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Abstract

Background: Seasonal influenza activity showed a sharp decline in activity at the beginning of the emergence of COVID-19.
Whether there is an epidemiological correlation between the dynamic of these 2 respiratory infectious diseases and their future
trends needs to be explored.

Objective: We aimed to assess the correlation between COVID-19 and influenza activity and estimate later epidemiological
trends.

Methods: We retrospectively described the dynamics of COVID-19 and influenza in 6 World Health Organization (WHO)
regions from January 2020 to March 2023 and used the long short-term memory machine learning model to learn potential patterns
in previously observed activity and predict trends for the following 16 weeks. Finally, we used Spearman correlation coefficients
to assess the past and future epidemiological correlation between these 2 respiratory infectious diseases.

Results: With the emergence of the original strain of SARS-CoV-2 and other variants, influenza activity stayed below 10% for
more than 1 year in the 6 WHO regions. Subsequently, it gradually rose as Delta activity dropped, but still peaked below Delta.
During the Omicron pandemic and the following period, the activity of each disease increased as the other decreased, alternating
in dominance more than once, with each alternation lasting for 3 to 4 months. Correlation analysis showed that COVID-19 and
influenza activity presented a predominantly negative correlation, with coefficients above –0.3 in WHO regions, especially during
the Omicron pandemic and the following estimated period. The diseases had a transient positive correlation in the European
region of the WHO and the Western Pacific region of the WHO when multiple dominant strains created a mixed pandemic.

Conclusions: Influenza activity and past seasonal epidemiological patterns were shaken by the COVID-19 pandemic. The
activity of these diseases was moderately or greater than moderately inversely correlated, and they suppressed and competed with
each other, showing a seesaw effect. In the postpandemic era, this seesaw trend may be more prominent, suggesting the possibility
of using one disease as an early warning signal for the other when making future estimates and conducting optimized annual
vaccine campaigns.

(JMIR Public Health Surveill 2023;9:e44970) doi: 10.2196/44970
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Introduction

Influenza was primarily characterized as a seasonal epidemic
before the COVID-19 pandemic. Stringent public health and
social interventions (PHSMs) were implemented in early 2020
to contain the spread of SARS-CoV-2, and influenza activity
also declined [1-3]. However, during the latest winter and spring,
influenza re-emerged and had a three-year-high level of activity
in China [4] and other countries [5] at the same time that there
was reduced virulence of Omicron and easing of PHSMs. Under
the same natural conditions and PHSMs in a region, there seems
to be a subtle relationship between these 2 respiratory infections.
For example, they have been found to cocirculate and to coinfect
people [6], but most study subjects have been COVID-19
patients [6,7]. General population-based epidemiological
patterns and regularities have not yet been fully explored.

Member countries of the World Health Organization (WHO)
regions update influenza activity data weekly in the FluNet, a
web-based global influenza virology surveillance tool first
introduced in 1997 [8]. The WHO divides member countries
into 6 regions based on their location, including the African
region (AFRO), Eastern Mediterranean region (EMRO),
European region (EURO), Americas region (AMRO), Southeast
Asian region (SEARO), and Western Pacific region (WPRO)
[9]. Since January 2020, a subset of member countries in each
region have also reported their national test positivity rates for
SARS-CoV-2 on a weekly basis. Influenza sentinel surveillance
systems were leveraged to integrate SARS-CoV-2 testing in
specimens from influenza surveillance sources. The genomic
sequencing of SARS-CoV-2 from representative and
systematically sourced sentinel specimens has been expedited
to monitor the trends and prevalence (ie, proportions) of existing
and emerging circulating and cocirculating genetic variants (ie,
clades) and to improve the geographic and demographic
representativeness and timeliness of SARS-CoV-2
genetic-sequence data in publicly accessible databases to inform
PHSMs [10].

