.3.0) in R, and the SHAP values were generated using SHAP
(version 0.41.0) in Python.

Ethical Considerations
This study was a quality improvement project found exempt by
the TDH institutional review board.

Results

Overview
An initial set of 17,521 autopsies was obtained for all manners
of death from 2019 to 2021. A subset of autopsies (179/17,521,
1%) was removed because of unsuccessful identification of a
specific forensic center or insufficient characters (<100
characters) after text preprocessing, including lemmatization.
The final data set contained 17,342 autopsies (5912 cases and
11,430 controls). The most common manners of death were
accidental among cases (5811/5912, 98%) and natural among
controls (3994/11,430, 35%; Multimedia Appendix 1). Forensic
centers were deidentified and denoted as A, B, C, D, and E.
Approximately half (8743/17,342, 50.42%) of the total autopsies
were obtained from the forensic center A (Table 1). The
proportion of fatal overdoses was the highest among autopsy
reports from the forensic center C (1229/3007, 40.87%).
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Table 1. Cases and controls by forensic center (columns), entire data set.

Total (N=17,342), n (%)Forensic center, n (%)

E (n=423)D (n=1452)C (n=3007)B (n=3717)A (n=8743)

5912 (34.09)156 (36.87)417 (28.72)1229 (40.87)1015 (27.3)3095 (35.39)Cases

11,430 (65.91)267 (63.12)1035 (71.28)1778 (59.13)2702 (72.69)5648 (65.6)Controls

Narrative Text Sections
Across forensic centers, narrative text sections remained similar
in content (each contained scene evidence and medical history)
but had varying levels of missingness (Table 2). Notably,

forensic centers A and B shared very similar formats, consisting
of an initial narrative and a case summary. Autopsies from
forensic centers C and D tended to have an initial narrative and
summary of circumstances. Autopsies from forensic center E
only presented a summary of circumstances.

Table 2. Sections of narrative text by forensic center in entire data set.

Total characters, median (IQR)Summary of circumstances, n (%)Case summary, n (%)Initial narrative, n (%)Forensic center

1287 (1053-1560)3 (0.03)8732 (99.87)8675 (99.22)A (n=8743)

1319 (1119-1566)0 (0)3687 (99.19)3717 (100)B (n=3717)

2852 (1855-4142)2238 (74.43)0 (0)3007 (100)C (n=3007)

1074 (666-1511)562 (38.71)0 (0)1452 (100)D (n=1452)

462 (273-617)423 (100)0 (0)0 (0)E (n=423)

Model Development
Of the 17,342 autopsies, a subset of 10,215 autopsies was used
for training (3342/10,215, 32.72% cases), 538 for calibration
(183/538, 34.01% cases), and 6589 for testing (2409/6589,
36.56% cases). A total of 4002 terms from the training data
comprised the vocabulary set for the bag-of-words models.

Model Validation
All models achieved AUROC≥0.95, precision≥0.94, recall≥0.92,
F1-score ≥0.94, and F2-score ≥0.92 (Table 3). The highest recall
and F2-scores were achieved using the SVM (recall=0.948, 95%
CI 0.937-0.959; F2-score =0.948, 95% CI 0.94-0.957) and

random forest (recall=0.942, 95% CI 0.933-0.954; F2-score
=0.947, 95% CI 0.939-0.956). The corresponding 95% CIs for
these metrics did not overlap with those for logistic regression,
suggesting that SVM and random forest achieved significantly
higher recall and F2-scores than logistic regression (P<.05). The
logistic regression and random forest were calibrated (P=.95
and P=.85, respectively). The SVM and gradient boosted tree
classifiers were miscalibrated (P=.03 and P<.001, respectively).

The SHAP value analysis indicated that “fentanyl,” “accident,”
“toxicity,” and “combined” were among the top features for the
random forest (Figure 2) and gradient boosted trees classifiers
(Multimedia Appendix 2). “Natural” was most strongly
associated with controls.

Table 3. Model discrimination and classification metrics across 100 bootstrapped samples.