Most studies have conducted epidemiological analyses and
estimation of COVID-19 or influenza by leveraging infectious
disease dynamics models [11-13] (eg, the
susceptible-exposed-infected-removed model), but few have
predicted trends based on longer time series and machine
learning during the past 3 years. These models help tackle
multimodal data and are increasingly being used in auxiliary
diagnosis and other medical areas [14,15]. They are composed
of different networks with various connections, referred to as
neural networks or neural-like networks, to achieve automated
learning and prediction by mimicking the neural network
construction of the human brain. This method is highly adaptable
and can adjust itself to diverse data sets, thus adapting itself to
different application scenarios. Secondly, deep learning avoids
human specification by automatically extracting data features
and processing them. This is highly scalable and can improve
simulation performance by increasing the network layers and
nodes to cope with larger-scale data and more complex problems
[16]. Therefore, more learning models could be introduced into
infectious disease surveillance and studies.

In this study, we examined global changes in COVID-19 and
influenza activity since 2020, aiming to assess the correlation
between COVID-19 and influenza activity and estimate
upcoming trends with the help of a deep learning model. The
findings may provide a theoretical reference for the
epidemiological patterns of these 2 respiratory infectious
diseases and insights for future interventions.

Methods

Summary of the Study Design
In this study, we retrospectively described the dynamics of
COVID-19 and influenza in the 6 WHO regions from January
2020 to March 2023 and used a neural network model to learn
potential patterns of previously observed activity to predict
trends for the next 16 weeks. Finally, based on an
epidemiological perspective, Spearman correlation coefficients
were used to assess the past and future correlations. The analysis
was performed using Python (version 3.9.6; Python Software
Foundation).

Data Source
The test positivity rate was used as an accurate indicator of
disease activity; this method used the number of positive tests
as the numerator and the specimens processed as the
denominator. We extracted the weekly test positivity rates for
influenza and SARS-CoV-2 from reports to FluNet between
January 12, 2020, and March 26, 2023 [10], covering the AFRO,
EMRO, EURO, AMRO, SEARO, and WPRO. The detailed
raw data names and sources are presented in Multimedia
Appendix 1, Table S1.

Model Construction
Based on the 3-year activity of COVID-19 and influenza, we
used a long short-term memory (LSTM) machine learning model
to estimate trends in the following 16 weeks. LSTM is widely
applied to stock and sales forecasting, specializing in a unique
memory cell structure that can process long time-series
information more effectively than other net models. It can be
trained directly on the series without smoothness requirements,
reducing the need for artificial intervention and enhancing
objectivity [16]. The LSTM transforms the traditional neurons
of a neural network into store cells, which are capable of storing
and transmitting the hidden information in a time series (Figure
1).

The LSTM converts conventional neurons into a storage unit
containing a matrix of 3 gating devices: input gate, forgetting
gate, and output gate. These combine to control the data
information flow and store the hidden information in the time
series [17], hence solving the gradient disappearance [18,19]
(Figure 1).

First, the forgetting gate filters the information in the unit Ct–1

at the previous moment t–1, and how much of its Ct–1

information is retained depends on the forget gate ft that has the
range [0, 1]; ft is set as 1 or 0 and in between, with the
information of Ct–1 corresponding to all retained, all forgotten,
and partially forgotten proportions, respectively. In the forgetting
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gate unit equation (equation 1), let Wf, Xt, yt–1, and bf denote
the weight of the forgetting gate, the input at time t, the hidden
state at time t–1, and the bias of the forget gate. The sigmoid
activation function is σ (equation 2).

Second, the input gate represents the information acquired at
the moment t. It determines how much information from the
input Xt at the moment t can be saved in the unit Ct (equations
3 and 4). Wi and Wc are the weights of the input gates. The
biases of the input gates are bi and bc, and tanh is the activation
function (equation 5).

Third, the update of the unit status Ct (equation 6) depends on
two parts: One is the product of the unit status Ct at the moment
t–1 and the forget gate ft, namely the retained information, and
the other part is the product of the input unit status C ̃t at the
present moment t and the input gate it, namely the new
information obtained. C ̃t is the input node at time t.