P valuebF2-scorea, medi-
an (95% CI)

F1-score, median
(95% CI)

Recall, median
(95% CI)

Precision, median
(95% CI)

Area under the receiver
operating characteristic,
median (95% CI)

−0.057 (.95)0.928 (0.918-
0.935)

0.941 (0.933-
0.946)

0.92 (0.908-
0.928)

0.963 (0.954-
0.972)

0.95 (0.943-0.955)Logistic regression

2.17 (.03)0.948 (0.94-
0.957)

0.949 (0.942-
0.956)

0.948 (0.937-
0.959)

0.95 (0.936-
0.962)

0.96 (0.954-0.966)Support vector machine

−0.189 (.85)0.947 (0.939-
0.956)

0.954 (0.945-
0.96)

0.942 (0.933-
0.954)

0.964 (0.954-
0.973)

0.961 (0.955-0.967)Random forest

−6.79 (<.001)0.939 (0.926-
0.951)

0.943 (0.935-
0.953)

0.937 (0.92-
0.953)

0.949 (0.935-
0.964)

0.954 (0.946-0.962)Gradient boosted trees

aF2-score prioritizes maximizing recall over precision.
bSpiegelhalter z test statistic.
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Figure 2. Top 20 SHAP (Shapley additive explanations) values for the random forest classifier. 4ANPP: 4-anilino-N-phenethylpiperidine.

Subgroup Analysis
The subgroup analysis revealed similar results for the random
forest classifier (Table 4) and logistic regression model
(Multimedia Appendix 3), with a few exceptions. Across
forensic centers for both models, forensic centers A, B, and C
had the highest F2-scores, whereas forensic centers D and E
had the lowest F2-scores. Across race categories for random
forest, F2-score was highest for Pacific Islander (F2-score =1)
and lowest for American Indian (F2-score =0.833) and Asian
(F2-score =0.862). The logistic regression model achieved

similar metrics but performed better for the American Indian
race category (F2-score =1). Across age groups for the random
forest, F2-score was highest for age groups 15-24 years (F2-score
=0.973) and lowest for ≤14 years (F2-score =0.6) and ≥65 years
(F2-score =0.789). The same relative order of F2-scores was
preserved for logistic regression, but performance was
considerably worse for age group ≤14 years (F2-score =0.227).
Models performed similarly across sex and education levels.
Notably, several subgroups included fewer than 20 cases or
controls.
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Table 4. Random forest discrimination and classification metrics, cases, controls, and narrative section length for each subgroup in the test set (n=6589).

Length, median (IQR)Controls, n (%)Cases, n (%)F2-scoreRecallPrecisionArea under the receiver
operating characteristic

Subgroup

Forensic center

1256 (1040-1497)2038 (30.93)1192 (18.09)0.9730.9730.9710.978A

1344 (1137-1554)969 (14.71)471 (7.15)0.9660.9660.9660.975B

3621 (2462-6025)699 (10.61)510 (7.74)0.9510.9530.9460.956C

737 (512-1074)407 (6.18)195 (2.96)0.7980.7640.9680.876D

686 (590-794)67 (1.02)41 (0.62)0.7470.7070.9670.846E

Race

1224 (858-1593)<20 (<0.30)<20 (<0.30)0.8330.810.9American Indian

1361 (1178-1705)30 (0.46)<20 (<0.30)0.8620.83310.917Asiana

1299 (1092-1581)1173 (17.80)492 (7.47)0.9620.9610.9650.973Black

1254 (1031-1478)32 (0.49)47 (0.71)0.9830.97910.989Otherb

837 (612-1110)<20 (<0.30)<20 (<0.30)1111Pacific Islanderc

1339 (1027-1877)2936 (44.56)1858 (28.20)0.9460.9420.9630.959White

Age range (years)