Fourth, the output gate is used to output the hidden status yt at
the moment t (equations 7 and 8). Wo and bo are the respective
weights and biases of the output gates.

Figure 1. Schematic diagram of the long short-term memory neural network framework. The neural network consists of many units. The dashed box
shows one of the unit structures, containing the forgetting gate, the input gate, and the output gate control system. The circles intersected by arrows in
the dotted box denote multiplication or addition corresponding to the formula for the method.

Model Performance Evaluation and Selection of
Optimal Parameters
To enhance the model prediction accuracy and scalability, we
used the mean absolute percentage error and root mean squared
error as evaluation indicators to determine the optimal
proportion of training set and test set, as well as step size, layers,
nodes, and algorithms [20,21], for different regions. The
selection process is detailed in Multimedia Appendix 1, Tables
S2-S6.

Correlation Analysis
We referred to the WHO list of the currently circulating variants
of concern of SARS-CoV-2 [22] and the study objectives to
uniformly divide all regions into 5 time periods to analyze the
correlations: these periods covered the original strain (January
2020 to November 2020), cocirculation of a multivariant strain
(referred to as “others”; December 2020 to April 2021), Delta
(May 2021 to November 2021), Omicron (November 2021 to
March 2023), and the period estimated by the models (March
2023 to July 2023). The starting and ending dates of variant
pandemics in different regions differed slightly. In the 6 WHO
regions, the Spearman nonparametric analysis of COVID-19
and influenza activity was conducted sequentially to identify
whether the epidemiological patterns were correlated across the
5 time periods mentioned above. The correlation analysis was
not intended to reveal causality but rather to identify and explain
significant trends.

Ethical Statement
As only published data were used for this study, ethical approval
was not necessary.
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Results

Description of Past Trends
Before the Delta variant emerged, the activity of the original
strain and other variants of SARS-CoV-2 was higher than that
of influenza in the 6 regions. Among the regions, SARS-CoV-2
activity was observed in AFRO, EMRO, and AMRO at a high
level (peaking at over 30%), and influenza activity was at a low
level (peaking at about less than 10%). Both fluctuated with
low activity levels (less than 15% overall), but influenza activity
was relatively lower in SEARO, WPRO, and EURO.

Following the emergence of Delta as the globally dominant
strain, influenza activity began to increase in WHO regions, but
in the AMRO and EURO, activity was less than 10% and

remained below that of Delta. In the other 4 WHO regions,
Delta activity reached a peak (over 30%) and then declined to
below 10%, and the decline was accompanied by a step-up in
influenza activity to 10% to 20% until the advent of Omicron.

During the first 3 months of the Omicron pandemic, influenza
activity in the 6 regions first declined alongside soaring Omicron
activity and then increased immediately when Omicron
plummeted, whereas the influenza test positivity rate overall
was consistently lower than that of Omicron. Thereafter, their
trends were identical; each declined as the other rose. This
occurred 1 to 2 more times, being more apparent in EMRO,
AMRO, WPRO, and EURO; each alternation, when influenza
activity was higher than Omicron or vice versa, lasted for about
3 to 4 months (Figure 2).

Figure 2. The observed and estimated activity of COVID-19 and influenza. Figures A-F correspond to the following regions of the World Health
Organization: African, Eastern Mediterranean, Americas, Southeast Asia, Western Pacific, and European. Periods are set for the original strain (Jan
2020-Nov 2020), “others” (Dec 2020-Apr 2021), Delta (May 2021-Nov 2021), Omicron (Nov 2021-Mar 2023), and the model-estimated period (Mar
2023-July 2023). The horizontal coordinate intervals are divided by month and labeled with the first letter of the month.

Estimated COVID-19 and Influenza Trends
We estimated the dynamics of COVID-19 and influenza activity
for 16 weeks after the study observation end point (March 26,
2023). The estimation was that they would be alternatingly
prevalent at less than 40% positivity rates, except for AMRO

(over 40%). In SEARO and EURO, it was estimated that
influenza and COVID-19 activity would be closely matched,
with both hovering around 10% positivity rates; in AFRO and
EMRO, influenza activity would rise from 10% to about 20%
to 30%, while COVID-19 activity would decrease from similar
levels to less than 5%, and COVID-19 activity would no longer
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be consistently higher than influenza. Conversely, influenza
could decrease to below 10% in AMRO and WPRO as
COVID-19 activity might go up to above 30% (Figure 2).

Correlation Between COVID-19 and Influenza Activity
in Different Time Periods
The Spearman coefficients were calculated for different phases
of COVID-19 and influenza activity. In our study, correlation
coefficients less than 0.3, 0.3 to less than 0.6, and more than or
equal to 0.6 were considered weak, moderate, and strong
correlations, respectively. Statistically, COVID-19 and influenza
were moderately and negatively correlated in EMRO, AMRO,
and WPRO during the original-strain pandemic (–0.355, –0.593,
–0.448) and also in EMRO (–0.358) during the multivariant
mixed pandemic, while they were transiently, strongly, and

positively correlated in EURO and WPRO (0.621 and 0.667).
During the Delta pandemic, the 2 diseases were moderately and
negatively correlated in AFRO, EMRO, and AMRO (–0.472,
–0.422, –0.351). During the Omicron pandemic, they were
moderately and negatively correlated in EMRO, AMRO, and
SEARO (–0.403, –0.370, –0.469) and highly negatively
correlated in EURO (–0.702). Similarly, in the estimated
16-week trend, they showed more significant and highly
negative correlations in AFRO, EMRO, and WPRO (–0.724,
–0.791, –0.600) and a moderate negative correlation in EURO
(–0.474). Overall, COVID-19 and influenza activity were
significantly negatively correlated, with coefficients greater
than 0.3, especially during the Omicron pandemic and in the
upcoming period. No significant correlation was found for other
pandemic phases and WHO regions (Figure 3).

Figure 3. Spearman correlation coefficients for COVID-19 and influenza in different World Health Organization regions. Positive and negative
correlations are shown in blue and red, respectively, with darker colors indicating a stronger correlation at the same significance level. AFRO: African
region; AMRO: Americas region; EMRO: Eastern Mediterranean region; EURO: European region; SEARO: Southeast Asian region; WPRO: Western
Pacific region. *P<.01, **P<.05, ***P<.001.

Discussion

Principal Findings
This study analyzed the dynamics of COVID-19 and influenza
in 6 WHO regions over the past 3 years and estimated them in
the following 16 weeks. We found that early in the pandemic,
when COVID-19 was emerging as an infectious disease,
influenza activity stayed below 10% for more than 1 year in the
6 WHO regions. Subsequently, influenza activity gradually rose
as Delta activity dropped, but still peaked at a level below that
of Delta. Omicron alternated with influenza as the dominant
disease. The trend of one disease declining as another rises has
been named the seesaw effect [23] and was clearly apparent in
the epidemiological patterns of the 2 infectious diseases in this
study, characterized by increasing magnitude and frequency,
with each alternation have a duration of about 3 to 4 months,
suggesting a competitive relationship. The seesaw effect of
alternating dominance is likely to become more conspicuous in
the postpandemic era. Negative correlation coefficients for
different WHO regions and time periods statistically
complement the validation of this effect.

Our quantitative analysis based on epidemiological indicators
(test positivity rates from the population) showed the dynamic
patterns of the 2 respiratory diseases, which have similar
transmission modes. The generation and variation of the seesaw
effect could be related to numerous factors. On the one hand,
from a biological perspective, respiratory viruses share the same
host; therefore, viruses compete with each other for susceptible
cells in the host. Cells invaded by one respiratory virus produce