1603 (1218-2279)246 (3.73)<20 (<0.30)0.60.60.60.796≤14

1183 (981-1523)492 (7.47)198 (3.01)0.9730.970.9850.98215-24

1279 (1039-1693)682 (10.35)692 (10.50)0.9610.9580.9710.96425-34

1362 (1087-1823)717 (10.88)805 (12.22)0.9570.9570.9570.95435-44

1344 (1064-1748)753 (11.43)458 (6.95)0.940.9340.9620.95645-54

1359 (1040-1761)679 (10.31)216 (3.28)0.9210.9070.980.95155-64

1355 (1020-1796)611 (9.27)35 (0.53)0.7890.7710.8710.882≥65

Sex

1381 (1081-1859)1164 (17.67)736 (11.17)0.9470.9430.9610.959Female

1307 (1039-1711)3016 (45.77)1673 (25.39)0.9510.9470.9650.964Male

Education

1485 (1153, 2156)330 (5.01)77 (1.17)0.9030.8960.9320.948th grade or less

1304 (1035-1709)691 (10.49)460 (6.98)0.9620.9630.9590.9689th-12th grade but no diploma

1314 (1031-1726)1808 (27.44)1232 (18.70)0.9480.9440.9670.961High school graduate or Gen-
eral Educational Development

1297 (1052-1664)591 (8.97)368 (5.59)0.9530.9480.9690.965Some college but no degree

1338 (1049-1745)209 (3.17)108 (1.64)0.9280.9260.9350.946Associate’s degree

1340 (1097-1700)309 (4.69)89 (1.35)0.9500.9440.9770.969Bachelor’s degree

1324 (1119-1849)85 (1.29)<20 (<0.30)1111Master’s degree

1369 (1037-2200)44 (0.67)<20 (<0.30)0.93810.750.989Doctorate or professional de-
gree

1507 (1207-2389)113 (1.71)56 (0.85)0.9420.92910.964Unknown

aAsian includes Asian Indian, Chinese, Filipino, Korean, Vietnamese, and Other Asian.
bOther includes Other Race and Unknown.
cPacific Islander includes Guamanian or Chamorro, Samoan, and Other Pacific Islander.
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Discussion

Principal Findings
Narrative text was used to construct bag-of-words models (term
frequency–inverse document frequency scoring) that predicted
whether a given autopsy described a fatal overdose. The
structure and details of the scene varied considerably across
autopsies. Despite this heterogeneity in autopsy data, the SVM,
random forest, and gradient boosted tree classifiers all showed
excellent performance. Both SVM and random forest achieved
the highest recall and F2-score, but only the random forest was
calibrated.

The terms most strongly associated with fatal overdoses in both
the random forest and gradient boosted tree models were aligned
with known state-level trends. From 2015 to 2019, the rate of
fatal drug overdoses involving fentanyl increased from 2.7 to
16.8 per 100,000 residents in Tennessee [25]. More than half
of fentanyl overdoses involved additional substances in 2019.
Unsurprisingly, “fentanyl,” “norfentanyl,” “4ANPP” (ie,
“4-ANPP” before text preprocessing; a precursor to illicit
fentanyl), and “combined” were among the top terms most
strongly associated with fatal overdose autopsies. Overdoses
have also been increasingly linked to methamphetamine and
heroin, both of which are highly predictive of fatal overdoses
[25]. This rise in fentanyl- and stimulant-related overdose deaths
has also been observed at the national level [23,26].

Forensic center subgroup analysis revealed lower model
discrimination on data from forensic centers D and E. These 2
forensic centers contributed the fewest autopsies. It is possible
that the models were not given ample opportunities to learn
from autopsies contributed by these 2 centers. Model
performance may improve with the oversampling of autopsies
from these 2 forensic centers. The subgroup analyses by race
and age indicated lower F2-scores for the American Indian and
Asian race groups as well as the ≤14 and ≥65 years age groups.
These race and age subgroup results differed slightly in the
logistic regression analysis, suggesting that the small sample
sizes for these subgroups and others warrant additional study.

Subgroup differences in model performance and narrative length
are worth additional study, particularly considering the findings
of Mezuk et al [22]. In their study, Mezuk et al [22] identified
shorter National Violent Death Reporting System narrative
lengths for suicide and undetermined deaths among individuals
who were male, were older, achieved lower education, and were
part of certain racial and ethnic minority groups, compared with
their counterparts. These findings suggest that models that use
narrative text may generate biased predictions for individuals
in certain subgroups. A similar detailed analysis is beyond the
scope of this study. Our data did not suggest a noticeable
difference in median narrative length across races. However,
an analysis of narrative length using the Wilcoxon rank-sum
test indicated a significant difference in narrative section length
between the Black and White race subgroups (P<.001;
Multimedia Appendix 4). These shorter sections did not appear
to affect model performance, but further studies are needed.

Previous studies have used more complex machine learning
methods, such as deep learning on autopsy text, to predict the
cause of death ICD-10 codes [14,15,27]. Although such models
may incorporate more information to perform generalized cause
of death prediction, our models were specific to fatal overdose
prediction. More specialized models may be better suited to
identify fatal overdoses when the evidence is less clear-cut. For
instance, drugs discovered at the death scene may not necessarily
be linked to the primary cause of death. Alternatively, a fatal
overdose may be the primary cause of death, but the death
certificate may only reflect a contributing comorbidity. Our
model performance metrics suggested that more advanced
machine learning methods were not needed for this prediction
task. As indicated by the relatively small size of the vocabulary
set in this study (4002 terms across 10,215 autopsies) and
subsequently verified by manual review, the language across
autopsy reports was fairly standardized and uniform. Perhaps
certain combinations of terms (eg, “fentanyl,” “accident,” and
“toxicity”) were highly predictive of fatal overdose. Another
study used NLP to predict fatal overdoses from free-text fields
in Kentucky death certificates [13]. Similar to our study,
bag-of-words–based machine learning models were used.
However, whereas Kentucky relied on death certificate fields
(as few as 2 words), our study used a different data source:
autopsy narrative text. These sections ranged from hundreds to
thousands of characters in length and provided additional
contextual information in the form of scene evidence and
medical history.

This work was completed in an academic-public partnership
between the TDH and VUMC, where the SUDORS team at the
TDH provided domain knowledge, and the Walsh Lab at VUMC
provided modeling expertise. The goal was to develop a model
that can be run and maintained by the SUDORS team. To this
end, a simple modeling pipeline has several advantages. Adobe
Acrobat Pro is easy to operate and does not require computer
programming skills. Therefore, the OCR process can remain
consistent, despite any changes in personnel that may occur.
Sections of narrative text were identified using keywords that
appeared as headings in autopsy reports. These rules can be
modified to ensure the continued extraction of the appropriate
autopsy sections, should autopsy templates change in the future.
The bag-of-words models were agnostic to word order and less
context dependent compared with more complex models such
as word2vec. The simplicity of the bag-of-words approach
translated into increased robustness to the variable quality of
text extracted using OCR. Together, these aspects of the
modeling pipeline facilitated the handoff of the code to the TDH
SUDORS team and may inform modeling practices in other
states.

Limitations
This study has several limitations. The OCR results depended
on the quality of the scanned autopsy reports. The OCR was
less accurate when the reports were scanned crooked (as reported
in the results, no more than 1% of all autopsies were removed
for this reason). Sometimes, spaces would be missed (eg,
“decedentwas” instead of “decedent was”), misspellings would
be introduced, or the OCR would add symbols (often <4
characters long). These tendencies informed the decision to
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exclude terms appearing in fewer than 20 documents or those
having fewer than 4 characters. Although the Adobe Acrobat
Pro OCR was sufficient for this study, careful manual reviews
should be conducted when applying this tool to different data
sources. In addition, the text was extracted using a simple
Python function that did not always maintain proper word order
when the text spanned multiple columns. As word order was
occasionally altered during the OCR text extraction process,
the tested models did not consider negation. Although
word-order–agnostic models were sufficient for the prediction
task presented in this study, more precise text extraction methods
may yield at least a modest improvement in recall. Other studies
may assess the importance of considering negation in autopsy
reports.