immune interference that drives uninfected neighboring cells
to adopt a protectively antiviral status [24,25], making the host
resistant or only partially susceptible to subsequent viruses. One
example is the significant decrease in rhinovirus prevalence in
patients during peak influenza activity [26]. On the other hand,
this effect varies in magnitude and duration across regions,
which could be driven by the different intensity of PHSMs
adopted in different countries [27-30] and time periods [31],
differences in vaccination and natural infection status, or variant
strain properties. For example, the earliest adoption of strict
nonpharmaceutical interventions in China not only controlled
the spread and dissemination of the original strain [32], but also
reduced influenza activity by 82%, and by 64% in the north and
south [3]. Interestingly, after the PHSMs, influenza activity in
China in the latest winter was at a low level because of the rapid
rise in Omicron infections in the population at the same time,
and after the Omicron test positivity rate dropped, influenza
activity jumped sharply, to over 50%. This once again suggests
that driving factors influence the magnitude of the seesaw effect
and the timing of its onset. In addition, the higher virulence of
the original strain attacked individuals more and longer [6],
resulting in less opportunity for influenza virus infection; thus,
absolute suppression occurred in the first year of the COVID-19
pandemic. The more moderate virulence and lower severity of
Delta and Omicron allow the possibility of infecting the host
with influenza, which may explain why influenza activity
increased after the Delta pandemic and was able to dominate
during the Omicron period.

During the multivariant pandemic period, the dynamics of
COVID-19 and influenza had short-term positive correlations
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in EURO and WPRO, while negative correlations were not
significant in other regions. Temporary phenomena mediated
by complex factors, such as the sudden appearance of variants,
require more evidence to unravel their underlying mechanisms.
Similar phenomena have been observed in other studies: there
are reports of coinfection with SARS-CoV-2 and influenza A
in some countries [33-36], and meta-analyses based on the
November 2019 to August 2021 period [37] all showed
coinfection with both diseases. Nevertheless, most study subjects
have been COVID-19 patients or laboratory animals rather than
the general population [37,38], with a low proportion of
observed coinfections (about 1%) or small sample sizes [39]
before and during the Omicron pandemic [37,40]. Inevitably,
the positive correlation for susceptibility to coinfection at the
individual level or in some high-risk populations might lead to
serious clinical outcomes [41]; therefore, much larger,
sample-based meta-studies are warranted to explore the reasons
for this phenomenon to prevent and control it or to meet the
potential surge in hospital visits and demand. In addition, it is
worth noting that other respiratory infectious diseases have been
threatening humans. Further research on the interactions between
respiratory pathogens other than COVID-19 and influenza
remains to be done. Regardless of the fate of COVID-19,
influenza, or other respiratory pathogens, necessary personal
protection and vaccination should be implemented.

Our study provided qualitative and quantitative assessments of
the interaction between COVID-19 and influenza. We identified
a seesaw effect between COVID-19 and influenza activity based
on a competitive effect from an epidemiological perspective,
echoing viral antagonism from a historical pathogenic

perspective. This finding can be used to guide disease
surveillance, early warning, and intervention; for example,
real-time surveillance of viral dynamics can be used to estimate
trends in other diseases or stagger vaccinations in response to
alternating epidemics or pandemics.

Limitations
There are some limitations to mention. First, the high uncertainty
of viral variation, changes in influenza visit behavior triggered
by early and rigorous interventions, the decline in SARS-CoV-2
tests in some countries, and other unforeseen factors all
interfered with the observed positive test numbers for the 2
diseases studied. Hence, we used the test positivity rate rather
than the number of positive tests as an indicator of activity and
divided the time periods to minimize the negative impact.
Second, the raw data may not fully represent the overall trend
in each area because of the limited number of member countries
that periodically report to the WHO. Nevertheless, there is no
more authoritative data source for COVID-19 and influenza
activity.

Conclusions
Influenza activity and former seasonal epidemiological patterns
were shaken by the COVID-19 pandemic. Their activities were
inversely correlated to a moderate or greater degree, and they
suppressed and competed with each other, showing a seesaw
effect. In the postpandemic era of COVID-19, seesaw trends
will be more prominent, prompting the possibility of using one
disease as an early warning signal for the other for future
estimates; this could be used to conduct optimized annual
vaccine campaigns.
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