Fatal overdoses were identified by the TDH surveillance team
through an automated process that involved ICD-10 codes and
keyword searches of death certificates, followed by a manual
review. Although this process has been improved and tested
over the years, it depends on death certificate codes and cause
of death text, both of which may be delayed. The NLP-based
approach in this study has the potential to overcome this
limitation, as it relies on autopsy narrative text (a proxy for
medicolegal scene investigation documentation), which is often
available much sooner and can provide more contextual
information than death certificates. Furthermore, the Tennessee
medicolegal death investigation system is decentralized, thus
allowing a wide range of variability in the level of detail
included in the autopsy narratives. Despite this variation, the
content of the information conveyed remained consistent.
Finally, this study involved only data from one state health
department. Although the studied classifiers performed well,
data from other states may require additional preprocessing
steps and potentially model retraining.

Future Work
The absence of a standardized autopsy template for all forensic
centers added complexity to this prediction task and likely
contributes to the additional time spent by the surveillance team
in manually abstracting information. The recent adoption of the
Medicolegal Death Investigation Log for some jurisdictions
throughout the state is a step toward standardization, as this
platform offers a common set of data fields for users to
complete, in addition to a centralized location for documents
to be uploaded. The utility of Medicolegal Death Investigation
Log data in NLP models should be investigated in the future.

Efforts to standardize autopsy reports across forensic centers
could facilitate the development of NLP tools specifically
trained on text from autopsy reports. Such tools may identify
scene evidence and naloxone administration more accurately
than tools designed for electronic health record data, as
described by Harris et al [28]. In the future, more specialized

NLP tools could facilitate the automated extraction of public
health–related variables for more complex NLP tasks.

Systematic characterization of the differential coverage of
information related to scene evidence and medical history
conveyed in autopsies from each forensic center may be
worthwhile. This analysis may reveal factors contributing to
poorer model performance and inform the standardization of
statewide autopsy reports. As public health surveillance becomes
more automated, it is increasingly important to consider
variations conferred by nonstandardized documentation
practices.

Given the findings of Mezuk et al [22] related to narrative
lengths across different subgroups, future studies might seek to
understand such patterns using data from all-cause deaths.
Mezuk et al [22] also noted that missingness (ie, the presence
or absence of a medical examiner narrative or law enforcement
report) was associated with different social variables, such as
homeless status, education, race, and ethnicity. These findings
from Mezuk et al [22] are worth considering in future work
because of the potential downstream effects of predictive models
leveraging such biased data. In the case of public health
surveillance, the result may be underreporting of deaths in
certain groups, thus limiting intervention in communities that
may be the most in need. This is particularly important, given
the existing disparities exacerbated by the COVID-19 pandemic,
which contributed to disproportionately high increases in
overdose mortality rates among Black and American Indian or
Alaska Native individuals compared with White individuals
[29,30]. There is an urgent need to develop predictive models
that ensure the appropriate allocation of resources during
interventions.

Operationalizing the random forest classifier may facilitate rapid
fatal overdose reporting in the future. OCR was performed using
the batch processing option accessible through the Adobe
Acrobat Pro user interface. The random forest classifier should
be easy to scale to larger data sets and reduce overfitting by
leveraging ensemble learning methods. Swift reporting can aid
in the development of faster prevention and response activities
at the community level, which can help curtail the growing
number of fatal drug overdoses in Tennessee. Deploying this
model could enhance the capacity of TDH to conduct fatal drug
overdose surveillance.

Conclusions
Narrative text from Tennessee autopsy reports was used to
develop NLP models that predicted the likelihood that a given
autopsy described a fatal overdose. Simple bag-of-words–based
models were sufficient for identifying potential fatal overdoses
for public health surveillance. Additional studies are needed to
ensure that the random forest classifier facilitates timely fatal
overdose reporting for individuals across all subgroups.
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